Computer Fraud and Security
ISSN (online): 1873-7056

NoSQL Migration and High-Availability Architecture

Rohit Wadhwa
Independent Researcher, USA
Abstract

As organizations have begun migrating from customary single-node relational database architectures to
distributed NoSQL data infrastructures, the limitations of RDBMSs have become clearer. Customary
relational database architectures cannot satisfy national-scale enterprise applications with millions of
concurrent users, sub-second query response times, and horizontal scalability. This article, based on years
of experience migrating retail and financial services workloads to a NoSQL architecture with Five Nines
high availability, presents a reference architecture and methodology to achieve the transition. The article
presents the following four principles: access pattern optimization (data denormalization and partition key
design to optimize data storage for queries), incremental migration (Strangler Fig pattern and shadow write
techniques to safely migrate database schemas without corrupting a production database), event-driven
architecture (change feeds to treat databases as an event source, decoupling services), and thorough fault
tolerance (circuit breaker patterns to protect from cascading system failure rather than attempting to build a
system that never fails). These four principles address the main challenge in designing distributed systems:
how to achieve consistency, availability, and partition tolerance at the same time, while also ensuring good
performance. Beyond performance, this article places Five Nines systems engineering in the social context
of digital stewardship. The article recognizes that infrastructure reliability is a key property for millions of
people using mission-critical platforms supporting mortgage processing to retail businesses and countless
other applications. Climate and ecological sustainability are addressed by minimizing resource
consumption to decrease the carbon footprint of cloud infrastructure computing, a challenge becoming
increasingly pronounced at the national scale. Also, the calculated blueprint is a guide for architects facing
similar changes in their own organizations. However, NoSQL migration is more than a technology shift. It
requires an underlying reconceptualization of enterprise data flow patterns, cultural adaptation to
progressive design-for-failure approaches, and an acceptance of reliability as a first-class engineering goal.

Keywords: Distributed NoSQL Architecture, High-Availability Engineering, Strangler Fig Migration
Pattern, Event-Driven Synchronization, Fault Tolerance and Circuit Breakers

1. Introduction: The Monolithic Breaking Point
1.1 Context and Scope

The monolithic breaking point in enterprise systems is when the usual relational database setup can’t keep up with the
needs of large distributed computing systems. This happens because the advantages of ACID guarantees, organized data
structures, and increasing the This occurs as the benefits of ACID enforced guarantees, normalization of structured
schemas, and vertical scaling of relational database management systems conflict with the requirements of applications
servicing geographic consumers who have specific performance requirements [1]. While relational databases ensure data
accuracy and handle complicated transactions well, they become a limitation when too many users try to access a single
database at the same time. In high-density user populations interacting with national-scale systems, distributed NoSQL
databases are the only way to support users measured in millions. Their horizontal scale characteristics through partition
models and their eventual consistency operations provide a clear answer. Five Nines availability means that a system can
only be down for a few minutes each year, and when it reaches this level, it is seen as essential, so the design must
include features that ensure backup, reliability, and smooth performance even when issues arise, rather than being
optional.

1.2 Article Objectives and Case Study Foundation

The monolithic breaking point in enterprise systems happens when the usual relational database setup can’t handle the
needs of large distributed computing systems anymore. This occurs as the benefits of ACID enforced guarantees,
normalization of structured schemas, and vertical scaling of relational database management systems conflict with the
requirements of applications servicing geographic consumers who have specific performance requirements [1]. While

472
Vol: 2026 | Iss: 1 | 2026

Computer Fraud and Security
ISSN (online): 1873-7056

relational databases ensure data accuracy and handle complicated transactions well, they become a limitation when too
many users try to access a single database at the same time. In high-density user populations interacting with national-
scale systems, distributed NoSQL databases are the only way to support users measured in millions. Their horizontal
scale characteristics through partition models and their eventual consistency operations provide a clear answer. Five
Nines availability means that a system can only be down for a few minutes each year, and this level of reliability is
essential for critical operations, so the design must include features that ensure backup, error handling, and smooth
performance even during issues, rather than treating them as optional extras.

2. Data Modeling Paradigm Shift: From Relational Normalization to Access Pattern Optimization
2.1 Fundamental Principle: Access Patterns Over Normalization

Normalization, the chief design principle in a relational database, involves reducing data redundancy. Denormalization,
the chief design principle in NoSQL databases, involves optimizing for read performance to match application access
patterns [3]. Normalizing a relational database consists of splitting up its entities into separate tables whose relationships
are defined through the use of foreign keys. references. Although this pattern is inexpensive in terms of storage and
update costs, it requires an expensive join operation at the database level to reconstruct the complete domain entity for
the query. In distributed NoSQL systems, combining data from different storage areas can be very slow and costly in
terms of computing power and network delays, which makes this approach impractical for systems that need to handle
many requests quickly and respond in less than a second. With the access-pattern-first design principle, the data architect
considers all the ways a data model will be used, like how it will be accessed in the user interface or by the programmatic
API, and chooses a data model that groups related data together in logical partitions based on different query patterns.
This requires that each logical partition key correspond to the query patterns that dominate system operation and that the
great majority of queries are handled through partition-local operations, without requiring coordinator nodes to gather
and merge results across distributed logical partitions. Such an arrangement is the main way that the system avoids traffic
latency, but its implementation involves several remote nodes. The issue lies in the round trip time for network
operations, the overhead on the several coordinator nodes that issue the queries, and the eventual consistency guarantees
involved in amassing the results of multiple nodes. As a result, local operations, which might finish in milliseconds
become orders of magnitude slower, causing a negative user experience and severely reducing system throughput.

2.2 Partition Key Strategy and Performance Impact

The choice of a partition key is one of the most critical design decisions for a data system because it establishes
immutable boundaries for how data is physically partitioned, how queries are routed, and how a system can be
horizontally scaled over its lifetime. The main partition key design trade-off is between optimizing for a given access
pattern and causing hotspots when a resource is exhausted on one node, even though the entire cluster is available. Entity
types that are closely related (like departments, locations, or groups of users) can be accessed in a way that keeps the load
balanced across the storage, avoiding hotspots, as long as the partition key is unique enough and the workload is spread
out evenly across the key space. To achieve this, careful partition key selection is required that takes into account current
and future variations in query patterns as the system scales up. This necessitates a profound understanding of the
semantics of the application, rather than relying on general partitioning guidelines. When the partition keys match the
boundaries of these natural divisions, applications will perform like a single node but can grow like a distributed system,
successfully overcoming the common problem in distributed databases of balancing strong consistency with the high
scalability needed for many applications that are sensitive to delays.

Dill)lfslllgs?on Relzx;opnrz:)la(cShQL) Distributed NoSQL Approach
Core Design | Normalization to reduce D lization to optimize f it
Principle data redundancy enormalization to optimize for query patterns
Data Entities split into. . o N .
. separate tables with Colocate logically related data within partition boundaries
Organization . . .
foreign key relationships
Query Join operations . N . . N 4
Strategy reconstruct doma%n Partition-local operations without cross-partition queries
entities at query time

473
Vol: 2026 | Iss: 1 | 2026

Computer Fraud and Security
ISSN (online): 1873-7056

Desien Schema-first design
Me t};go dolo based on entity Access-pattern-first design mapping Ul screens and API calls to partition keys
gy relationships
Optimization | Storage efﬁf:lency and Read performance and sub-second response times
Target update consistency
Partition Key Not.apphcable; vertical Critical boundary for data distribution, query routing, and horizontal scaling
Role scaling model
Scalabilit Vertical scaling with
Model Y bounded concurrent Horizontal scaling with distributed load across partition key space
connections
Cross- . .
Partition Standard join operations Avoided due to network latency and coordinator overhead penalties
. across tables
Operations
Key Primary keys for entity . o . . e L
Selection . . . High cardinality keys with uniform workload distribution avoiding hotspots
o identification
Criteria
Desion Low storage cost vs.
Tra di—o s expensive join Access pattern optimization vs. potential hotspot creation
computation

Table 1: Architectural Trade-offs in SQL and NoSQL Data Modeling Strategies [3, 4]

3. Migration Strategy: Incremental Transition via the Strangler Fig Pattern

3.1 The Strangler Fig Methodology

The Strangler Fig Pattern is a careful approach to changing systems that breaks down the replacement of a large, old
system into smaller, manageable updates, unlike big changes that switch everything at once. Inspired by how certain
plants take over trees, this pattern lets old and Inspired by the way parasitic plants eventually supplant the host trees, the
Strangler Fig Pattern allows legacy and modernized components to coexist as functionality is gradually migrated from
the old infrastructure to the new infrastructure, thus spreading the transformation risk over a long time with incremental
rollback at each transformation boundary [5]. Key technologies that enable this pattern include the shadow write, which
enables dual-write changes to legacy relational stores and the target distributed systems. By enforcing the same change in
both the source and target, migration teams guarantee data correctness, consistent semantics, and application fidelity
under production loads without traffic having to switch from source to target. The source is the system of record under
load, without risk of exposing end users to artifacts of the migration. Another advantage is that one can identify, by
comparing the records written to both parts of the implementation, any semantic mismatches, performance regressions, or
data loss issues before switching read queries, and so greatly reduce the chance of a catastrophic failure that could occur
if switching over to the new implementation was a monolithic cutover, where the problem was only discovered after

switching [6].

3.2 Implementation Case Study: Fannie Mae Desktop Underwriter

The gradual move of financial services underwriting systems to use microservices shows how incremental migration can
work well in areas that have strict rules and need to be available all the time, where being available is a must, not just a
goal. API Gateway architectures can ease this incremental migration by providing an additional layer of abstraction,
allowing the service consumer to remain agnostic of the implementation details of the backend functionality that is being
progressively migrated from a monolithic process to a microservice architecture with stable contract interfaces. People
often combine gateway-centric blue-green techniques with a zero-downtime style (provider-side) deployment. This
method covers things like parallel production environments, where a new operator is put into a completely separate

infrastructure, and switching cutovers to the new and validated environment is done after running multiple functional
tests. Considerations for this type of deployment include any gaps in availability, especially with large migrations. This
scenario is especially true where the clients are large institutions and it is logistically impractical for a geographically
distributed organization to get coordination on maintenance windows. The cost of lost income, regulatory fines, and bad
press from even a small outage far exceeds the technical effort involved in progressing to more complex migration

techniques.

Vol: 2026 | Iss: 1 | 2026

474

Computer Fraud and Security
ISSN (online): 1873-7056

STAGE 1: Initial State

OLD MONOLITHIC SYSTEM
Single database, all traffic

l

STAGE 2: Shadow Writing

OLD SYSTEM DUAL WRITE NEW SYSTEM
Active production Copy to both

!

Testing mode

STAGE 3: Gateway Routing

APl GATEWAY
Routes traffic

MIXED STATE

Sradual migration

N

STAGE 4: Blue-Green

BLUE (Old) O, GREEM [New)
Backup ready Active production

STAGE 5: Complete

NEW DISTRIBUTED SYSTEM
Migration complete, high availability

Key Success Factors

Zero Downtime Safe Testing Easy Rollback Distributed Risk
Continuous “Walidation before Return to old system Incremental
availability cutover anytime transitions

Fig. 1: Strangler Fig Migration Pattern: Incremental Transformation from Monolithic to Distributed Architecture [5, 6]
4. Event-Driven Architecture: Change Feed Implementation for Real-Time Synchronization
4.1 Change Feeds as Active Event Sources

Event-driven architectures change the role of the database as an event source, as opposed to being a passive store of data
that only returns results in response to queries. Change feed mechanisms move databases from the request-response
interaction model that has defined data access patterns from the earliest database management systems [7] by
transparently subscribing to operations that change the database state (inserts, updates, and deletes) and then exposing
those state mutations as ordered streams of events for consumption by downstream consumers, establishing databases as
first-class reactive system components, rather than merely terminal persistence layers. This architecture allows

475
Vol: 2026 | Iss: 1 | 2026

Computer Fraud and Security
ISSN (online): 1873-7056

microservices to communicate with one another through implicit state changes in the system, without needing to
explicitly set up imperative coordination logic, and then allows the events to be used declaratively to respond to
observable states in the system. The change feed abstraction and the decoupling of data writers and event consumers
allow for the decoupling of services for event processing, enabling different scaling, deployment, or evolution of the
services that are not tightly coupled [8]. Decoupling services through an event stream is especially important in a
distributed system, where synchronous request-response communication across service boundaries creates an increasing
net latency and fragile dependency chains where the failure of a single service causes a cascading failure. Asynchronous
event propagation allows all services to respond to events when they are ready. Eventually, consistent systems are often
sufficient in business scenarios that don't need strict transactional guarantees.

4.2 Performance Optimization Through Event-Driven Design

The use of push-based event propagation is an important optimization for distributed state synchronization patterns
because many clients have to be kept notified about the changes in server-side state in resource-constrained mobile
architectures without the need of constantly polling state changes on the clients' side. Polling has costs in terms of
unnecessary network traffic and latency, which is intrinsically limited by the polling period. This leads to trading off
resource efficiency and latency in an intractable way, impacting user experience and loading infrastructure excessively.
Event-driven architectures can avoid this trade-off, enabling the server to keep a connection open to each client and
immediately push changes after an event affects the state. For each of n clients that must be synchronized, polling
changes to the state can decrease from O(n) to O(1). Another benefit of event-driven architectures is reduced power
consumption for mobile devices. Polling the network drains mobile device battery life, potentially by preventing the
network radio transceivers from entering low-power sleep states and creating, destroying, and recreating network
connections, whereas the mobile device can simply keep one connection open and aggressively power manage it between
state change events. Likewise, infrastructure costs are reduced by avoiding excessive polling of state for changes (which
consumes CPU, bandwidth, and query capacity), whereas purely event-based distribution of state changes (rather than
polling) allows costs to scale linearly with system activity rather than client population, thereby more directly linking the
cost of an implementation to the generation of business benefit.

Dimension Traditional Polling Event-Driven Change Feed

Database Role Passive data store responding to queries | Active event source broadcasting changes

Communication Pattern | Request-response with periodic polling | Asynchronous event stream propagation

Service Coupling Tight coupling through shared schema | Loose coupling with independent scaling
Network Efficiency O(n) traffic scaling with client count O(1) targeted notifications on changes
Latency Limited by polling interval period Immediate push upon state transition

. . . . Low consumption via persistent
Mobile Power Impact High drain from repeated connections) P P
connection

Infrastructure Cost Scales with client population Scales with actual system activity

Table 2: Data Synchronization Approaches Comparison [7, §]
5. Resilience Engineering: Circuit Breakers and Blast Radius Containment
5.1 Design-for-Failure Philosophy

Unlike in centralized computing, where component failures are considered unexpected, in distributed systems failures are
common. Therefore, hardware and software are often designed using patterns that limit the scope of failures, rather than
seeking to create systems where all components are perfectly reliable [9]. In a distributed system, as it grows in scale, the

476
Vol: 2026 | Iss: 1 | 2026

Computer Fraud and Security
ISSN (online): 1873-7056

likelihood of all components being healthy at the same time becomes negligible. Therefore, rather than preventing
systemic failures, focus is placed on limiting the 'blast radius' of the failure if a failure does happen, such that it does not
cascade throughout the system. The Circuit Breaker pattern, for example, can be used as a stateful proxy on the boundary
of a service that monitors the health of downstream dependencies and interrupts their requests when error rates exceed
some configured threshold. This also prevents service resource exhaustion due to cascading service failures, where a
service does not possess a hard limit on how many missing responses to a failed dependency it can buffer. Circuit
breakers can thus also enable service degradation strategies that continue to provide service at a reduced level, e.g.,
through cached responses with stale data, degraded responses from a subset of data not requiring a dependent service, or
user interfaces indicating reduced capability while preserving core workflows [10]. These mechanisms assume that many
operations in a distributed system have variable criticality, such that certain functionality can be suspended without
rendering the user interaction entirely invalid, and that partial functionality is better than complete unavailability, at least
in consumer-facing applications where the user is far more willing to tolerate partial functionality than total non-
operation.

5.2 Availability Impact and Fault Isolation

This means that circuit breakers can ultimately improve the availability of a system by preventing cascading failures,
where failure of a single downstream dependency would only degrade a specific set of capabilities, rather than the entire
system. Additional circuit breaker patterns can be used to prevent downstream dependency failures from consuming
resources on the upstream service. These patterns include request timeouts, to limit the maximum duration of a request;
bulkhead patterns to partition Resource pools are used to separate shared capacity, and fail-fast patterns are implemented
to reject requests instead of blocking an unbounded number of requests when circuit breakers detect unhealthy
downstream states. When the service relies on identity verification, the circuit breaker can be set up to let the service
continue working in a limited way by skipping optional checks, using saved results, or running the checks in the
background. This arrangement is useful to protect services that do not need real-time cross-organization validations in all
interactions. The pattern to protect national infrastructure extends beyond service interactions and includes regional fault
domains, datacenter fault domains, and multi-region active deployments such that localized infrastructure failures, such
as network partitions, datacenter power outages, and regional disasters, do not cause visible outages for user requests that
traverse unaffected geographic regions. This arrangement also distributes blast radius containment across architectural
layers from microsecond-scale service calls up to hour-scale disaster recovery, allowing resilience to be an emergent
property of layered defensive mechanisms rather than a binary architectural characteristic.

Resilience Pattern Blast Radius Containment Strategy

Monitors downstream health and interrupts requests when errors exceed threshold,

Circuit Breaker . . .
preventing cascading failures

Request Timeout Limits maximum wait duration to prevent indefinite blocking on failed dependencies

Partitions resource pools so single dependency failure cannot exhaust entire service

Bulkhead Pattern .
capacity

Rejects requests immediately when downstream unhealthy rather than queuing

Fail-Fast Behavi : i
ail-Fast Behavior indefinitely

Regional Fault Domains | Geographic distribution isolates regional disasters without global system impact

Multi-Region Active- Simultaneous operation across regions makes localized failures invisible to
Active unaffected users

Table 3: Fault Isolation Mechanisms for Blast Radius Containment [9, 10]
Conclusion: Calculated Outcomes and Broader Implications

Migration from monolithic stacks of relational databases and application servers to distributed systems utilizing NoSQL
will require an entirely new model of thinking about data in a modern enterprise at a national scale. The four techniques
we've explored here—optimizing access patterns by collocating data according to dominant query patterns, incremental
migration with the risk of transformation distributed over time, event-driven architecture that turns the database from a

477
Vol: 2026 | Iss: 1 | 2026

Computer Fraud and Security
ISSN (online): 1873-7056

passive sink into an active event source, and thorough fault tolerance that cascades failure containment rather than
chasing perfection—represent a cohesive philosophy of how to build resilient systems able to cope with the requirements
of today's digital commerce and critical infrastructure. Tied to these ideas is an ability to deploy benefits through multiple
lenses: reduced latency (moving from a tolerable to an extraordinary user experience), improved availability (reducing
outages to small pockets of failure), and improved deployment profiles (eliminating maintenance windows from
enterprise software operations) . Beyond that, when Five Nines systems get built, they're also a matter of digital
stewardship: keeping these systems operating is important for the millions who depend on key platforms operating
continuously. Architectural resilience in mortgage origination systems means that families can get a mortgage and a new
home without fragmentation and delays that lead to inefficiencies in the housing market. In retail operations, architectural
resilience allows associates to perform their jobs knowing the tools they depend on in their work are available when
needed. Well-architected distributed systems use resources efficiently, optimize queries, directly enable environmental
sustainability, reduce wasteful computation in the cloud infrastructure, power national-scale enterprise computing, and
continue to expand worldwide. To gain Five Nines availability, architects must remain tirelessly disciplined, testers must
test exhaustively, and the organization must strongly commit to reliability as a first-class engineering objective. People
own and operate digital infrastructures. Modern society increasingly adds to their local and global foundations. For these
individuals, their investment sets them apart in a competitive landscape. This investment obligates them professionally.

References

[1] Michael Stonebraker et al., "The End of an Architectural Era: It's Time for a Complete Rewrite," Proceedings of the
33rd International Conference on Very Large Data Bases, September 2007. Available:
https://dl.acm.org/doi/10.1145/3226595.3226637

[2] Daniel J. Abadi, "Consistency Tradeoffs in Modern Distributed Database System Design," IEEE Computer, vol. 45,
no. 2, February 2012. Available: https://iecexplore.icee.org/document/6127847

[3] Rick Cattell, "Scalable SQL and NoSQL Data Stores," ACM SIGMOD Record, vol. 39, no. 4, 2011. Available:
https://doi.org/10.1145/1978915.1978919

[4] Avinash Lakshman and Prashant Malik, "Cassandra: a decentralized structured storage system," ACM SIGOPS
Operating Systems Review, vol. 44, no. 2, 2010. Available: https://doi.org/10.1145/1773912.1773922

[5] M. M. Lehman et al., "Metrics and laws of software evolution—the nineties view," Proceedings of the 4th
International Software Metrics Symposium, 2002. Available: https://iecexplore.ieee.org/document/637156

[6] Giuseppe DeCandia et al., "Dynamo: amazon's highly available key-value store", ACM SIGOPS Operating Systems
Review, vol. 41, no. 6, 2007. Available: https://doi.org/10.1145/1323293.1294281

[7] Peter Bailis et al., "Coordination Avoidance in Database Systems," Proceedings of the VLDB Endowment, vol. 8, no.
3, November 2014. Available: https://dl.acm.org/doi/10.14778/2735508.2735509

[8] Tyler Akidau et al., "The Dataflow Model: A Practical Approach to Balancing Correctness, Latency, and Cost in
Massive-Scale, Unbounded, Out-of-Order Data Processing," Proceedings of the VLDB Endowment, vol. §, no. 12,
August 2015. Available: https://dl.acm.org/doi/10.14778/2824032.2824076

[9] James Hamilton, "On Designing and Deploying Internet-Scale Services," Proceedings of the 21st Large Installation
System Administration Conference, November 2007. Available:

https://www.usenix.org/legacy/events/lisa07/tech/full_papers/hamilton/hamilton.pdf

[10] Jeffrey Dean et al., "The Tail at Scale," Communications of the ACM, vol. 56, no. 2, February 2013. Available:
https://doi.org/10.1145/2408776.2408794

478
Vol: 2026 | Iss: 1 | 2026

https://www.vldb.org/conf/2007/papers/industrial/p1150-stonebraker.pdf
https://www.vldb.org/conf/2007/papers/industrial/p1150-stonebraker.pdf
https://dl.acm.org/doi/10.1145/3226595.3226637
https://ieeexplore.ieee.org/document/6127847
https://ieeexplore.ieee.org/document/6127847
https://doi.org/10.1145/1978915.1978919
https://doi.org/10.1145/1773912.1773922
https://ieeexplore.ieee.org/document/637156
https://doi.org/10.1145/1323293.1294281
https://dl.acm.org/doi/10.14778/2735508.2735509
https://dl.acm.org/doi/10.14778/2824032.2824076
https://www.usenix.org/legacy/events/lisa07/tech/full_papers/hamilton/hamilton.pdf
https://doi.org/10.1145/2408776.2408794

