
Computer Fraud and Security  

ISSN (online): 1873-7056 

 

_________________________________________________________________________________________ 
140 

Vol: 2026 | Iss: 1 | 2026 
 

Architecting Privacy-Preserving Distributed Systems for Handling 

User Data 

Projjal Ghosh 

Independent Researcher, USA 

Abstract 

Distributed systems that handle sensitive user data face concerning issues in ensuring the end-to-end 

encryption of the data lifecycle. This article introduces an architecture that guarantees encrypted user data 

transmission from the source to processing stages, till storage, and is only decrypted in cryptographically-

secure environments. The system incorporates hardware security modules to guard encryption keys, trusted 

execution environments in confidential virtual machines to process encrypted data without exposing 

plaintext, and authenticated encryption to support persistent storage. Remote attestation protocols ensure 

the integrity of code before decryption, whereas binary transparency mechanisms permit independent 

verification of processing behavior. The architecture solves the threats to encrypted data, such as key 

compromise, memory extraction, storage tampering, and insider access, using layered cryptographic 

controls. Guidance on implementation includes the initiation of client-side encryption, secure key 

distribution hierarchies, isolated processing in hardware enclaves, and integrity-protected storage 

mechanisms. The resulting system allows enterprises to provide cryptographic security of user data over a 

distributed infrastructure and comply with regulatory data confidentiality requirements and privacy-

preserving analytics with differential privacy methods. 
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1. Introduction 

To ensure the security of sensitive user data in distributed systems, it is necessary to ensure the existence of 

cryptographic boundaries in the whole data lifecycle. End-to-end encryption means that user information is initially 

encrypted at the client, encrypted over the network, and only processed in cryptographically secure environments, and is 

stored encrypted. Any interruption in this encryption chain will reveal user information to unauthorized access. Secure 

processor architectures provide the basis of processing encrypted user data by developing isolated memory spaces in 

which decryption may be performed without exposing plaintext to the host system or administrators. 

A study of secure processor implementations shows that enclave page cache sizes of 64 MB to 256 MB can be used to 

support realistic workloads and still provide cryptographic isolation. Protected regions with a larger size scale their 

overheads on initialization to about 0.8 milliseconds per megabyte [1]. These remote enclaves store the contents of 

memory encrypted with 128-bit AES keys based on processor-internal root secrets that are not accessible to software, 

meaning that even physical memory attacks cannot retrieve plaintext user data during execution. The encryption imposed 

by the hardware establishes a trusted boundary such that user data may be temporarily decrypted to compute without 

compromising the end-to-end encryption promise. 

Attestation mechanisms are necessary to ensure that the processing of user data in these isolated environments is correct. 

These processes create cryptographic measurements prior to any user data decryption. The attestation process generates 

REPORT structures with 384 bytes of measurement information, 256-bit SHA-2 hashes of loaded code, and 512-bit RSA 

signatures linking measurements to platform keys [1]. These measurements can be checked by remote parties before the 

transmission of encrypted user data so that only approved code with confirmed behavior will be allowed to access 

decryption keys. This chain of attestation ensures that code that is malicious does not pose as legitimate processors and 

steal user data. 

The encryption level that secures user information should be resistant to attacks throughout the life of the data. 128-bit 

symmetric encryption keys are sufficient to protect the user data to 2030, and 256-bit keys to 2050, given the current 

cryptanalytic capabilities [2]. In key exchange operations that define the encryption of user data, asymmetric 

cryptography needs longer keys: 2048-bit RSA is 112-bit strong and 3072-bit RSA is 128-bit strong [2]. The correct 



Computer Fraud and Security  

ISSN (online): 1873-7056 

 

_________________________________________________________________________________________ 
141 

Vol: 2026 | Iss: 1 | 2026 
 

choice of key lengths will make sure that the encrypted user data will not be compromised during the retention period, 

even with the growth of computing power. 

The choice of cryptographic algorithms to protect user data should consider the changing threats. This need is reflected in 

the migration of SHA-1 to the SHA-2 family functions, where collision attacks on SHA-1 have shown weaknesses that 

need more robust primitives [2]. Hash functions with 256-bit outputs offer 128-bit collision resistance, which is adequate 

to secure valuable user data over decades. Key derivation functions allow hierarchical key structures where a master key 

is used to create operation-specific keys, such that the compromise of a derived key to access one data batch of user data 

does not compromise other encrypted data accessed with different derived keys. 

Hardware security modules that are tamper-resistant are necessary to protect the keys that encrypt user data. These 

devices use physical security measures that identify intrusion attempts. The sensors in the environment cause protective 

actions in case of temperature changes more than 10 degrees Celsius, voltage changes more than 5 percent of nominal 

values, or electromagnetic emissions typical of side-channel attacks [2]. When tampering is detected, key material is 

erased in milliseconds during zeroization processes, and keys that would be used to decrypt user data are not extracted. 

The key protection is done by hardware so that even physical access to the cryptographic infrastructure cannot decrypt 

encrypted user data. 

2. Implementing Cryptographic Security of User Data 

End-to-end encryption can be maintained by generating quality cryptographic keys that will secure user data during its 

lifecycle. Critical generation needs the sources of entropy that generate really random and unpredictable values. Entropy 

generation rates of over 100,000 bits per second are possible with hardware random number generators based on physical 

noise sources [3]. Statistical testing, such as frequency analysis, runs tests, and spectral analysis confirm that generated 

keys have no exploitable patterns that will compromise the encryption of user data. 

Client-side key generation is used to guarantee that the encryption keys of the user data are never stored in plaintext 

within the control of the user. To encrypt bulk data, users locally generate symmetric encryption keys, usually choosing 

between 128-bit and 256-bit encryption key lengths depending on the sensitivity of the data and the duration of 

protection. The length of keys that are to be used to secure user data after 2030 must be 256 bits in order to have 

sufficient security margins over future cryptanalytic improvements [3]. Computational overhead of longer keys is not 

very problematic: software implementations demonstrate a 256-bit operation about 40 percent slower than a 128-bit 

operation, which is a sensible tradeoff to achieve longer security. 

The distribution of encryption keys of user data to distributed systems necessitates key exchange protocols to create 

common secrets without the transmission of keys in plaintext. Elliptic curve cryptography offers an efficient key 

exchange, and 256-bit curves are as secure as 3072-bit RSA but use much less computational resources and smaller key 

representations [4]. This performance is essential in resource-limited settings that deal with encrypted user information. 

Embedded processor measurements indicate that point multiplication operations on NIST P-256 curves take about 23 

milliseconds with 32-bit arithmetic, and optimized Curve25519 implementations take only 15 milliseconds [4]. These 

performance features allow key establishment in real time, even on low-processing-performance devices. 

The key hierarchy and derivation must be considered when managing encryption keys during their lifetime. Hardware 

security modules hold master keys that are cryptographically derived to produce operation-specific derived keys. This 

top-down design implies that keys that encrypt batches of user data can be re-generated on command using master secrets 

instead of being stored in a persistent manner [3]. Revocation only impacts the individual user data that was encrypted 

using a compromised derived key, and does not impact other data encrypted using different derived keys. Hardware 

protection does not lose the master keys, so that even a large-scale attack on derived keys does not allow decryption of all 

user data. 

The major rotation policies trade the benefits of security for the complexity of operation of systems that keep user data 

encrypted. The frequent rotation also constrains the amount of user data that is exposed in case of a key compromise, yet 

rotation necessitates the coordination of updates across distributed systems. The key rotation of high-sensitivity user data 

is generally 90 days, whereas less sensitive data can be done on an annual rotation schedule [3]. Systems also use dual-

key windows of 24 to 48 hours during rotation periods, with both old and new keys being valid to allow seamless 

transition without service interruption to access encrypted user data. 
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Key Exchange Operation Performance Metric 

Random Key Generation Rate for User Data 100,000+ bits/second 

Performance Cost of Stronger User Data Encryption 40% overhead (256 vs 128-bit) 

Elliptic Curve Key Exchange Security Equivalence 256-bit ECC = 3072-bit RSA 

User Data Key Exchange (NIST P-256) 23 milliseconds 

User Data Key Exchange (Curve25519) 15 milliseconds 

Key Distribution Architecture Hierarchical derivation 

High-Sensitivity User Data Key Rotation 90-day intervals 

Key Transition Window for User Data 24-48 hours 

Table 1: Key Exchange and Distribution Timing for User Data Encryption Initiation [3,4] 

3.  Handling Encrypted User Data in Isolated Environments 

The processing of user data with end-to-end encryption and maintaining secrecy of the data must be done in 

environments where it can be decrypted without revealing plaintext beyond cryptographic security. Trusted execution 

environments provide hardware-isolated memory regions that encrypt all the contents at the memory controller level. 

Recent memory controllers can encrypt over 25 GB/s per channel with specialized AES engines, and encryption 

overhead is insignificant with most workloads [5]. This is a hardware-enforced encryption that even physical access to 

memory modules will not be able to retrieve plaintext user data during processing. 

Memory protection of different granularities provides different tradeoffs between security and overhead in processing 

encrypted user data. Page-level encryption of individual 4 KB pages allows fine-grained access control but needs about 

12.5 percent more memory to store integrity metadata. Metadata overhead is raised to 25 percent by cache-line 

granularity protection [5]. The option varies based on the threat model: page-level protection is more resistant to more 

advanced attacks that would seek to corrupt certain data structures; coarser protection is only necessary when memory 

isolation is sufficient to ensure user data security. 

Memory encryption has performance effects that depend on the workload properties during user data processing. 

Operations that are compute-intensive and have high rates of cache hits have low overhead (less than 3 percent) because 

the majority of data accesses are in processor caches that do not need any encryption operations [5]. The workloads with 

high memory demands and poor cache locality incur 15 to 30 percent overhead as a result of the encrypted memory 

traffic and integrity checks. User data that has been encrypted by applications processing must maximize the use of the 

cache in order to reduce the performance impact without compromising the cryptographic protection. 

Attestation protocols need to ensure that only approved code is executed in the isolated environment before any 

encrypted user data is processed. The attestation process produces evidence structures that store platform configuration 

measurements, enclave identity data, and cryptographic signatures relating these measurements to platform keys [6]. 

Generation of evidence takes less than 50 milliseconds,s even with ECDSA signing operations based on P-256 curves 

that produce signatures of 64 bytes. This evidence can be verified by remote parties before they can issue decryption 

keys, which means that user data will not be decrypted outside of a verified, trusted environment. 

Transformation of attestation evidence into remotely verifiable quotes allows distributed verification of environments 

that process encrypted user data. Quote generation services authenticate local attestation evidence, retrieve pertinent 

measurements, and generate signed quotes with attestation keys supplied when the platform is manufactured [6]. This 

process introduces about 100 milliseconds of latency but generates 4 KB quote structures with platform firmware 

versions, enclave measurements, and full certification chains. These quotes can be verified without access to the 

platform, which is essential in distributed systems where user data processing is done on several independent nodes. 

To verify attestation quotes, it is necessary to verify several cryptographic properties prior to the release of user data 

decryption keys. Verification checks more than 30 different fields in the structure of quotes, authenticating ECDSA 

signatures, comparing measurement hashes with reference values, and verifying attestation key revocation status [6]. Full 
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verification can be finished in less than 200 milliseconds on typical server processors, allowing real-time verification 

when connecting. The cryptographic binding of measured code and platform state guarantees that encrypted user data 

will not be decrypted in environments that execute verified, unmodified code that cannot perform unauthorized data 

exfiltration. 

Authorization Stage Timing/Specification 

Memory Encryption Speed for User Data 25+ GB/s per channel 

User Data Processing Memory Unit 4 KB pages 

Metadata Overhead (Page-level Protection) 12.5% additional 

Metadata Overhead (Cache-line Protection) 25% additional 

Cryptographic Evidence Generation 50 milliseconds 

Signature Algorithm for User Data Access ECDSA P-256 

Authorization Signature Size 64 bytes 

Remote Authorization Quote Generation 100 milliseconds 

Complete Authorization Data Package 4 KB 

Verification Checkpoints per Request 30 fields 

Total Authorization Verification Time 200 milliseconds 

Table 2: Encrypted User Data Processing Authorization Timeline [5,6] 

4. Encryption of Persistent User Data 

Any user data that is not required to be processed should be re-encrypted before storage to ensure end-to-end encryption. 

An authenticated encryption scheme that provides confidentiality and integrity protection prevents unauthorized access 

and undetected tampering. AEAD paradigm encrypts user data and related metadata, and the encrypted data is generated 

with authentication tags that are verified during decryption [7]. Tag verification. The tag verification is an automatic 

rejection of corrupted or tampered data before any processing, eliminating attacks that alter encrypted user data in 

storage. 

Authenticated encryption of user data has a large variation in performance depending on the availability of hardware 

support. Implementations of GCM mode with the use of PCLMULQDQ instructions to accelerate the arithmetic of 

polynomials have a throughput of more than 1 GB/s, sufficient to process large volumes of user data [7]. Multiplication 

Software-only implementations with a lookup table-based multiplication are about 100 MB/s throughput. This 

performance gap of ten times highlights the need for hardware acceleration in systems where encrypted user data is 

processed in large volumes in production. 

Effective nonce management is essential in achieving authenticated encryption security of user information. The reuse of 

nonces with the same key is disastrous to the confidentiality assurances and can reveal several encrypted records of user 

data. Birthday-bound collision probability is about 2-32 when encryption is performed on 232 blocks with one key, and 

requires key rotation before this probability approaches it [7]. Operational policies should restrict the amount of user data 

that is encrypted with individual keys, and security margins should be maintained significantly lower than theoretical. 

Normal deployments spin keys every time a portion of the theoretical limit is encrypted, which guarantees sufficient 

safety factors in the protection of user data over time. 

Trusted platform modules offer hardware-isolated security over keys used to encrypt stored user data. TPM specifications 

specify about 25 different commands that assist key generation, encryption, signing, and attestation tasks, each of which 

takes multiple parameter configurations [8]. This command interface allows flexible security policy and hardware-

enforced access controls to prevent unauthorized use of keys that can lead to the loss of encrypted user data. The 

hardware isolation is such that even privileged software is not able to extract keys with which user data in storage is 

encrypted. 
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Measurements of platform configuration held in TPMs generate cryptographic chains between encrypted user data and 

particular states of the system. PCR extended operations combine new measurements with the current register values 

with SHA-1 or SHA-256 to generate irreversible measurement chains [8]. These chains include boot firmware, operating 

system components, and application software. Any unauthorized changes to systems that handle encrypted user data 

generate different measurements, which can be detected by comparing them to the expected sequences, and then the data 

will be decrypted. 

Sealing mechanisms tie encrypted user data to particular platform configurations and cannot be decrypted on an 

inappropriate platform. Encrypted user data and policy specifications are stored in sealed blobs that specify the necessary 

PCR values [8]. Unsealing is only successful when the current platform state is consistent with sealed policies, and 

encrypted user data is not accessible on attacked or tampered systems. This cryptographic binding offers high security 

against offline attacks where attackers have access to the physical storage media holding encrypted user information. 

Unauthorized modifications to systems leave them inaccessible, and the confidentiality of systems is enforced with 

cryptography instead of access controls that can be bypassed. 

Storage Protection Feature Implementation Details 

Encryption Paradigm AEAD: confidentiality + integrity combined 

Automatic Corruption Rejection Tag failures trigger rejection before processing 

Hardware-Accelerated Performance GCM with PCLMULQDQ: exceeding 1 GB/s 

Software-Only Performance Lookup table approach: approximately 100 MB/s 

Hardware Isolation Guarantee Prevents privileged software key extraction 

Measurement Chain Mechanism PCR extended with SHA-1 or SHA-256 

Measurement Scope Boot firmware through OS to applications 

Sealing Binding Approach User data bound to platform configurations 

Sealed Blob Components Encrypted data + policy specifications 

Unsealing Condition Platform state must match policy requirements 

Self-Protection Characteristic Auto-inaccessible after unauthorized modifications 

Table 3: Cryptographic Storage Protection for Persistent User Data [7,8] 

5. Protection of Encrypted User Data against Attack Vectors 

Timing attacks with implementation vulnerabilities affect key exchange operations that create encryption of user data. 

When using Diffie-Hellman, the modular exponentiation operations have timing variations, which may reveal some 

secret exponents with careful measurement [9]. Conditional branches and variable-iteration loops incur timing 

differences of microseconds to milliseconds based on bit patterns in secret exponents. Constant-time implementations 

that remove timing differences based on key values are important in preventing the extraction of user data encryption 

keys by timing attacks. 

Unauthenticated key exchanges can be attacked by a man-in-the-middle to intercept and decrypt user data by connecting 

to each of the parties separately. The success of attacks occurs when parties have no mechanisms that confirm that 

negotiated keys are those that are intended to be used in communication with the partners [9]. The need to ensure that the 

key material is bound to known identities is demonstrated by authentication protocols that are used to protect the 

encryption of user data during key establishment. Authentication using certificates or pre-shared secrets allows detection 

of intermediary manipulation during exchange phases, which prevents adversaries from creating a position to decrypt 

user data. 

Small subgroup attacks are attacks that take advantage of poor parameter selection in key exchange protocols that coerce 

agreement into subgroups in which discrete logarithm problems are solvable. Small-factor groups allow opponents to 

retrieve some of the private exponents by solving smaller-complexity problems in subgroups of size 220 or less [9]. 
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Protecting encrypted user data involves a comprehensive validation of received public keys, whereby, before key 

derivation, membership in large prime-order subgroups is validated. The rejection of values that do not pass the 

membership test does not allow adversaries to compel weak keys that can be used to decrypt user data. 

Differential privacy protocols allow analytics to be done on encrypted user information, and re-identification is avoided. 

The implementations add noise to the query output, which is proportional to the privacy budget parameter epsilon in an 

inverted manner [10]. It is found that the epsilon of 0.5 to 2.0 has the best tradeoffs, offering meaningful privacy 

protection and data utility of over 80 percent of unperturbed baselines. This allows useful analytics on encrypted sets of 

user data without breaking down the privacy of individuals by re-identification attack. 

Disclosure of privacy safeguards is a major determinant of readiness to submit encrypted user data. Experiments show 

that the rate of sharing increases by 15-25 percent when the mechanisms of differential privacy are explained, as opposed 

to when there are no descriptions of privacy mechanisms [10]. This effect of behavior suggests that the perception of 

trust and the ensuing data-sharing decisions are affected by the clear communication of technical safeguards of user data. 

Companies that deal with encrypted user information ought to offer clear descriptions of protection systems to gain the 

trust of users. 

It is important to consider the effects of query composition on encrypted user data when managing privacy budget. 

Sequential query processing loses privacy linearly with the number of queries, whereas parallel query processing of 

independent queries incurs fixed privacy budgets [10]. System architectures that cluster similar queries to be executed in 

parallel optimize the utility of data under a given privacy constraint. According to statistical analysis, epsilon values of 

1.0 allow about 100 consecutive queries with noise per query scaled to query sensitivity, a tradeoff between long-term 

usability and high privacy assurances to encrypted user data over long periods of operation. 

Security Concern Mitigation Strategy/Configuration 

Implementation Vulnerability Source Conditional branches and variable-iteration loops 

Man-in-the-Middle Attack Vector Unauthenticated exchanges enable session interception 

Authentication Requirement Certificate-based authentication or pre-shared secrets 

Differential Privacy Purpose Analytics without user re-identification 

Noise Calibration Approach Noise is inversely proportional to epsilon 

Optimal Privacy Budget Range Epsilon: 0.5 to 2.0 

Transparency Communication Effect 15-25% increase in user data sharing 

Sequential Query Privacy Loss Linear accumulation with query count 

Parallel Query Privacy Loss Constant regardless of parallelism 

Query Noise Adjustment Scaled to individual query sensitivity 

Long-term Protection Balance Usability with strong privacy guarantees maintained 

Table 4: Attack Mitigation and Privacy Preservation for User Data [9,10] 

Conclusion 

To ensure that sensitive user data in distributed systems is maintained with end-to-end encryption, cryptographic 

protection must be coordinated at all the data lifecycle phases. The presented architectural framework defines 

cryptographic boundaries between the first encryption at client devices and processing in hardware-isolated environments 

to long-lasting storage with integrity protection. Trusted execution environments can be used to execute encrypted user 

data by providing hardware-enforced isolation such that temporary decryption cannot reveal plaintext beyond the 

boundaries of verified code. Hardware security modules secure the encryption keys that allow the user to protect their 

data so that it cannot be extracted by either physical or logical attack. Binary transparency schemes allow external 

verification that user data in code processing is acting as intended, and give empirical evidence to privacy claims. 

Authenticated encryption keeps the stored user data safe, and the differential privacy methods allow useful analytics 



Computer Fraud and Security  

ISSN (online): 1873-7056 

 

_________________________________________________________________________________________ 
146 

Vol: 2026 | Iss: 1 | 2026 
 

without violating the privacy of a person. The multi-tiered strategy means that several independent defenses have to fail 

before encrypted user data can be revealed, and the risk is minimal enough to allow deploying the system in an 

enterprise. Hardware acceleration of cryptographic operations makes performance characteristics viable for production 

workloads. Organizations that adopt these architectural patterns provide verifiable bases to manage sensitive user data, 

which allows innovation in data-driven services without sacrificing cryptographic guarantees across the entire data 

lifecycle. 
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