
Computer Fraud and Security

ISSN (online): 1873-7056

140

Vol: 2026 | Iss: 1 | 2026

Architecting Privacy-Preserving Distributed Systems for Handling

User Data

Projjal Ghosh

Independent Researcher, USA

Abstract

Distributed systems that handle sensitive user data face concerning issues in ensuring the end-to-end

encryption of the data lifecycle. This article introduces an architecture that guarantees encrypted user data

transmission from the source to processing stages, till storage, and is only decrypted in cryptographically-

secure environments. The system incorporates hardware security modules to guard encryption keys, trusted

execution environments in confidential virtual machines to process encrypted data without exposing

plaintext, and authenticated encryption to support persistent storage. Remote attestation protocols ensure

the integrity of code before decryption, whereas binary transparency mechanisms permit independent

verification of processing behavior. The architecture solves the threats to encrypted data, such as key

compromise, memory extraction, storage tampering, and insider access, using layered cryptographic

controls. Guidance on implementation includes the initiation of client-side encryption, secure key

distribution hierarchies, isolated processing in hardware enclaves, and integrity-protected storage

mechanisms. The resulting system allows enterprises to provide cryptographic security of user data over a

distributed infrastructure and comply with regulatory data confidentiality requirements and privacy-

preserving analytics with differential privacy methods.

Keywords: End-to-End Encryption, Trusted Execution Environments, Hardware Security Modules,

Cryptographic Key Management, Binary Transparency

1. Introduction

To ensure the security of sensitive user data in distributed systems, it is necessary to ensure the existence of

cryptographic boundaries in the whole data lifecycle. End-to-end encryption means that user information is initially

encrypted at the client, encrypted over the network, and only processed in cryptographically secure environments, and is

stored encrypted. Any interruption in this encryption chain will reveal user information to unauthorized access. Secure

processor architectures provide the basis of processing encrypted user data by developing isolated memory spaces in

which decryption may be performed without exposing plaintext to the host system or administrators.

A study of secure processor implementations shows that enclave page cache sizes of 64 MB to 256 MB can be used to

support realistic workloads and still provide cryptographic isolation. Protected regions with a larger size scale their

overheads on initialization to about 0.8 milliseconds per megabyte [1]. These remote enclaves store the contents of

memory encrypted with 128-bit AES keys based on processor-internal root secrets that are not accessible to software,

meaning that even physical memory attacks cannot retrieve plaintext user data during execution. The encryption imposed

by the hardware establishes a trusted boundary such that user data may be temporarily decrypted to compute without

compromising the end-to-end encryption promise.

Attestation mechanisms are necessary to ensure that the processing of user data in these isolated environments is correct.

These processes create cryptographic measurements prior to any user data decryption. The attestation process generates

REPORT structures with 384 bytes of measurement information, 256-bit SHA-2 hashes of loaded code, and 512-bit RSA

signatures linking measurements to platform keys [1]. These measurements can be checked by remote parties before the

transmission of encrypted user data so that only approved code with confirmed behavior will be allowed to access

decryption keys. This chain of attestation ensures that code that is malicious does not pose as legitimate processors and

steal user data.

The encryption level that secures user information should be resistant to attacks throughout the life of the data. 128-bit

symmetric encryption keys are sufficient to protect the user data to 2030, and 256-bit keys to 2050, given the current

cryptanalytic capabilities [2]. In key exchange operations that define the encryption of user data, asymmetric

cryptography needs longer keys: 2048-bit RSA is 112-bit strong and 3072-bit RSA is 128-bit strong [2]. The correct

Computer Fraud and Security

ISSN (online): 1873-7056

141

Vol: 2026 | Iss: 1 | 2026

choice of key lengths will make sure that the encrypted user data will not be compromised during the retention period,

even with the growth of computing power.

The choice of cryptographic algorithms to protect user data should consider the changing threats. This need is reflected in

the migration of SHA-1 to the SHA-2 family functions, where collision attacks on SHA-1 have shown weaknesses that

need more robust primitives [2]. Hash functions with 256-bit outputs offer 128-bit collision resistance, which is adequate

to secure valuable user data over decades. Key derivation functions allow hierarchical key structures where a master key

is used to create operation-specific keys, such that the compromise of a derived key to access one data batch of user data

does not compromise other encrypted data accessed with different derived keys.

Hardware security modules that are tamper-resistant are necessary to protect the keys that encrypt user data. These

devices use physical security measures that identify intrusion attempts. The sensors in the environment cause protective

actions in case of temperature changes more than 10 degrees Celsius, voltage changes more than 5 percent of nominal

values, or electromagnetic emissions typical of side-channel attacks [2]. When tampering is detected, key material is

erased in milliseconds during zeroization processes, and keys that would be used to decrypt user data are not extracted.

The key protection is done by hardware so that even physical access to the cryptographic infrastructure cannot decrypt

encrypted user data.

2. Implementing Cryptographic Security of User Data

End-to-end encryption can be maintained by generating quality cryptographic keys that will secure user data during its

lifecycle. Critical generation needs the sources of entropy that generate really random and unpredictable values. Entropy

generation rates of over 100,000 bits per second are possible with hardware random number generators based on physical

noise sources [3]. Statistical testing, such as frequency analysis, runs tests, and spectral analysis confirm that generated

keys have no exploitable patterns that will compromise the encryption of user data.

Client-side key generation is used to guarantee that the encryption keys of the user data are never stored in plaintext

within the control of the user. To encrypt bulk data, users locally generate symmetric encryption keys, usually choosing

between 128-bit and 256-bit encryption key lengths depending on the sensitivity of the data and the duration of

protection. The length of keys that are to be used to secure user data after 2030 must be 256 bits in order to have

sufficient security margins over future cryptanalytic improvements [3]. Computational overhead of longer keys is not

very problematic: software implementations demonstrate a 256-bit operation about 40 percent slower than a 128-bit

operation, which is a sensible tradeoff to achieve longer security.

The distribution of encryption keys of user data to distributed systems necessitates key exchange protocols to create

common secrets without the transmission of keys in plaintext. Elliptic curve cryptography offers an efficient key

exchange, and 256-bit curves are as secure as 3072-bit RSA but use much less computational resources and smaller key

representations [4]. This performance is essential in resource-limited settings that deal with encrypted user information.

Embedded processor measurements indicate that point multiplication operations on NIST P-256 curves take about 23

milliseconds with 32-bit arithmetic, and optimized Curve25519 implementations take only 15 milliseconds [4]. These

performance features allow key establishment in real time, even on low-processing-performance devices.

The key hierarchy and derivation must be considered when managing encryption keys during their lifetime. Hardware

security modules hold master keys that are cryptographically derived to produce operation-specific derived keys. This

top-down design implies that keys that encrypt batches of user data can be re-generated on command using master secrets

instead of being stored in a persistent manner [3]. Revocation only impacts the individual user data that was encrypted

using a compromised derived key, and does not impact other data encrypted using different derived keys. Hardware

protection does not lose the master keys, so that even a large-scale attack on derived keys does not allow decryption of all

user data.

The major rotation policies trade the benefits of security for the complexity of operation of systems that keep user data

encrypted. The frequent rotation also constrains the amount of user data that is exposed in case of a key compromise, yet

rotation necessitates the coordination of updates across distributed systems. The key rotation of high-sensitivity user data

is generally 90 days, whereas less sensitive data can be done on an annual rotation schedule [3]. Systems also use dual-

key windows of 24 to 48 hours during rotation periods, with both old and new keys being valid to allow seamless

transition without service interruption to access encrypted user data.

Computer Fraud and Security

ISSN (online): 1873-7056

142

Vol: 2026 | Iss: 1 | 2026

Key Exchange Operation Performance Metric

Random Key Generation Rate for User Data 100,000+ bits/second

Performance Cost of Stronger User Data Encryption 40% overhead (256 vs 128-bit)

Elliptic Curve Key Exchange Security Equivalence 256-bit ECC = 3072-bit RSA

User Data Key Exchange (NIST P-256) 23 milliseconds

User Data Key Exchange (Curve25519) 15 milliseconds

Key Distribution Architecture Hierarchical derivation

High-Sensitivity User Data Key Rotation 90-day intervals

Key Transition Window for User Data 24-48 hours

Table 1: Key Exchange and Distribution Timing for User Data Encryption Initiation [3,4]

3. Handling Encrypted User Data in Isolated Environments

The processing of user data with end-to-end encryption and maintaining secrecy of the data must be done in

environments where it can be decrypted without revealing plaintext beyond cryptographic security. Trusted execution

environments provide hardware-isolated memory regions that encrypt all the contents at the memory controller level.

Recent memory controllers can encrypt over 25 GB/s per channel with specialized AES engines, and encryption

overhead is insignificant with most workloads [5]. This is a hardware-enforced encryption that even physical access to

memory modules will not be able to retrieve plaintext user data during processing.

Memory protection of different granularities provides different tradeoffs between security and overhead in processing

encrypted user data. Page-level encryption of individual 4 KB pages allows fine-grained access control but needs about

12.5 percent more memory to store integrity metadata. Metadata overhead is raised to 25 percent by cache-line

granularity protection [5]. The option varies based on the threat model: page-level protection is more resistant to more

advanced attacks that would seek to corrupt certain data structures; coarser protection is only necessary when memory

isolation is sufficient to ensure user data security.

Memory encryption has performance effects that depend on the workload properties during user data processing.

Operations that are compute-intensive and have high rates of cache hits have low overhead (less than 3 percent) because

the majority of data accesses are in processor caches that do not need any encryption operations [5]. The workloads with

high memory demands and poor cache locality incur 15 to 30 percent overhead as a result of the encrypted memory

traffic and integrity checks. User data that has been encrypted by applications processing must maximize the use of the

cache in order to reduce the performance impact without compromising the cryptographic protection.

Attestation protocols need to ensure that only approved code is executed in the isolated environment before any

encrypted user data is processed. The attestation process produces evidence structures that store platform configuration

measurements, enclave identity data, and cryptographic signatures relating these measurements to platform keys [6].

Generation of evidence takes less than 50 milliseconds,s even with ECDSA signing operations based on P-256 curves

that produce signatures of 64 bytes. This evidence can be verified by remote parties before they can issue decryption

keys, which means that user data will not be decrypted outside of a verified, trusted environment.

Transformation of attestation evidence into remotely verifiable quotes allows distributed verification of environments

that process encrypted user data. Quote generation services authenticate local attestation evidence, retrieve pertinent

measurements, and generate signed quotes with attestation keys supplied when the platform is manufactured [6]. This

process introduces about 100 milliseconds of latency but generates 4 KB quote structures with platform firmware

versions, enclave measurements, and full certification chains. These quotes can be verified without access to the

platform, which is essential in distributed systems where user data processing is done on several independent nodes.

To verify attestation quotes, it is necessary to verify several cryptographic properties prior to the release of user data

decryption keys. Verification checks more than 30 different fields in the structure of quotes, authenticating ECDSA

signatures, comparing measurement hashes with reference values, and verifying attestation key revocation status [6]. Full

Computer Fraud and Security

ISSN (online): 1873-7056

143

Vol: 2026 | Iss: 1 | 2026

verification can be finished in less than 200 milliseconds on typical server processors, allowing real-time verification

when connecting. The cryptographic binding of measured code and platform state guarantees that encrypted user data

will not be decrypted in environments that execute verified, unmodified code that cannot perform unauthorized data

exfiltration.

Authorization Stage Timing/Specification

Memory Encryption Speed for User Data 25+ GB/s per channel

User Data Processing Memory Unit 4 KB pages

Metadata Overhead (Page-level Protection) 12.5% additional

Metadata Overhead (Cache-line Protection) 25% additional

Cryptographic Evidence Generation 50 milliseconds

Signature Algorithm for User Data Access ECDSA P-256

Authorization Signature Size 64 bytes

Remote Authorization Quote Generation 100 milliseconds

Complete Authorization Data Package 4 KB

Verification Checkpoints per Request 30 fields

Total Authorization Verification Time 200 milliseconds

Table 2: Encrypted User Data Processing Authorization Timeline [5,6]

4. Encryption of Persistent User Data

Any user data that is not required to be processed should be re-encrypted before storage to ensure end-to-end encryption.

An authenticated encryption scheme that provides confidentiality and integrity protection prevents unauthorized access

and undetected tampering. AEAD paradigm encrypts user data and related metadata, and the encrypted data is generated

with authentication tags that are verified during decryption [7]. Tag verification. The tag verification is an automatic

rejection of corrupted or tampered data before any processing, eliminating attacks that alter encrypted user data in

storage.

Authenticated encryption of user data has a large variation in performance depending on the availability of hardware

support. Implementations of GCM mode with the use of PCLMULQDQ instructions to accelerate the arithmetic of

polynomials have a throughput of more than 1 GB/s, sufficient to process large volumes of user data [7]. Multiplication

Software-only implementations with a lookup table-based multiplication are about 100 MB/s throughput. This

performance gap of ten times highlights the need for hardware acceleration in systems where encrypted user data is

processed in large volumes in production.

Effective nonce management is essential in achieving authenticated encryption security of user information. The reuse of

nonces with the same key is disastrous to the confidentiality assurances and can reveal several encrypted records of user

data. Birthday-bound collision probability is about 2-32 when encryption is performed on 232 blocks with one key, and

requires key rotation before this probability approaches it [7]. Operational policies should restrict the amount of user data

that is encrypted with individual keys, and security margins should be maintained significantly lower than theoretical.

Normal deployments spin keys every time a portion of the theoretical limit is encrypted, which guarantees sufficient

safety factors in the protection of user data over time.

Trusted platform modules offer hardware-isolated security over keys used to encrypt stored user data. TPM specifications

specify about 25 different commands that assist key generation, encryption, signing, and attestation tasks, each of which

takes multiple parameter configurations [8]. This command interface allows flexible security policy and hardware-

enforced access controls to prevent unauthorized use of keys that can lead to the loss of encrypted user data. The

hardware isolation is such that even privileged software is not able to extract keys with which user data in storage is

encrypted.

Computer Fraud and Security

ISSN (online): 1873-7056

144

Vol: 2026 | Iss: 1 | 2026

Measurements of platform configuration held in TPMs generate cryptographic chains between encrypted user data and

particular states of the system. PCR extended operations combine new measurements with the current register values

with SHA-1 or SHA-256 to generate irreversible measurement chains [8]. These chains include boot firmware, operating

system components, and application software. Any unauthorized changes to systems that handle encrypted user data

generate different measurements, which can be detected by comparing them to the expected sequences, and then the data

will be decrypted.

Sealing mechanisms tie encrypted user data to particular platform configurations and cannot be decrypted on an

inappropriate platform. Encrypted user data and policy specifications are stored in sealed blobs that specify the necessary

PCR values [8]. Unsealing is only successful when the current platform state is consistent with sealed policies, and

encrypted user data is not accessible on attacked or tampered systems. This cryptographic binding offers high security

against offline attacks where attackers have access to the physical storage media holding encrypted user information.

Unauthorized modifications to systems leave them inaccessible, and the confidentiality of systems is enforced with

cryptography instead of access controls that can be bypassed.

Storage Protection Feature Implementation Details

Encryption Paradigm AEAD: confidentiality + integrity combined

Automatic Corruption Rejection Tag failures trigger rejection before processing

Hardware-Accelerated Performance GCM with PCLMULQDQ: exceeding 1 GB/s

Software-Only Performance Lookup table approach: approximately 100 MB/s

Hardware Isolation Guarantee Prevents privileged software key extraction

Measurement Chain Mechanism PCR extended with SHA-1 or SHA-256

Measurement Scope Boot firmware through OS to applications

Sealing Binding Approach User data bound to platform configurations

Sealed Blob Components Encrypted data + policy specifications

Unsealing Condition Platform state must match policy requirements

Self-Protection Characteristic Auto-inaccessible after unauthorized modifications

Table 3: Cryptographic Storage Protection for Persistent User Data [7,8]

5. Protection of Encrypted User Data against Attack Vectors

Timing attacks with implementation vulnerabilities affect key exchange operations that create encryption of user data.

When using Diffie-Hellman, the modular exponentiation operations have timing variations, which may reveal some

secret exponents with careful measurement [9]. Conditional branches and variable-iteration loops incur timing

differences of microseconds to milliseconds based on bit patterns in secret exponents. Constant-time implementations

that remove timing differences based on key values are important in preventing the extraction of user data encryption

keys by timing attacks.

Unauthenticated key exchanges can be attacked by a man-in-the-middle to intercept and decrypt user data by connecting

to each of the parties separately. The success of attacks occurs when parties have no mechanisms that confirm that

negotiated keys are those that are intended to be used in communication with the partners [9]. The need to ensure that the

key material is bound to known identities is demonstrated by authentication protocols that are used to protect the

encryption of user data during key establishment. Authentication using certificates or pre-shared secrets allows detection

of intermediary manipulation during exchange phases, which prevents adversaries from creating a position to decrypt

user data.

Small subgroup attacks are attacks that take advantage of poor parameter selection in key exchange protocols that coerce

agreement into subgroups in which discrete logarithm problems are solvable. Small-factor groups allow opponents to

retrieve some of the private exponents by solving smaller-complexity problems in subgroups of size 220 or less [9].

Computer Fraud and Security

ISSN (online): 1873-7056

145

Vol: 2026 | Iss: 1 | 2026

Protecting encrypted user data involves a comprehensive validation of received public keys, whereby, before key

derivation, membership in large prime-order subgroups is validated. The rejection of values that do not pass the

membership test does not allow adversaries to compel weak keys that can be used to decrypt user data.

Differential privacy protocols allow analytics to be done on encrypted user information, and re-identification is avoided.

The implementations add noise to the query output, which is proportional to the privacy budget parameter epsilon in an

inverted manner [10]. It is found that the epsilon of 0.5 to 2.0 has the best tradeoffs, offering meaningful privacy

protection and data utility of over 80 percent of unperturbed baselines. This allows useful analytics on encrypted sets of

user data without breaking down the privacy of individuals by re-identification attack.

Disclosure of privacy safeguards is a major determinant of readiness to submit encrypted user data. Experiments show

that the rate of sharing increases by 15-25 percent when the mechanisms of differential privacy are explained, as opposed

to when there are no descriptions of privacy mechanisms [10]. This effect of behavior suggests that the perception of

trust and the ensuing data-sharing decisions are affected by the clear communication of technical safeguards of user data.

Companies that deal with encrypted user information ought to offer clear descriptions of protection systems to gain the

trust of users.

It is important to consider the effects of query composition on encrypted user data when managing privacy budget.

Sequential query processing loses privacy linearly with the number of queries, whereas parallel query processing of

independent queries incurs fixed privacy budgets [10]. System architectures that cluster similar queries to be executed in

parallel optimize the utility of data under a given privacy constraint. According to statistical analysis, epsilon values of

1.0 allow about 100 consecutive queries with noise per query scaled to query sensitivity, a tradeoff between long-term

usability and high privacy assurances to encrypted user data over long periods of operation.

Security Concern Mitigation Strategy/Configuration

Implementation Vulnerability Source Conditional branches and variable-iteration loops

Man-in-the-Middle Attack Vector Unauthenticated exchanges enable session interception

Authentication Requirement Certificate-based authentication or pre-shared secrets

Differential Privacy Purpose Analytics without user re-identification

Noise Calibration Approach Noise is inversely proportional to epsilon

Optimal Privacy Budget Range Epsilon: 0.5 to 2.0

Transparency Communication Effect 15-25% increase in user data sharing

Sequential Query Privacy Loss Linear accumulation with query count

Parallel Query Privacy Loss Constant regardless of parallelism

Query Noise Adjustment Scaled to individual query sensitivity

Long-term Protection Balance Usability with strong privacy guarantees maintained

Table 4: Attack Mitigation and Privacy Preservation for User Data [9,10]

Conclusion

To ensure that sensitive user data in distributed systems is maintained with end-to-end encryption, cryptographic

protection must be coordinated at all the data lifecycle phases. The presented architectural framework defines

cryptographic boundaries between the first encryption at client devices and processing in hardware-isolated environments

to long-lasting storage with integrity protection. Trusted execution environments can be used to execute encrypted user

data by providing hardware-enforced isolation such that temporary decryption cannot reveal plaintext beyond the

boundaries of verified code. Hardware security modules secure the encryption keys that allow the user to protect their

data so that it cannot be extracted by either physical or logical attack. Binary transparency schemes allow external

verification that user data in code processing is acting as intended, and give empirical evidence to privacy claims.

Authenticated encryption keeps the stored user data safe, and the differential privacy methods allow useful analytics

Computer Fraud and Security

ISSN (online): 1873-7056

146

Vol: 2026 | Iss: 1 | 2026

without violating the privacy of a person. The multi-tiered strategy means that several independent defenses have to fail

before encrypted user data can be revealed, and the risk is minimal enough to allow deploying the system in an

enterprise. Hardware acceleration of cryptographic operations makes performance characteristics viable for production

workloads. Organizations that adopt these architectural patterns provide verifiable bases to manage sensitive user data,

which allows innovation in data-driven services without sacrificing cryptographic guarantees across the entire data

lifecycle.

References

[1] Victor Costan et al., "Secure Processors Part II: Intel SGX Security Analysis and MIT Sanctum Architecture",

Massachusetts Institute of Technology, 2017. Available: https://people.csail.mit.edu/devadas/pubs/part_2.pdf

[2] Elaine Barker, "Recommendation for Key Management: Part 1 – General", NIST, 2020. Available:

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf

[3] Elaine Barker and Quynh Dang, "Recommendation for Key Management - Part 3: Application-Specific Key

Management Guidance", NIST, 2015. Available:

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57Pt3r1.pdf

[4] Vinayak Tanksale, "Efficient Elliptic Curve Diffie–Hellman Key Exchange for Resource-Constrained IoT Devices",

MDPI, 2024. Available: https://www.mdpi.com/2079-9292/13/18/3631

[5] Saeid Mofrad et al., "A Comparison Study of Intel SGX and AMD Memory Encryption Technology", HASP’18 -

ACM, 2018. Available: https://dl.acm.org/doi/epdf/10.1145/3214292.3214301

[6] Intel, "Intel®SGX Data Center Attestation Primitives (Intel®SGX DCAP)". Available:

https://www.intel.com/content/dam/develop/public/us/en/documents/intel-sgx-dcap-ecdsa-orientation.pdf

[7] Phillip Rogaway, "Authenticated-Encryption with Associated-Data", University of California at Davis, 2002.

Available: https://web.cs.ucdavis.edu/~rogaway/papers/ad.pdf

[8] Ms. Poojashree et al., "Trusted Platform Module for Security in Cloud Computing,” IJERT, 2015. Available:

https://www.ijert.org/research/trusted-platform-module-for-security-in-cloud-computing-IJERTCONV3IS14007.pdf

[9] Iraj Fathirad et al., "Network-Specific Attacks on Diffie-Hellman Key-Exchange in Commercial Protocols",

International Journal of Computer Theory and Engineering, 2016. Available: https://www.ijcte.org/vol8/1031-

C092.pdf

[10] Michael Khavkin and Eran Toch, "Investigating the impact of differential privacy obfuscation on users’ data

disclosure decisions", ScienceDirect, Sep. 2025. Available:

https://www.sciencedirect.com/science/article/pii/S0167923625000752

https://people.csail.mit.edu/devadas/pubs/part_2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57Pt3r1.pdf
https://www.mdpi.com/2079-9292/13/18/3631
https://dl.acm.org/doi/epdf/10.1145/3214292.3214301
https://www.intel.com/content/dam/develop/public/us/en/documents/intel-sgx-dcap-ecdsa-orientation.pdf
https://web.cs.ucdavis.edu/~rogaway/papers/ad.pdf
https://www.ijert.org/research/trusted-platform-module-for-security-in-cloud-computing-IJERTCONV3IS14007.pdf
https://www.ijcte.org/vol8/1031-C092.pdf
https://www.ijcte.org/vol8/1031-C092.pdf
https://www.sciencedirect.com/science/article/pii/S0167923625000752

