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Abstract 

AI/ML technologies are exploited to detect, mitigate, control, and minimize risks in banking activities as they 

create, transmit, lend, invest, insure, and secure value. AI/ML paradigms and technologies based on microservice 

architecture support dynamic delivery of probabilistic native support of banking actions and transactions. Notable 

categories of AI/ML technologies are based on risk intelligence, fraud detection and prevention, and fraud 

control. Risk intelligence examines the risk area of the banking ecosystem. Risk intelligence warns participants 

about the risks involved in their actions or transactions, predicts a credit card operation's logical behaviour in 

order to set dedicated limits, and determines the best approach to set a limit for a credit score. Fraud detection 

identifies fraud in real time using analysis of users’ attributes and account history, monitor behaviour changes or 

sudden changes of an attribute, and classify whether an operation will be done by a legit user or not. Fraud 

prevention detects fraud before it occurs using knowledge of historical cases to find the relationship between 

data in order to alert when a similar case may happen and detect unusual patterns to create rules for risky 

operations. Fraud control deals with the management of fraudulent approaches, actions or transactions for the 

banking sector. Practices for fraud control address identifying tendencies in the banking sector for fraud 

detection—vent consumers’ intolerance for crime, minimize social disparity, increase competence to minimize 

price of fraud. 

Keywords : Risk; fraud; banking; insurance; risk intelligence; fraud detection; fraud prevention.

1. Introduction 

Risk intelligence and fraud control are critical issues for many organizations in banking and insurance services. A cloud-native 

big-data AI/ML framework is proposed to organize and visualize large volumes of data from banking and financial 

organizations and help monitor anomalous or fraudulent behaviors, detect warning signs, or develop predictive risk models. 

The use of cloud-native architecture principles and technologies for data processing and analysis allows servicing fraud 

detection and prevention needs with fast response times, automated model retraining cycles, and low maintenance costs. 

Banking sector applications are presented as examples of the framework’s design and implementation. 

Cloud computing has become the new paradigm for IT and software development. Cloud-native capabilities are integrated into 

platform, infrastructure, and software-as-a-service solutions. The cloud-native paradigm encompasses the entire life cycle of 

applications: development, testing, deployment, scaling, and maintenance. Cloud-native applications are managed as a set of 

microservices residing in containers. Every microservice implements a specific business feature, delivering a required module 

or function for business specifications. Interactions between microservices are automated and orchestrated by the cloud 

platform.The concept of fraud health is introduced and correlated to the fraud ecosystem. Once defined, fraud health can also 

be used for comparing banks or regions for their level of exposure to fraud. Fraud detection can complement fraud failure 

prevention to continuously assess the fraud ecosystem health of banks and other frauded organizations in micro, meso, and 

macro areas. 
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             Fig 1: Artificial Intelligence (AI) and Machine Learning (ML) within the Financial Services (FS) 

1.1. Background and Significance                                       Achieving resilient growth within alternative banking and insurance 

ecosystems formed by non-bank providers requires effective risk intelligence and fraud control instead. Fraud is increasingly 

becoming an organized cybercrime industry that sustains hackers and criminal organizations. Detecting, preventing, and 

controlling fraud and storm risk through intelligence comes under the umbrella of risk intelligence systems. 

Cyber fraud detection, prevention, and control are very elaborate tasks and sensitive due to the volume and variety of incidents 

happening around the world. While many traditional systems and controls address the problem, it requires to be seen as a fraud 

ecosystem. An ecosystem approach is a framework that guides the systematic and comprehensive identification, analysis, and 

resolution of complex problems. An ecosystem of failure constitutes an environment that allows fraud to take place. Hence, 

fraud failure detection, prevention, and control functions should be facilitated as part of an ecosystem for effective closure. 

Fraud ecosystems encompass the factors that influence, lower, and react to real incidents of fraud and, hence, assist in its 

management.  

2. Context and Problem Space 

Risk intelligence and fraud control in banking and insurance ecosystems rely on cloud-native architectures and Big Data AI/ML 

models. Research design involves building an AI-enabled framework using industry standards and best practices, which 

overlays cloud-native architecture across an ecosystem that includes a cloud provider along with ISV and market infrastructure 

that create, distribute, and use commercial insurance products. Both risk intelligence and fraud control use data management 

processes that safeguard data quality by leveraging best-of-breed data management technologies to acquire, cleanse, enrich, 

and store data in a Data Lake. Fraud detection protects against malicious use. Early-warning monitoring of insurance fraud 

relies on three types of models that record and synthesize detection-relevant information, examining new data using the 

information without ongoing reference to historic banking or insurance transactions. 

The initial work focuses on applications in the banking sector, where COVID-19 has created new areas for risk and fraud as 

cybercriminals ramp up their activities. During 2020, the Risk Intelligence & Fraud Control AI ML project leveraged a cloud-

native architecture to quickly produce such models, subsequently integrating them into a SaaS framework for banking and 

insurance ISVs and other financial institutions. The aim is to deploy the analysis results within secure FI ecosystems. Model 

experimentation and construction are supported by commercial-grade banking-domain data, extensively labelled for fraud 

detection, and by multiple past incidents. Proven AI ML methods have been applied and tested at a higher level. 

2.1. Research design                                                                    A multi-disciplinary research design addresses the complex 

banking and insurance problems holistically by drawing on the fields of AI and cybersecurity in the context of Big Data. 

Although the design uses the highly visible and impactful domain of fraud detection and prevention to motivate a cloud-native 

framework for risk intelligence Cyber-AI/ML solutions address multi-purpose requirements of numerous risk-threat models 

and secure-business operations, the achieved results are also relevant to internal and external fraud detection and prevention in 

many sectors. 

The requirements for Cyber-AI/ML solutions fall into the three major categories of volumetric detection and mitigation, multi-

attribute detection and mitigation, and abnormal event sequence detection and prediction. The Cyber-AI/ML solutions need to 
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operate in response time-frames ranging from real-time to hours-days-weeks, and with both supervised detection-response and 

unsupervised detection-recovery capabilities. The use of the banking and insurance sectors for demonstration of the framework 

has the specific objective of showing that SEC, GRC, and ECS data may also be used to expose and stem risk-vulnerabilities 

of the business ecosystem ecosystem's fraud business ecosystem's fraud control processes. 

 

3. Technical Foundations 

The framework is designed in accordance with Cloud-Native Architecture principles. The Cloud-Native concept is an 

evolutionary approach in the definition of applications able to take full advantage of Cloud Computing features and services. 

The main Cloud-Native characteristics are: Microservices architecture, i.e., applications are built as a set of loosely coupled 

microservices that can be developed, tested, deployed, and maintained independently of each other; Containerization, i.e., 

container technology is behind the packaging and isolation of microservices; Dynamic orchestration, i.e., microservices are 

dynamically created and destroyed according to application demands; Automation, i.e., everything from application 

deployment to scaling, monitoring, and management tasks must be automated; and Continuous delivery, i.e., DevOps concepts, 

practices, and tools are used to deliver code changes faster and more reliably by unifying software development (Dev) and 

operations (Ops). In these applications, the Cloud Provider is assumed to be friendly with the User. For Enterprise-B, the 

Architecture is dedicated to the Fingerprint Detection service, employing three ElasticSearch Modules for information storage, 

one S3 module for images storage, and a Pyspark Streaming service for real time fraud detection. 

The Cloud-Native Architecture relies on a Cloud Application Provider positioned as a Service Provider that offers to other 

Enterprises the capability of developing and deploying Cloud-Native Applications. The Provider has a set of Infrastructure as 

a Service (IaaS) resources that act as a Cloud Infrastructure (IaaS layer) capable of hosting applications developed by 

enterprises. In this situation, the application can be assumed as a multi-user Cloud-Native application, serving a specific Cloud 

application Provider that is not the same as the Cloud Infrastructure owner. The Cloud-Native Application has been designed 

for the Banking sector, aiming the key Business to deliver a Fraud Detection and Prevention Model for Banking Services that 

operates as an independent service in the Banking Sector. 

Equation 1: Risk score as a probability (logistic model) 

Step 1: Linear score 

Let transaction features be 𝑥 ∈ ℝ𝑑(in the paper’s example: 𝑑 = 51)  

Cloud-Native Big Data AI_ML Fra… 

. 

Define a linear model: 

𝑧 = 𝑤⊤𝑥 + 𝑏 
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Step 2: Convert linear score to probability with sigmoid 

We need a value in [0, 1]. Use the sigmoid: 

𝜎(𝑧) =
1

1 + 𝑒−𝑧
 

 

So predicted fraud probability (“risk score”) is: 

𝑝(𝑦 = 1 ∣ 𝑥) = 𝜎(𝑤⊤𝑥 + 𝑏) 

 

Step 3: Why sigmoid “works” (odds / log-odds derivation) 

Define odds: 

odds =
𝑝

1 − 𝑝
 

 

Take log: 

log⁡ (
𝑝

1 − 𝑝
) = 𝑤⊤𝑥 + 𝑏 

 

Now solve for 𝑝: 

𝑝

1 − 𝑝
= 𝑒𝑤

⊤𝑥+𝑏 

𝑝 = (1 − 𝑝)𝑒𝑤
⊤𝑥+𝑏 

𝑝 = 𝑒𝑤
⊤𝑥+𝑏 − 𝑝𝑒𝑤

⊤𝑥+𝑏 

𝑝(1 + 𝑒𝑤
⊤𝑥+𝑏) = 𝑒𝑤

⊤𝑥+𝑏  

𝑝 =
𝑒𝑤

⊤𝑥+𝑏

1 + 𝑒𝑤
⊤𝑥+𝑏

=
1

1 + 𝑒−(𝑤
⊤𝑥+𝑏)

 

3.1. Cloud-Native Architecture Principles                Cloud-Native Big Data AI/ML Framework for Risk Intelligence and 

Fraud Control in Banking and Insurance Ecosystems 

[Technical Foundations: Cloud-Native Architecture Principles] Cloud-native systems are developed and driven by a set of 

principles. The design takes advantage of the characteristics of cloud computing concepts; implementation exploits the 

capabilities of cloud technologies; and operation leverages cloud services. Following these guidelines ensures the ease and 

efficiency of adopting a cloud-native application. In addition, such principles enable cloud regeneration and full-stack 

contribution. 

Cloud-native principles dictate that each system component is actually a small and decoupled application that performs a 

specific service or function. Units are small enough to be efficiently developed and managed by a single unit. Each component’s 

lifecycle is decoupled from the overall system, allowing the unit to be deployed independently and enabling rapid iteration 

cycles. Such decomposition naturally leads to the construction of microservices-based heterogeneous architectures that rely on 

a container ecosystem for implementation, deployment, and execution. 

In cloud-native systems, components are constructed by composing cloud services, and code is written only where cloud 

services do not provide the required functionality. Components interact exclusively through well-defined interfaces, and 

components are unseen outside of strictly defined execution environments. Tracing, debugging, and system diagnostics tools 

and services are built in from the inception of each unit without creating intrusive overhead. Components are treated as 
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production systems and as part of the application stack from conception to implementation. No single unit can fail while 

remaining unnoticed, either through extensive monitoring or testing. 

 

                  Fig 2: Big Data Architecture for Fraud Detection and Prevention in Banking Industry 

4. Risk Intelligence and Fraud Control Paradigms 

Technological advancements lead to a plethora of frameworks, methodologies, and techniques focused on intelligent control 

of risk in modern banking transactions. Such intelligent decisions require a comprehensive feature/indicator set that assists in 

imposing proactive rules for fraud detection and prevention. To manage and minimize information asymmetry in banking and 

insurance, risk intelligence and fraud control paradigms have grown in importance. Risk Intelligence refers to the 

implementation of a combination of Fraud Modeling and Risk Management techniques. 

Intelligent Decision Control helps in generating alerts while executing financial transactions and minimizes losses compared 

to the current traditional semi-automated Business as Usual (BAU) strategy of reviewing suspicious transactions by Operations 

teams. Several concepts within the Framework assist in building the FDPA features, employing innovative techniques to 

intelligently control fraud risk. Organizations need to implement specialized data science units that work closely with these 

application teams for generating analytics-based decision-making models and tools. 

4.1. Fraud Detection and Prevention Models              Traditionally, fraud detection relied on past records and indigenous 

business logic encapsulated in users’ rules. As a consequence, these systems can manage recognition of previously identified 

fraud patterns, but can neither detect new, adapted schemes nor prevent fraud attempts. Machine learning models can advance 

this framework by learning from fraud samples and distinguishing them from normal behavior. Deep learning algorithms enable 

detection of the weakest points in both of those logical flows, opening space for hybrid fraud prediction-detection-prevention 

designs. 

Based on the most suitable techniques, prediction and detection models can be built to protect a banking institution against 

internal and external fraud. The outcome of prediction models should be a validation of an operation before it reaches the 

backend, thus preventing fraud with intelligence built over many attempts. The detection model is a second level of protection, 

which investigates potential issues concentrated in certain areas and in operations with no previously implemented clickstream. 

Several solutions are available so the choice depends both on the requirement of applicable results in close to real-time (i.e., 

when a transaction is performed) and on the data volume. The prediction models could be based on lightweight models built 

on variables (numerical, categorical, and textual) with specific business rules from the organization. Risk scoring data 

preparation is capital for a successful model implementation; the risk score added to the operation is the guidance to finance 

investigation teams. 
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5. Ecosystem and Stakeholders 

The proposed Risk Intelligence and Fraud Control Cloud-Native Big Data AI/ML Framework aligns and integrates the banking, 

digital commerce, insurance and telecommunications sectors, incorporating current industry focuses such as Banking 4.0, 

digital banking transformation and customer centricity, thereby creating an Industry 4.0 risk ecosystem for Banking-as-a-

Service, Payment-as-a-Service and Fraud-as-a-Service functions. Risk Intelligence and Fraud Control become relevant in an 

environment of highly accelerated transactional growth. 

The Banking-as-a-Service paradigm is centred on customers and ecosystems, allowing banks to consider third-party products 

alongside their own, deepening customer relations. Banking-as-a-Service also refers to banks that facilitate transactions for 

non-bank corporations. The fast-moving universe of telecommunications revisits the fraud landscape for major risks. Fraud 

detection and prevention techniques are paramount for all provisioning players. Government, central banks and regulators also 

function within a risk and fraud control ecosystem. With the installation of 5G, the banking ecosystem extends into digital 

commerce, into payment, financial and insurance transactions, along 5G-based value-added services extending to public 

administration. 

 

Fig 3: Ecosystem and Stakeholders of Cloud-Native Big Data 

5.1. Banking Sector Applications                                      Risk intelligence and fraud control paradigms developed in this 

research are designed and adapted for a broad range of application domains. The banking sector is specifically chosen for 

detailed exploration of potential applications, reflecting a growing societal recognition of the banks' systemic importance that 

continues to intensify since the 2007–2008 financial crisis. Cyberattacks against payment service providers, high-profile data 

leaks, and continued regulatory enforcement actions under the Bank Secrecy Act worked in concert to sharpen the focus on 
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risk management. New physical, credibility, market, operational, liquidity, and interest rate risks have subsequently emerged 

with the growth of crypto-assets, while risks also continue to be driven by the interconnectivity of the banking system and the 

increased interconnectedness of global financial markets. Within the banking sector, significant application opportunities also 

exist in credit card fraud detection, insurance claim fraud detection, insider fraud detection, remittance fraud detection, and 

know-your-customer violations, among others. 

Credibility fraud, one prominent application area, is defined as the abuse of a legitimate relationship for illicit gain. It can be 

perpetrated by anyone from customers and suppliers to intermediaries and employees; perpetrators include customers working 

in tandem with bank employees or with accomplices posing as merchants. In banks and insurance companies, anomalies can 

arise for reasons outside the fraud domain; hence, the focus should be on correlating suspicious events and refining the screening 

list using heuristics to conceal less-probable transactions. To illustrate, A receives a call from a credit card customer about a 

potential fraudulent transaction on account B. Although this customer has no risk profile, the geographical location of account 

B and the fact that the account has a history of infractions from other customers with similar profiles indicate credibility fraud. 

Equation 2: Training the classifier (maximum likelihood → cross-entropy loss) 

Step 1: Bernoulli likelihood 

For one example: 

𝑃(𝑦𝑖 ∣ 𝑥𝑖) = 𝑝𝑖
𝑦𝑖(1 − 𝑝𝑖)

(1−𝑦𝑖) 

 

For dataset (independent samples): 

ℒ(𝑤, 𝑏) = ∏𝑝𝑖
𝑦𝑖

𝑛

𝑖=1

(1 − 𝑝𝑖)
(1−𝑦𝑖) 

 

Step 2: Log-likelihood 

log⁡ ℒ =∑[𝑦𝑖log⁡(𝑝𝑖) + (1 − 𝑦𝑖)log⁡(1 − 𝑝𝑖)]

𝑛

𝑖=1

 

 

Step 3: Negative log-likelihood (loss to minimize) 

𝐽(𝑤, 𝑏) = −log⁡ ℒ 

 

So: 

𝐽(𝑤, 𝑏) = −∑[𝑦𝑖log⁡(𝑝𝑖) + (1 − 𝑦𝑖)log⁡(1 − 𝑝𝑖)]

𝑛

𝑖=1

 

 

This is the binary cross-entropy used heavily in fraud detection. 

Step 4: (Optional) Class-imbalance weighting 

Fraud is rare; weight positives higher: 

𝐽(𝑤, 𝑏) = −∑[𝛼 𝑦𝑖log⁡(𝑝𝑖) + 𝛽 (1 − 𝑦𝑖)log⁡(1 − 𝑝𝑖)]

𝑛

𝑖=1
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Where 𝛼 > 𝛽(common in fraud). 

6. Cloud-Native Deployment and Operations 

Cloud-native deployment and operations provide a set of modern approaches geared toward achieving efficiency in the design, 

development, testing, and management of applications deployed in heterogeneous multi-cloud environments. They enable 

industrialization of big data and AI/ML-based application creation. Consequently, the data processing, analytics, AI/ML 

processes powering the risk intelligence and fraud control paradigms are delivered as a set of container-based microservices 

deployed on Kubernetes platforms in a cloud-native fashion. These principles are applied to the implementation of the cloud-

native banking and insurance solutions, delivering these services as microservices packaged for deployments on Kubernetes 

environments. Adoption of containerization of the applications also enables continuous integration, continuous delivery, 

monitoring, and management of the application microservices over the entire lifecycle. 

In addition to application containers, Kubernetes platform and microservices, the overall architecture employs other supporting 

cloud-native components including message queues, distributed file storage, as well as source code repository, build pipeline, 

testing environments, monitoring services, and database services such as Redis and PostgreSQL. These components also 

leverage cloud-native principles such as automation of the operational operations, provisioning of resources in an on-demand 

manner, and ability to scale up and down elastically based on the workload to deliver increased efficiency and fault-tolerance 

besides reducing overall operational overhead. 

6.1. Microservices and Containerization                       Microservices and Containerization—The design and implementation 

of cloud-native systems for production should follow the principles outlined in the architecture. The technology components 

and supporting infrastructure should be separately provisioned and operationally managed. Each individual microservice within 

the framework can be deployed using its most suitable run-time environment tool kit and underlying stack, independent of 

other microservices. This independent microservice implementation and run-time approach permits teams to adopt basic 

principles of agile software development and accelerate the product development cycle while enhancing the quality of 

deliverables. 

Rapid scaling of cloud infrastructure should support burst provisioning, which enables immediate provisioning of additional 

instances of the service when the demand exceeds the threshold. In a highly parallel environment, such burst provisioning can 

happen without any business impact using cloud-native burst infrastructure provisioning and auto-scaling principles. 

Orchestrated data and service provisioning using containers and its orchestration tools further enhance the overall efficiency of 

operations. 

Due to the complex and diverse nature of big data, any failure in the data processing pipeline will have a significant impact on 

the overall data quality and availability of data for analytics. Establishing a monitoring mechanism for each data processing 

stage will enable visibility and improve the quality of incoming data for analytics. Service orchestration to provide a data 

pipeline as a service to data scientists should be considered for the subsequent phases of product development once the initial 

data pipeline services are established and matured. 

Equation 3: Confusion matrix + key metrics (what operations teams actually track) 

Define counts: 

• TP: predicted fraud and truly fraud 

• FP: predicted fraud but truly legit 

• TN: predicted legit and truly legit 

• FN: predicted legit but truly fraud 

Matrix: 

(
𝑇𝑁 𝐹𝑃
𝐹𝑁 𝑇𝑃

) 
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Metrics: 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
Recall (TPR) =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

FPR =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
Accuracy =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

7. Data Management and Quality Assurance 

Data management and quality assurance are crucial for developing robust risk intelligence and fraud detection systems, as they 

rely on large volumes of data from diverse sources, including historical data repositories and real-time transactional data feeds. 

Data management encompasses the processes of data acquisition, cleansing, transformation, and enrichment, while quality 

assurance ensures that incoming data meet required standards. 

Data acquisition focuses on establishing connections with popular databases, data warehouses, and cloud data lakes using 

autonomous agents. Pre-existing databases provide historical records for model training, while current data flows ingest real-

time transactional information. A supervised learning approach is used, training data consist of fifty-one relevant features 

extracted from historical fraud records for a two-year period. Data cleansing ensures the integrity of incoming data streams; 

integration, conversion, and transformation of external data sources into internal formats and standardization into the 

knowledge graph provide enrichment. A third-party cloud platform offers both tooling and capabilities to guarantee the success 

of these requirements. 

 

Fig 4: Data Quality Management 

7.1. Data Acquisition, Cleansing, and Enrichment     Continuous collection of banking transaction data from a streaming 

source completes the ecosystem's supporting infrastructure. The mining of novel patterns within this transaction dataset 

supports algorithms for fraud detection and prevention. New transaction records pass through a set of rules to support data 

cleansing and quality improvement. The continuous nature of data arrival allows the implementation of a Lambda architecture, 

encompassing the simultaneous creation of batch and incremental datasets. These datasets feed the operation of two separate 

models intended for fraud detection and fraud prevention. Both models generate results that return to the source backend for 

further operationalization. The careful design of the data stream allows excluded transactions to re-enter the process on a 

different data pathway along the banking transaction lifecycle. 

The multi-data-source configuration of the Pipeline Ecosystem encourages the resume of a continuous process to feed the 

supporting risk-intelligence and fraud-control pipelines for each detection and prevention domain. Batch processing integrates 

new data records hosted on the enterprise data warehouse before returning to a Hadoop-based operational staging area. A 

secondary data-cleansing routine removes stale data from the Hadoop wallet in preparation for replay episodes that explore 

episodic fraud detection and prevention. 
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8. Conclusion 

By having analysed the approached ecosystems, it can be concluded that the hybrid design and architecture principles used for 

the framework should target three risk control core modules. These modules are deployed and operated in the core component 

of the framework whose microservices together with other core microservices provided by the framework’s ecosystem and 

utilized in the banking sector and its insurance modules form the ecosystem. The ecosystem aims to provide innovative 

solutions for risk control and management in banking and insurance systems and utilize related solutions offered by the China 

Banking industry, ICAI group and other actors. 

The defence and prevention models support the detection and prevention of attacks in banking systems through utilizing shared 

data sources that enhance and complement the fraud detection solutions. With a focus on Fraud Intelligence and Prevention the 

banking system can insulate itself from damage caused by fraud and attacks by other systems or actors. In the case of insurance 

investigations the focus is on providing evidence for forensic investigation for subsequent procedures of law enforcement 

bodies or watchdog organizations. 
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