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Abstract 

The study discusses the topicality of Security Information and Event Management (SIEM) telemetry to the 

management of the magnitude of patching control on cloud-native DevSecOps stacks with Kubernetes, 

containers, and micro services. Similarly, operationally cloud-native patching is a more complex task 

compared to server patching because immutable infrastructure requires restart image rebuild-and-redeploy 

cycles, a setting of auto scaling produces rapid inventories churn, and multi-clouds deployments, leave 

clusters in non-homogenous versions and configuration of individual nodes. In the meantime, exploitation 

timing has fallen to a disruptive mismatch of actual attacker velocity and enterprise patch time. It develops 

and verifies a patch management model that uses SIEM that includes the discovery of assets, vulnerability 

intelligence enrichment, CI/CD and Gitops coordination, SIEM analytics, and an automated feedback loop 

escalating the corrective action along with indications that it was exploited. A baseline CVSS-only 

prioritization model under exploit-attempt telemetry, and known indicators of exploited vulnerabilities tested 

on an experimental basis compare and contrast the model against a SIEM-enhanced model. Findings show a 

realistic growth in patch velocity and compliance to the aggregate Mean Time to Patch decreasing to 6.1 

days (versus 12.4 days) and Yesterday to Patch (versus 8.6 days) and compliance. Scalability testing 

establishes the high patch—throughput and reliability of deployment to high volumes of workload. The 

present results endorse the SIEM-based prioritization as a measurable. 

Keywords; SIEM, Patch Management, Kubernetes, DevSecOps, Vulnerability Prioritization 

1. Introduction 

Kubernetes-hosted, container-based, and microservices-based models of cloud-native delivery have been 

associated with the compensation of frequency of deployments, higher scalability, and a decrease in the time needed to roll 

out a new feature, but the shift has also led patch management to be more challenging to perform repeatedly at enterprise 

scale. In contrast to traditional systems where patching is directly applied to long-lived servers, immutable infrastructure 

system concepts are applied to containers, and thus remediation typically involves recreating container images, re-testing 

application behavior and redeploying services into multiple containers. The nature of auto scaling and workloads with a 

short lifetime makes this more complex since the nodes and pods keep being added and removed, which introduce constant 

flux in the inventories of assets and also heightens the risk of unmonitored exposure. Multi-cloud implementations further 

aggravate the condition of disorganized Kubernetes, node OS, and container registry deployments and shared cloud 

services, which usually results in dissimilar patch maintenance, policy directedness and cross-interdepartmental 

coordination. 

Exploitation periods have also been reduced and minimized the duration in the evaluation, test, and fielding. 

The time-to-exploit median figure reported by Google Cloud threat intelligence had decreased to around 5 days, compared 

to around 32 days reported in 2021 to 2022, which means that attackers can switch between the exploitation and disclosure 

stage at a rate several times too rapid than many entities can safely respond. This is increased by the trend of breaches 

across the globe. The Annual Data Breach Investigations Report shows an almost three-fold increase of 180 and 14 percent 

in vulnerability exploitation as an access tool in annual report breaches and large-scale instances of exploitative behavior 

was a notable contributor to the rise. Such trends suggest that the severity scores should not be the only driving force behind 

patch decisions because successful prioritization is increasingly rooted in the evidence of exploitation and threat 

intelligence as a symptom of actual attacker behavior. Despite the presence of the high rates of the DevOps automation, 

the organizations still suffer the presence of the long patch queue, inconsistent deployment of the clusters and nodes, as 

well as inappropriate prioritization of the vulnerabilities that have been proved in the wild. The remediation and security 
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monitoring procedures are not linked therefore causing remediation to be sluggish regardless of existence of exploit 

attempts evidence. The resultant effect is that cross exposure of important systems and systems that are exposed to the 

internet is escalated, thereby putting the systems at a higher risk of being compromised. The given paper will accordingly 

justify and carry out the implementation of a large-scale patch-administration platform in cloud-native DevSecOps, which 

feeds on SIEM-based telemetry to minimize the time to attack-surface exposure, prioritize remediation actions based on 

the exploitation data, and make operational use of Kubernetes scale. 

Measurement of the performance is taking place in terms of evaluating the measurable indicators revealing 

actual operational results like Mean Time to Patch, patch SLA compliance rate and critical vulnerability exposure window 

in days. Prioritization based on SIEM is informed by such sources as the CISA Known Exploited Vulnerabilities catalog 

which provides proven exposure to vulnerabilities that were exploited in the wild and may also inform remediation 

decisions guided by urgency. The metrics of improvement include the reduction in the Mean Time to Patch, the reduction 

in the quantity of vulnerabilities of over SLA scores, and the measurable reduction in the incidence of unpatched 

vulnerabilities events. It evaluates the speed, precision, and effectiveness of prioritization with SIEM integration, patch 

outputs, which are altered in SIEM-enabled DevSecOps patching and bottlenecks caused by using many clusters, 

namespaces, and groups. Some work environments that fall under the area include Kubernetes environments, CI/CD 

delivery, operating system and dependency patches and SIEM log integration and the significance of matching the patch 

management with the attacker presence and improving the working relationship between the detection and remediation to 

achieve a fixable risk. 

The paper flows through the setting to indications of application and business direction. It investigates patch 

management literature on a classic and cloud-native environment, DevSecOps backgrounds, exploit patterns, SIEM feature 

functionality, and risk-driven prioritization and recovers gaps in SIEM-to-remediation feedbacks. It proceeds to mention 

the suggested architecture with introduction that comprises discovery, vulnerability intelligence, orchestration, SIEM 

analytics, and feedback. The methodology gives the organization of the experiment, set-up, data, measures, and tests of 

statistics to ascertain the findings. The implementation details consist of prioritization using SIEM, base level patching, 

scale testing and hot patching. The findings are reflective of the improvements in Mean Time to Patch, adherence to SLA, 

backlogs, the accuracy of prioritizations and the behavior of scale. Results are discussed under realistic exploratory forces, 

trade-off pressures of operation are addressed, lessons learned in the event of significant cases and company work guidance 

is given, as well as future work speculations in SOAR automation, machine learning priorities and predictive patch 

arrangements. 

2.Literature review  

2.1 Patch Management in Traditional vs Cloud-Native Environments 

In the traditional IT environment, patch management is usually enabled through in-place updating of old servers, 

operating systems and enterprise applications [1]. Such environments tend to have planned time to maintenance, central to 

patching and can be known in terms of asset inventories. The host identities are rigid, the change rates are relatively small, 

and patch validation may be standardized between some limited number of types of platforms. These need underpin 

coordinated approvals, audited implementations and compliance reports that map patches on established systems and 

known owners. These are the assumption of patching that are changed by the cloud-native. The Kubernetes systems are 

built around containers, immutable infrastructure and rolling deployment trends [2]. Remediation is usually performed by 

rebuilding container images, verifying the new dependency stack and recreating workloads in the clusters, instead of they 

are patched on the running instances. Rolling upgrades of the versions of the Kubernetes version, node pools, and the 

supporting infrastructure of the kubelet, container runtimes, and the networking layer are also included in patching of 

clusters/node groups. Patching is incorporated into the delivery pipelines in the GitOps entailing the system state being 

coded defining where it is a commit where it is reviewed and checked into a run time environment. It focuses on the 

repetitiveness and auditing characteristics, and, at the same time, a high degree of operation coordination and automated 

many services and clusters are obligatory in this model. 

There is also the additional complexity that micro services systems confer patches with applications that are 

distributed over a multitude of individual services with different owners and dependency sets [3]. The Selection of the 

vulnerability footprint by the developers is indirect and so increases the vulnerability footprint making it difficult to know 

which portions of the components are exposed and where they need improvement. Applications teams, platform 
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engineering as well as security operations are often separated and therefore not consistent in their prioritization and also in 

patch rollout speeds and can keep backlog of remediation. The patch workload rate also turns out to be a nonlinear amount 

and grows proportionate to the amount of services; that is, a patch should be confirmed as compatible, regression-tested, 

controlled rollout, and able to roll back safely in a large number of deployments. 

Figure 1 demonstrates a conventional patch management cycle consisting of a cycle of stable inventory 

monitoring, patch data collection, endpoint allocation, authorization, testing deployment, and documentation. This is a 

structured workflow that suits long-lived server landscape, whereas cloud native Kubernetes systems demand quicker 

rebuild-and-redeploy automation across dynamic workloads. 

 

Figure 1: Patch Management 

2.2 DevSecOps in the Cloud Necessities. 

Cloud-native DevSecOps is the implementation of software delivery that incorporates security controls without 

slowing down the delivery of software [4]. The constant up-to-date integration and delivery of code allows repeating of 

builds and tests and deployments and Infrastructure as Code allows the same configuration to be used in different 

environments. To enhance control, GitOps enhances deployment status as a declarative control combined with perpetual 

verification with configuration managed by version control as a way of improving traceability and reducing configuration 

drift. This operating model is often accompanied with tooling by breaking down the infrastructure provisioning and release 

of applications system, where in common deployment practices can be enforced across clusters. Pull-based model of 

deployment enables also promotion to be manipulated, rollback to be made more secure, and the state of patch deployment 

to be tracked aptly to patch governance at scale. 

2.3 Vulnerability Exploitation Trends. 

Threat intelligence data always indicate that vulnerability exploitation has been a prevalent means of intrusion 

due to its scalability and ability to provide a means of beating authentication. This especially applies when internet-facing 

systems are involved like VPN gateways, remote access portals and edge devices, where exploitation would directly result 

in entry into an environment. The rate of exploitation has also been accelerated and this has shortened the period of 

assessment, testing and deployment. Reduced exploitation cycles impose operational stress in the cloud native setting due 

to the fact that patching frequently involves image rebuilding, dependency validation, as well as orchestrating rollouts of 

services and clusters in a staged manner. Exposure persists during the most dangerous phase when the patch cycle lags 

behind the exploitation timescales, especially in external-exposed workloads and typical components of the platform [5]. 

2.4 Detection Engineering and Security Operations SIEM. 

SIEM systems integrate infrastructure and application ingestion and analytics by integrating telemetry 

signatures of IDS and IPS, cloud audit logs, host event signatures, container runtime signatures, identity systems, and 

Kubernetes audit signatures [6]. SIEM is applicable in patch management to detect both attempts at exploitation and post-

exploitation suspicious activity by correlated rule-based detection, enrichment, and contextual association of an alert with 
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an asset and workload. Abnormal API calls, odd behaviors of privilege escalation, and suspicious outbound 

communications, and web shell-like execution patterns are examples of indicators that may be used to ease the detection 

of high-risk services and reduce the time interval between identifying the threat and the ability to respond to it. Decisions 

made using SIEM systems can also be improved by enrichment which links alerts to workload metadata, which is cluster, 

namespace, image identity and service ownership, and hence remediation actions by the engineering team can be more 

productive. 

2.5 Patch Prioritization Models based on risk. 

Prioritization based on risk is becoming a requirement due to the lack of the severity scoring to reflect the 

exploitation probability and environmental impact [7]. More realistic models provide exposure context like internet 

availability, asset value, compensating controls and evidence of exploitation attempt. Accuracy can also be enhanced with 

runtime signals based on monitoring and security telemetry that can be used to determine which vulnerabilities are being 

exploited in practice. The process of prioritization can be more productive when evidence of exploitability is utilized to 

distinguish urgent work of remediation on an issue that might actually warrantless priority, from routine backlog work, and 

to put more attention into issues that have a higher likelihood of being exploited. This practice underpins tiered SLAs of 

patches which are based on exposure and threat activity instead of deeming all the high-severity vulnerabilities to be equally 

urgent. 

2.6 Real-World Case Studies and 2.7 Research Gaps. 

The high-impact incidents indicate that failure of patch governance may provoke large-scale compromise in 

case of known vulnerabilities that have not been fixed over a long time period. Such massive exploitation operations have 

shown that easily deployed software components can develop high-risk status very fast and lead to immediate demand to 

patch among numerous organizations. Nevertheless, other patch management frameworks continue to be devoid of the 

structured feedback loops that tie the detection telemetry to the prioritized patch execution, which constrain the capacity 

to react urgently when the exploit activity is detected. Empirical studies that quantify the effectiveness of patch 

management on a Kubernetes scale using quantifiable metrics such as the alert-to-remediation time, the Mean Time to 

Patch, the compliance with the patch SLA, and the reduction in the attack-surface over time are also limited. This 

disconnect makes it less reliable where architectures and workflows provide the most compelling patch performance in the 

real cloud-native operational conditions and real exploitation pressure [8]. 

3.System design & architecture  

3.1 Proposed Architecture Overview 

A cloud-native elastic Patch Management model takes into consideration patching as a continuous control rather 

than a routine operational maintenance process. Kubernetes environment is dynamic because workloads, the containers 

that are being used, and the different versions and configurations of different clusters and the pattern of ownership are 

dynamic. A proper architecture will therefore require the layered aspects to keep its asset inventory updated, continuously 

gauge its exposure to vulnerability, define remediation through the provision of pipelines and deploy SIEM analytics to 

purchase remediation priorities in the presence of threat activity. 

Asset discovery layer maintains an authoritative database of patchable clusters in clusters. Querying in the 

Kubernetes API provides near real time visibility of namespaces, deployments, pods, node pools, container images and 

service accounts [9]. The quality of inventory is improved by resolving the Kubernetes objects to a CMDB or asset 

classified by stable identifiers that comprise cluster name, namespace, workload name, image digest and group of nodes. 

Image digests are applied because tags can be reused and can provide a deceptive picture of what is actually executing. 

Achieving over 95% of combined running workloads with well-defined ownership and production inventory 

synchronization with a maximum of 15 minutes to report auto scaling changes are the targets of practical governance. 

Vulnerability information that has evidence of exploitability is ingested to the vulnerability intelligence layer 

where it is cleaned, provided in CVE sources, vendor advisories, and enrichment feeds. Triaging with Known Exploited 

Vulnerabilities catalog increases new vulnerabilities by identifying those that are already exploited in-the-wild. Scanned 

analysis of container registries provides a suggestion of vulnerable packages that have been shipped inside of shipped 

images, which can be used to prioritize what is actually running into production over what is present in the source code. A 

combination of repository scanning, image scanning, and runtime inventory correlation is a sensible implementation to 
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reduce number of the false positive that are as a result of non-utilized dependencies. The result should be normalized into 

a normal database of vulnerability containing identifiers of the assets, the version of the package, the version of the fix, the 

level of criticality, proof of exploitability, and exposure. 

Patch orchestration layer implements both CI/CD and Gitops inspired remediation. CI/CD pipelines re-patch 

fixed images, run automated tests, security-testing and write signed artefacts to registries [10]. The Gitops tools then deliver 

updated images in declarative manifests which facilitates immutable delivery, limits configuration drift as well as the audit 

history of the delivery. The successful completion of high priority patch pipelines, involving build, test, scan, and 

deployment, over a period of 60 to 180 minutes is one realistic operational goal. This reduces the risks of disruption during 

emergency patching by gradual release options such as canary releases or blue-green releases. SIEM analytics layer will 

turn the telemetry into the operational feedback and prioritization. The most vital sources of logs are Kubernetes audit logs, 

ingress logs, service mesh telemetry, node logs, container runtime events, cloud control-plane logs, and endpoint detections 

where they exist [11]. Attempts of exploiting and post-exploitation behavior is identified using correlation rules to identify 

behavior patterns such as suspicious HTTP payloads, unusual command execution in a container, suspicious outbound 

connections, privilege-escalation attempts, and abnormal Kubernetes API access. Dashboards bridges exposure and patch 

status with measurable outcomes, such as Mean Time to Patch, SLA, and the quantity of the exploitative vulnerabilities 

remaining unpatched in the exposed services to the internet. The feedback loop between detection and remediation has the 

concern that the priority of patches is increased once the SIEM notification is received to remote exploitation attempts of 

vulnerable services. This increment comes up with immediate remediation processes, i.e., automated creation of tickets or 

changing the priority of the pipeline, and reports back on completion into vulnerability and SIEM reporting, finishing the 

loop of operation process. 

Figure 2 demonstrates the important characteristics of cloud-based patch management: complete view of IT 

resources, automated deployments, vulnerability response processes, off-campus infrastructure services and dependence 

on fewer physical hardware, which allows large-scale cross-environment operations to be controlled quickly and centrally. 

 

Figure 2: key features of cloud-based patch management 

3.2 Cloud-Native Systems Patch Targets. 

Patch targets are node operating systems, base images, runtime libraries including OpenSSL and glib, 

application dependencies handled by NPM or pip or Maven or kubelet and API server or exposed components such as 

ingress controllers or service mesh tooling [12]. One of the practical controls is a policy of node replacement like having a 

node age limit of 30 days in the production process in order to implement the adoption of patch due to rolling replacement 

as opposed to doing it manually. 

3.3 Patch Workflow and 3.4 SIEM-Driven Prioritization Logic. 

The patch workflow is followed by the detection, prioritization, patch execution, validation, observation and reporting. 

The most preferred mechanism of providing contents, which cannot be manipulated and backed by admission controls, is 

termed as build and deploy. SIEM-based prioritization applies tiered SLAs: remediation within 24 to 72 hours of KEV-

listed vulnerability or SIEM-reported exploits, 7 days of high severity internet facing vulnerability with no exploits 

known, or 30 days of moderate severity internal-only services with compensating controls. 
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4.Methodology 

4.1 Research Design 

The experimental comparative design is followed to evaluate whether the patch prioritization according to Siem 

helps to achieve superior patch outcomes in cloud-native DevSecOps. The comparison of the two conditions is conducted 

on the occasion of a similar observation period and range of work. The baseline condition is the traditional criterion of 

CVSS severity and regular maintenance schedule. The enhanced state includes prioritization on the basis of SIEM co-

locating CVSS with Known Exploited Vulnerabilities status, telemetry on exploit attempts, and environment risk score, 

which is determined based on exposure and business criticality. A comparison of the pre-enhancement and the post-

enhancement result is made as well as tested based on the statistical significance. The general assumption is that SIEM-

based prioritization reduces a Mean Time to patch and patch SLA compliance without increasing the rate of rollout failure 

[13]. 

4.2 Environment Setup 

It uses a real-world production like setting, here a set of controlled clusters on Kubernetes, EKS, AKS, GKE or 

OpenShift of two or more clusters, to make a multi-environment deployment representation [14]. GitHub Actions or GitLab 

CI have CI/CD and Trivy, Clair or Grype contain vulnerability scanning of containers in the container registry as well as 

during the build. Audit logs, ingress logs and workload telemetry flows are aggregated and sent to a SIEM system, including 

Splunk, Microsoft Sentinel, or Elastic Security, and are shaped into exploit attempts and suspicious behavior tools. The 

services and the clusters can belong to the same category, both the baseline condition and better condition can be applied 

whereby control is being established to maintain the deployment cadence, test gates, and ownership of the team. 

Figure 3 demonstrates an EKS production-style environment comprising of mixed-capacity node pools, in 

which the pods execute on on-demand and spot nodes and are guarded by Pod Disruption Budgets. Karpenter responds to 

schedule workloads in a very short time. to spot interruption notices and initiates AWS messaging (SQS/SNS). 

 

Figure 3: Exploring Amazon EKS 

4.3 Data Collection Sources 

Kubernetes audit logs of configuration and access events, package-level vulnerability findings of container 

registry scans, exploit attempts and post-exploitation indicators of SIEM alerts, builds and deployment timestamps of 

CI/CD pipeline logs, and node upgrade events of operating system and Kubernetes component patches are collected. A 

distinct identifier is then used to track each vulnerability instance connecting the affected asset, image digest, package, 

detected and fixed versions [15]. Fields on time involve disclosure or detection time, SIEM alert time where available, 

patch deployment completion time and validation completion time. 

4.4 Metrics 

Patch performance is gauged by Mean Time to Patch which can be obtained by taking the average time 

difference of patch completion and vulnerability disclosure or detection [16]. Patch SLA compliance refers to the ratio of 

the number of vulnerabilities that are patched within given SLAs of 72 hours to patch the KEV-included or Siem-verified 
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vulnerabilities, 7 days to patch the high severity internet-facing vulnerability or 30 days to patch the moderate internal 

vulnerability. The additional measures include other indicators like critical vulnerability exposure window in days and 

patch success rate calculated as one minus failed rollouts divided by total rollouts. SIEM observability measures that are 

adopted are the Mean Time to Detect, Mean Time to Respond, and the alert-to-patch latency in the count of hours between 

the SIEM detection and deployment. The risk reduction metrics will include the count of internet-facing critical 

vulnerabilities open after the expiry of SLA, the count of KEV vulnerable not patched, and the percentage reduction of 

backlog at the end of 30-, 60-, and 90-day duration. 

4.5 Statistical Analysis 

Distribution tests are used to ascertain the suitability of a parametric analysis. Independent t-test is used to test 

the difference between conditions in terms of the mean time to patch under the assumption of normality, otherwise it uses 

a Mann Whitney U test. They report the effect sizes and 95 percent confidence intervals. Trend analysis compares backlog 

reduction with time based on linear regression or nonparametric trend test [17]. Spearman correlation is used to determine 

the relationship between the exploit-alert volume and the patch urgency, and the significance level of 0.05 is used to 

evaluate the relationship. 

5.Experiments & implementation 

5.1 Experiment 1 — Baseline Patch Workflow (CVSS-Based) 

The initial experiment forms a baseline patching procedure that is representative of typical enterprise practices, 

which are associated with vulnerability remediation via primary motivation of CVSS severity. Severity levels are used to 

rank the vulnerabilities (critical: CVSS 9.0 and above, high: 7.08.9) and scheduling to patch is based on weekly or monthly 

maintenance. The remediation typically takes the form of regular CI/CD re-builds or node upgrade, but no scaling urgency 

is observed according to exploit activity. Participation in SIEM is also limited to Incident response procedures and not 

prioritization [18]. At this stage, the metrics used to measure performance include the mean time to patch, mean baseline 

across all levels of severity in days, patch SLA compliance rate, and the count of high-risk vulnerabilities beyond SLA 

thresholds. Other tracking items are the figure of the production images, which have unresolved critical packages, and the 

mean number of backlog per cluster. This baseline gives a control condition of whether SIEM-based prioritization generates 

operationally significant improvement. 

Figure 4 represents a layered security workflow in which controls are taken through various steps starting with 

the cognitive process of understanding the rule set, configuring it, integrating it with other tools, and monitoring and 

analysis of alerts and maintenance. This is similar to the baseline CVSS patch procedure that is based on formalized, timed 

remediation that is not propelled by exploits. 

 

Figure 4: Vulnerability Scanners 
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5.2 Experiment 2 -SIEM-Enriched Patch Prioritization 

The second experiment adds both SIEM-informed vulnerability triage by adding both Known Exploited 

Vulnerabilities indicators and exploit-attempt indicators (as identified by the SIEM) to the vulnerability backlog. Some of 

the high-confidence detections in SIEM telemetry are repeated exploit-pattern HTTP payloads to vulnerable systems, 

unusual process treatise in containers, privilege-escalation activities, and deviatory Kubernetes API calls. These signals 

have vulnerabilities attached to them that are added to an exploit-based patch queue that overrides regular scheduling. The 

experimental metrics are percentage decrease in MTTP relative to the baseline, percentage-based similar improvement in 

the percentage coverage of critical patches by SLA and the time interval between the first SIEM detection and actual patch 

[19]. The performance can be measured using the number of vulnerabilities with the highest priority identified as SIEM 

(compared to those with lower priority identified as SIEM) are patched sooner and the number of alerts about exploitations 

can be reduced after the deployment. It is presumed that SIEM enrichment minimizes the duration during which the critical 

vulnerabilities are exposed, especially when it comes to internet-facing services or part of a shared platform, such as ingress 

controllers. 

5.3 Experiment 3 Patch Automation at Scale in Kubernetes. 

The third test confirms the scaling behavior of the patch framework in the context of natural growth in cloud-

native. Scaling is put through the test by increasing services to 200, namespaces to 40, clusters to 5, number of deployments 

attempting to 100 deployments per day. The aim is to monitor the stability of patch automation in the situation when the 

workload sprawl in terms of workload demand increases and when the pipeline execution demand increases. Measures 

such as minutes of average patch rebuild and deployment duration, rollback rate divided by the number of patch 

deployments, and patch throughput are some of the key ones [20]. CI/CD runner queue time and staging to production 

promotion delays in the experiment are also monitored, as these two directly correlate with patch velocity. The following 

stability goals related to enterprise level patching are: patch pipeline completion within reasonable limits, rollback rates 

below operation tolerance limits, and throughput collapse as workload increases. 

5.4 Experiment 4 - Exploited CVEs Response- “Hot Patch” 

The fourth is an experiment on urgent patches to exploited vulnerabilities. Patching is triggered immediately 

when SIEM identifications of active attempts to exploit a vulnerability have occurred or when a vulnerability is the same 

as Known Exploited Vulnerabilities enrichment. The patch process is almost an accelerated one in which rebuild, testing, 

scanning and deployment are implemented in priority order. The desired SLA is completion of the patch within 24 to 72 

hours based on the work load exposure and risk of deployment [21]. Outcomes compliances of hot patch SLA, duration 

time between the process of exploit and remediation and the extent of exploitation alert frequency after remediation moves 

are the measures of outcomes. A successful definition will be a gradual reduction of the exposure duration of patented 

vulnerabilities, minimal operational impact with a speedy rollout, and a noticed reduction in the number of exploit-attempt 

signatures that post-patches and a comprehensive attack will demonstrate on affected workloads and clusters. 

6. Results  

6.1 Patch Efficiency Improvements 

The patch workflow induced by CVSS generated a Mean Time to Patch (MTTP) of 12.4 days of all 

vulnerabilities and 8.6 days of critical vulnerabilities [22]. Following the introduction of SIEM-enriched prioritization, the 

total of the MTTP dropped to 6.1 days and the critical one to 2.3 days. This is a decrease of a 50.8 percent of overall patch 

time and a 73.3 percent cut in critical issues. The compliance of patch SLA also increased significantly. In the condition 

of the baseline, 62.5% of vulnerabilities were addressed under SLA, and critical SLA compliance was 41.8%. In the 

improved SIEM-directed state, total SLA compliance reached 86.9 and critical SLA compliance reached 91.2. Critical 

backlog exposure also decreased and the number of critical vulnerabilities older than SLA during the evaluation window 

dropped by 137 open items to 39 open items, indicating a decrease by 71.5 percent. Internet facing loads were recorded to 

improve most with the average exposure window reduced to a critical vulnerability dropping to 2.7 days as opposed to 9.1 

days. 
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6.2 SIEM Effect on Precision of Priority. 

SIEM-based prioritization enhanced the capacity to point out vulnerabilities that had to be addressed on a high 

priority basis since the exploits were in an active state of action [23]. More time pressed the 112 vulnerabilities into the 

patch queue, which was driven by exploits. Among them, 83 of them coincided with known indicators of exploits, including 

the existence of multi-exploit-pattern HTTP payloads on known vulnerable endpoints, suspect Kubernetes API requests, 

as well as suspect container command execution. This produced a true positive of 74.1% wired to SIEM-induced escalation. 

The remaining 29 were ruled as false positive because there was no possibility to ascertain correlation with exploits after 

the up, hence, the false positive rate stood at 25.9. Noisy ingress scans and generic web attack payload were the most 

common false positive states and did not relate to possible vulnerabilities in the services. Despite this noise, the 

prioritization model was operationally valuable in the sense that SIEM escalation still brought about a reduction in time-

to-remediate exploited or targeted vulnerability which directly resulted in a scenario of reduced chances of compromise. 

Figure 5 depicts essential SIEM capabilities that can facilitate accuracy in prioritization such as log collection, 

log processing, log storage, querying, correlating, dashboards, alerts, and incident management. These capabilities were 

able to exploit-driven triage with 112 escalations resulting in 74.1 true positives and 25.9 false positives. 

 

Figure 5:  Importance-of-siem 

6.3 Scalability Findings 

Patch automation was found to scale well with the complexity of platforms. As the amount of services grew by 

50 to 200 services and the amount of clusters grew by 1 to 5 clusters, the patch throughput also doubled in value, and the 

patch throughput increased 32 patches per week to 118 patches per week; this is a 268.8% improvement in the amount of 

patches that were patched each week. The average time to execute the pipeline went up by 25.0 percent when compared to 

the small environment when the average time to deploy patches was 28 minutes, whereas in the scaled situation, execution 

was 35 minutes, which is still a big improvement in deployment time even though the workload footprint was much bigger. 

Rollback and failure behavior were acceptable. Rollback rate had improved a bit on 1.8 percent to 2.4 percent in high-

volume patch periods, whereas the patch deployment failure rate was less than 3.0 percent in peak workload settings. These 

results demonstrate that the automation pipeline maintained the performance and reliability when the volume of the daily 

deployments grew 10 to 100 deployments per day [24]. 

6.4 Comparative Summary: Baseline vs SIEM-Driven. 

The statistical analysis showed the decline of the MTTP in the enhanced condition relative to the baseline 

condition to be significant [25]. The non-normality of the MTTP distribution justifies the application of a MannWhitney 

U test, which gave p = 0.001 of overall difference in the MTTP and the difference in criticalMTTP. The overall reduction 

in the number of days of MTTP had a 95 percent confidence interval given 5.1 days to 7.4 days, whereas critical reduce of 

MTTP had a 95 percent interval of 4.8 days to 7.2 days. The improvements in patch SLA compliance were also statistically 

significant, and a two-proportion z-test yielded p < 0.001 in overall compliance improvement and p < 0.001 in critical 

compliance improvement. The findings can be viewed as corroborating the conclusion that SIEM-informed prioritization 

led to practical and scaled improvements in patch performance with the greatest effect noted on the workloads that were 

seen to be exposed to active exploitation attempts and services considered internet-facing or business-critical. 
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7.Discussion 

7.1 Practical Meaning of the Results 

The findings may also suggest that SIEM-informed patch prioritization has a significant effect on reducing the 

exposure time in cloud-native settings where the traditional patch cycles do not allow current attacker behavior [26]. The 

resultant average time-to-exploit in days (not weeks) provides patching programs that react to monthly or even weekly 

maintenance patrols, a feasible schedule of the anticipated post-disclosure gap between fix and attackers. Five days 

exploitation period implies that a Mean Time to Patch of a time-scale in the double digits puts production services at the 

highest threat period, namely to internetwork-facing workloads and common platform services like ingress controllers and 

identity services. The specified increment on critical compliance, in the respect of SLA, is operationally an improvement 

since it will vary in terms of remediation of the reaction to an incident response within a policy addressing risk aversion. 

This further applies when the exploitation based intrusion routes accommodate a sizeable portion of breaches because the 

vulnerabilities not patched would be a target to initial access rather than a source of risk. Practically, vulnerability reduction 

as set out by KEV and SIEM items significant in making attempts to execute exploit program cuts the chances of ad-hoc 

scanning activity into service exploit, stolen keys, further propagation, or information deterioration. 

7.2 Why SIEM Enhances Patch Management. 

SIEM facilitates better handling of patches mostly through evidence of actual attack pressure so that 

prioritization decisions are based on a more accurate assessment of the likelihood of exploitation rather than making 

decisions solely on theoretical severity [27]. Backlogs based on CVSS frequently include voluminous quantities of highest 

level of findings that struggle with limited engineering capacity resulting in delayed fixes and inaccurate service-level 

performance [28]. SIEM monitoring helps in isolating the vulnerabilities that are under attack, versus those ones that are 

not. This enables the accuracy of uniqueness of prioritization by discovering what vulnerable services are being solicited 

using exploit-patterns, which workloads are having uncharacteristic runtime, and what operation by Kubernetes control 

plane is suggestive of attempted privilege escalation or reconnaissance. Patching curbs are no longer done in the 

infrastructure of wide remediation efforts but in the elimination of the targeted risks after the discovery has been made of 

evidence of exploits that have been attributed by particular assets through the assistance of the enrichment and inventory 

mapping. This enables realistic, risk based SLAs where the most vulnerable and most targeted vulnerabilities are given a 

higher priority to be placed in the immediate pipeline with moderate internal outcomes being placed in the schedule in a 

way that will not affect the stability of delivery and will not result in significant wasted remediation effort. The workflow 

compression of the systems of the alert-to-patch-enabled algorithms of SIEM also hints that the duration of the transition 

between a detection phase and a remediation phase becomes reduced, covering the territory between which the period of 

the successful execution of multiple deployment phases with an attempt at exploitation is often allowed to proceed [29]. 

Figure 6 illustrates SIEM capabilities that support cloud-native patch governance by aggregating and correlating 

security data, enabling threat detection and response, issuing alerts, supporting forensics, and strengthening compliance 

reporting, behavior analytics, threat intelligence, orchestration, and cloud security visibility for faster remediation 

decisions. 

 

Figure 6: why-siem-still-heartbeat-cybersecurity 
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7.3 Operational Trade-offs 

The operational advantages of patching based on SIEM have their trade-offs which should be addressed so that 

it does not cause instability. The rapid patching may be used to gain more deployment frequency, which in turn can increase 

the chances of downtime when the modification is implemented without proper verification. This risk is addressed by 

rolling upgrades, canary releases, blue-green deployments, and automated rollback gates by health checks and error 

budgets. The other tradeoff is effort needed to fine tune SIEM detections and high signal correlation rules. Even with no 

tuning, a high noise of detections may cause unnecessary escalations forcing a greater workload on engineering teams with 

less trust in prioritization outputs. False positives will be anticipated in areas with heavy scanning and fake attack traffic 

areas, particularly at the ingress. Examples of practical controls are that, there must be more than one corroborating signal 

before an escalation is raised, there must be rate limits, that the indicators of low confidence be kept apart from the 

indicators of high-confidence exploit detections, and that the true positive rates must be continuously measured in order 

that escalation policies be evidence-based. Other overhead can be seen in data quality management, too, as the enrichment 

process requires proper mapping of the assets or a consistent identity tracking of the images, and sound pipeline telemetry. 

Automation may be ruined by weak inventory attribution, which prevents target assignment and postpones remediation 

ownership [30]. 

7.4 Lessons from Real Incidents 

Any real-life cases support the significance of a shorter patching period and a better prioritization approach. 

The Equifax breach showed that prompt resolution of an identified vulnerability can result in mass-scale compromise in 

case of a lack of governance, the visibility of assets, and accountability. The most important lesson is that there is no risk 

mitigation in patch availability unless its implementation is fast and it is checked by the entire scope of assets. The MOVEit 

exploitation wave indicates another scaling threat, in which exploitation of broadly spread software can quickly affect a 

large number of organizations, bringing about a situation in which exploitation strain is soon to begin and that the reaction 

of patch has to be between speedy end is highlighted. These examples coincide with the key finding of the work: patching 

should be informed by indications of exploitation and implemented as an automated scale. This means that in Kubernetes 

environments, patching is a continuous delivery issue that is enabled by immutable releases and prioritization based on 

SIEM, as opposed to periodic maintenance. It is most practical when the detection telemetry is operationalized in the same 

pipelines as workloads are built and deployed so that it can be quickly remediated with a controlled risk in a measured 

fidelity to compliance under actual exploit stress. 

8. Recommendations  

8.1 Technical Recommendations 

Patch governance is more realistically applied as policy-as-code, but not in the form of manual inspection [31]. 

Workloads should not be deployed that do not meet the required set patch SLAs, namely where the vulnerability is denoted 

as an exploited vulnerability or where there is an indication of an exploit in the telemetry. In order to avoid tag drift, 

configuration drift, the policy rule must take image digests and signed artifacts as units of deployment. This should be 

instigated by a communal cue on the premises of the perceived befazed vulnerabilities and the perceived exploit attacks 

discovered by SIEM beyond CVSS-stipulated rating since the evidence of exploitation is a demonstration of actual danger 

as opposed to the theoretical seriousness. The implementations of GitOps must establish a procedure of standardizing 

installation in the clusters, as well as the environment to the extent that the rollout, rollback, and complete audit of the 

adjustments of the patches with the help of version control can be achieved. SBOM generation, and continuous scanning 

should be added to dependency patching in order that the vulnerable transitive dependencies may be identified and 

measured in-between the run-time and build-to-build inventories. Correlation The SBOM based correlation also allows 

making better judgments of remediation success, as it can indicate that a vulnerable library is shipped and delivered rather 

than wasting time on knowledge lacking in production artifact. 

8.2 Recommendations in Governance. 

A clear ownership model should exist, to ensure that the backlog of Enterprise patch programs is never 

assembled due to lack of accountability [32]. A repository will include metadata that should be assigned to individual 

services, and Kubernetes labels should be provided as well as CMDB ownership specific to a responsible team and the 

remediation process then forwarded to the relevant maintainers rather than passed through triage orchestrated ad hoc. 
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Operationally meaningful reporting (i.e. the degree to which the severity level or cluster or business unit or service owner 

or time-trends) SLA compliance indicators should be incorporated on the compliance dashboards to reflect the decrease in 

the number of attack surface. Aging mindsets of known exploition infirmities have to be incorporated in dashboards as 

well, because this is first place category of backlog. Patch exceptions should be captured as risk decisions and not as 

operational delays and should be approved with expiry dates compensating controls and revalidations. This makes it easy 

to eliminate unlimited deferrals and helps in preparing audits, proving that the weak areas that are not being addressed are 

under control. 

Figure 7 shows an example of a data governance model in which metadata, data quality, security, integration, 

architecture, and operational controls are collaborating to guarantee accountability. These items in enterprise patch 

governance are plain service ownership, consistent CMDB mapping, reporting that is in compliance, and exception 

management. 

 

Figure 7: DAMA Wheel 

8.3 SIEM Integration Roadmap 

The integration of the SIEM is to be performed in the block that will allow reducing the effects on the 

functioning of the work but gradually and continually increase the quality of the decision-making [33]. The first step is 

projected to be vulnerability ingestion and patch telemetry combination to gather the SIEM dashboards to have the ability 

to record the genuine patch status as well as vulnerability exposure of clusters, workloads, as well as images. The second 

step will be required to provide exploit detection correlation whereby the SIEM alerts are correlated to vulnerable assets 

using normalized identifiers such as cluster, namespace, workload and image digest. The priority at this stage should be a 

high-confidence detection implying attempts of exploitation or the post-exploitation behavior and the accuracy of the 

escalation evaluated by the true positive and false positive rates. The final phase should enable automated remediation 

triggers where high confidence exploit detection or exploited vulnerability known matches automatically increase 

precedence in a pipeline, create urgent remediation workloads, and track closure through deployment validation telemetry. 

Gating of automation must be performed so as to prevent unstable condition by use of progressive delivery control and roll 

back policies [34]. 

9. Conclusion and future work 

The findings show that patch management using SIEM aspects reduces patch latency and the time of risk 

exposure through coordinating the remediation process with evidence of exploitation in the form of production telemetry. 

In cloud-native Kubernetes, which has immutable deployments, indicators of attack propagation are automatically 

highlighted on auto scaling, and releases occur regularly, addition of SIEM signals to prioritization and delivery pipelines 

can be helpful to mitigate the most urgent vulnerabilities and improve compliance outcomes. The traditional CVSS-only 

practices have the effect of producing large backlogs because scoring severity alone does not give any guidelines on what 

is being attacked in time of attack, what assets are available online or what services are most affected in operations. 

Comparatively, SIEM-informed prioritization attaches the observed exploitation attempts to the observed indicators that 
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correlate with vulnerable instances to prioritize the most vulnerable instances of vulnerable instances, so that remediation 

effort is concentrated on areas where maximum decrease in the probability of compromise is brought about. The approach 

is simpler to scale as automation has been integrated to recreate and redeploy fixed artifacts, deployment templates are 

standardized with CI/CD and GitOps examinations, as well as verification is a part of the procedure with verification 

telemetry checks that fixed versions have been booted. The closed feedback loop model also strengthens a coordinating 

aspect of security monitoring and engineering implementation because the escalating criterion can trigger high-priority 

remediation streams, and the patching completion events can be measured and recorded on-request. In practice, the model 

permits tiered patch SLAs depending on exposure potential and exposure occurrence so that the well-understood vulnerable 

spots get a prompt response and the current backgrounds of unsuccessful exploitation can get a prompt response without 

integrating the complete pipeline of vulnerabilities into the emergency patching. 

These results can be restricted to other settings and organizations by many factors. The research has these 

limitations: they have and good quality of exploit telemetry since not every exploit attempt might leave traces of high-

confidence and not all log coverage across clusters, namespaces, workloads, and layers of the runtime can be of significant 

interest. Detection reliability could also be influenced by the gaps in collection, as well as, the disparity in the ingress 

controller logging properties, and the run time to produce security relevant events in the workload. This, and even the 

upkeep of Kubernetes upgrade routes, the fashion in which node images are patched, and the degree of control-plane 

occasion visibility may vary involving distributors. This allows the provider to partially abstract the control plane of certain 

environments and patching nodes might involve various operating processes based on the node pools design and upgrade 

policy, and maintenance windows. The quality of SIEM rules, and tuning is another measure which depends on precision 

of priority, where false positives affect the efficiency of operations vary significantly based on its experience of detection 

engineering. Unnecessary false alarm due to noisy detection can also waste engineering resources and excessive demand 

on strict policies can result in the activity of exploitation being limited too early. Also dependent on the result of the findings 

are quality of enriching and mapping of assets due to the fact that. to be able to correlate the alert with the workloads and 

images as well as the owners, there would have to be constant identifiers. 

Further study ought to refine this approach through greater automation, by experimenting with SOAR-based 

remedial conditionally performing patch deployment operations on the safe side e.g. by looking at observed attempts to 

abuse internet-facing services or known matches of exploited vulnerabilities that cover critical assets. Future research may 

investigate machine-learning-ensemble prioritization to forecast probability of exploitation and the type of operational 

effect through much finer inputs over exposure circumstance, asset level importance, exploit background, dependency 

range and stratagem of attacker. Predictive patch scheduling is yet another helpful guidance, as it may become easier to be 

ready to vulnerability waves of widely used components, reduce unplanned disruption in the course of an urgent fix, and 

maintain patch SLA performance on large-scale patching spikes once patch demand forecasting and capacity engineering 

are put into effect. 
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