
Computer Fraud and Security

ISSN (online): 1873-7056

__

2097
Vol: 2025 | Iss: 2 | 2025

Secure API Gateway Strategies for Financial Institutions Using

OAuth2 and Identity Federation

Shashi Kumar Munugoti

Independent Researcher, USA

Abstract

Financial institutions are confronted with numerous challenges in maintaining the security of their distributed API

ecosystems, as their digital banking platforms continue to evolve on cloud-native microservices architectures. The

security measures based on the traditional perimeter fail to provide solutions to issues that arise due to open banking

mandates, partner integrations, and multi-channel customer engagement platforms. The existence of fragmented identity

systems, static credential vulnerabilities, and overlapping regulatory compliance requirements unveils considerable

security holes in the protection of sensitive financial data during API transactions. This paper offers a holistic security

model that encompasses OAuth 2.0 authorization protocols, OpenID Connect identity layers, and federation mechanisms

to achieve the unification of API gateway architectures. Token-based access control eliminates the use of static

credentials with the help of time-limited authorization tokens that carry cryptographically verified claims and detailed

permission scopes. Centralized gateway enforcement consolidates security functions, including TLS termination, token

validation, threat detection, and policy-based routing across distributed service meshes. Identity federation protocols

enable trust establishment with external partner organizations while maintaining organizational autonomy over

authentication policies. Context-aware authorization mechanisms adjust security requirements based on transaction risk

profiles, geographic locations, and behavioral patterns. Implementation strategies address operational security concerns

through automated cryptographic key rotation, least-privilege scope design, comprehensive security monitoring, and

regulatory-compliant consent management frameworks. The framework supports strong customer authentication

requirements, real-time payment systems, and artificial intelligence-enabled financial services while maintaining

scalability for high-volume transaction processing environments.

Keywords: OAuth 2.0 Authorization Framework, API Gateway Security, Identity Federation, Token-Based

Authentication, Microservices Architecture, Financial Services Security

Introduction

The architectural transformation of financial systems toward cloud-native microservices and real-time payment

infrastructures has fundamentally altered the security landscape. Modern financial institutions expose extensive API

networks to support mobile banking applications, payment gateways, account aggregation services, and regulatory-

mandated open banking interfaces. This proliferation of API endpoints creates substantially larger attack surfaces

compared to monolithic systems protected by traditional network perimeters. Data breaches in financial environments

increasingly target API vulnerabilities rather than traditional network intrusion vectors. One of the most challenging

issues that organizations have to face is crisis communication when such breaches happen. As stakeholders demand

immediate transparency, institutions are still figuring out how to comply with the complex regulatory disclosure

requirements [1]. The security issue is not only a matter of technical implementation but also a matter of regulatory

compliance with standards such as the Payment Card Industry Data Security Standard, the Federal Financial Institutions

Examination Council guidelines, and the Strong Customer Authentication requirements. Financial institutions are

required to implement stringent security measures while at the same time fulfilling the operational needs of rapid partner

onboarding and providing seamless customer experiences across digital channels. The regulation of cross-border data

protection adds to the complexity of the financial industry, which is becoming increasingly globalized and multi-

jurisdictional. The European Union's electronic identification and trust services regulation establishes binding standards

for electronic identification and authentication across member states, requiring financial institutions to integrate with

government-backed identity systems while maintaining interoperability with existing OAuth 2.0 authentication

frameworks [2]. This regulatory landscape demands authentication architectures capable of supporting both domestic and

international identity verification protocols.

Current authentication approaches in financial environments often rely on fragmented identity systems inherited from

legacy platforms. Static credentials increase fraud vulnerability and create persistent security risks. Insufficient

Computer Fraud and Security

ISSN (online): 1873-7056

__

2098
Vol: 2025 | Iss: 2 | 2025

mechanisms for establishing trust with external partners hinder secure API integrations. Research on data breach

incidents reveals that organizations struggle with coordinated crisis response when authentication systems fail. The

absence of standardized communication protocols during security incidents complicates stakeholder notification and

regulatory reporting [1]. These limitations create significant gaps in protecting customer data during API-based

transactions. The adoption of distributed architectures essential for competitive digital banking services remains

constrained by authentication system inadequacies.

This article addresses these challenges by presenting a unified API gateway strategy grounded in the OAuth 2.0

authorization framework and the OpenID Connect identity layer. The contribution lies in synthesizing these technologies

into a coherent security architecture providing centralized policy enforcement and fine-grained access control. Identity

federation protocols enable trusted relationships across organizational boundaries while maintaining the scalability

requirements of high-volume financial transaction systems. The framework incorporates identity management principles

established in cross-border authentication regulations, ensuring compliance with government-mandated electronic

identification schemes while preserving flexibility for commercial authentication scenarios [2]. Token-based access

control mechanisms eliminate static credential exposure. Adaptive authentication policies adjust security requirements

based on transaction risk profiles and contextual factors.

Related Work and Methodology

Existing literature on API security in financial environments primarily addresses isolated aspects of authentication or

authorization without comprehensive integration frameworks. Prior work examines OAuth 2.0 implementations in

enterprise contexts but lacks specific consideration of financial regulatory requirements and multi-layered gateway

architectures. Security analyses of microservices often focus on network-level protections rather than identity-based

access control mechanisms. Open banking security frameworks typically emphasize compliance requirements without

detailing technical implementation patterns for token validation and federated trust establishment.

The article synthesizes disparate security technologies into a unified architectural framework specifically designed for

financial institution requirements. Key contributions encompass the mixing of OAuth 2.0, OpenID Connect, and identity

federation protocols inside centralized gateway enforcement architectures. The framework combines token-based total

authorization with context-conscious risk assessment and adaptive authentication mechanisms to close the gaps in

modern security features. Layered validation mechanisms that include cryptographic verification, policy evaluation, and

behavioral analytics go beyond the traditional binary access decisions.

The methodology establishes operational security practices addressing the complete token lifecycle from issuance

through revocation. Granular scope design principles align authorization permissions with specific business capabilities

rather than generic resource categories. Consent management integration satisfies regulatory mandates for explicit

customer authorization in data sharing scenarios. The framework enables horizontal scaling through stateless token

validation while maintaining consistent policy enforcement across distributed gateway instances. Implementation

strategies balance security rigor with operational efficiency requirements essential for high-volume financial transaction

processing environments.

Security Challenges in Modern Financial API Ecosystems

The transition to API-first architectures is likely to present financial institutions with a long list of security challenges

that require architectural solutions beyond the scope of conventional approaches. The fragmentation of identity systems

across different organizations is the major hurdle that must be overcome. Customer authentication data, employee

directory services, and partner identity repositories operate in isolation. Standardized protocols for trust establishment or

credential validation remain absent across these disparate systems. Open banking initiatives have intensified this

challenge by requiring financial institutions to expose customer account data through application programming

interfaces. Third-party providers must authenticate and authorize access to sensitive financial information. The lack of

unified identity management frameworks complicates secure access provisioning across institutional boundaries.

The regulatory environment is making the technical problems worse by imposing more compliance requirements. For

example, financial institutions must adhere to data protection regulations concerning customer information, payment

security standards for transaction processing, and open banking frameworks, all at the same time. The revised Payment

Services Directive lays down the detailed requirements for API security in the European financial markets. This directive

mandates Strong Customer Authentication for electronic payment transactions and account access operations. Technical

Computer Fraud and Security

ISSN (online): 1873-7056

__

2099
Vol: 2025 | Iss: 2 | 2025

standards specify authentication elements based on knowledge, possession, and inherence factors. Financial institutions

must implement dynamic linking mechanisms that bind authentication to specific transaction details [3]. Cybersecurity

frameworks, including the Network and Information Systems Directive establish additional security obligations for

critical infrastructure operators. The General Data Protection Regulation introduces strict requirements for personal data

processing and consent management. Harmonizing these overlapping regulatory frameworks while maintaining

operational efficiency presents significant architectural challenges [3].

The expansion of API surface area through microservices decomposition and multi-channel customer engagement creates

unprecedented exposure. Potentially each microservice would need decisions for authentication and authorization. The

number of entry points to be secured is increased by mobile applications, web portals, and third-party integrations. Static

credential management of a traditional nature is not sufficient for a distributed environment. Passwords or API keys that

are long-lived can be the cause of persistent attack vectors. These credentials are not able to provide fine-grained,

context-aware access decisions that are necessary for zero-trust security models. Token-based authentication mechanisms

offer temporal access control via time-limited credentials. JSON Web Token standards allow for the cryptographic

signing and verification of access credentials in a distributed system. Different signing algorithms are supported by

multiple of them to meet different security and performance requirements. The RS256 algorithm utilizes RSA signatures

with SHA-256 hashing for asymmetric cryptographic operations. The HS256 algorithm applies HMAC with SHA-256

for symmetric signing scenarios. Performance characteristics vary significantly across these cryptographic approaches

[4]. Selecting appropriate signing algorithms requires balancing security strength against computational overhead in

high-throughput API environments [4].

The shift toward partner ecosystems and open banking mandates introduces additional complexity through the need to

establish trust relationships with external organizations. Financial institutions must verify partner identities and manage

customer consent for data sharing. Authorization policies ought to respect each regulatory necessity and consumer

privacy choices. The absence of standardized federation protocols traditionally constrained integrations to bilateral point-

to-point connections. These procedures scale poorly and create operational overhead as partner relationships increase.

OAuth 2.Zero authorization frameworks offer standardized protocols for delegated authorization across organizational

obstacles. But, implementing those protocols throughout heterogeneous identity systems whilst keeping regulatory

compliance requires cautious architectural making plans. Regular policy enforcement mechanisms need to function

across all api endpoints, irrespective of the underlying provider implementation.

Challenge Domain Security Concern Architectural Impact

Identity Fragmentation

Customer authentication data,

employee directories, and partner

repositories operate in isolation

Absence of standardized trust

establishment protocols across

organizational boundaries

Regulatory

Compliance

Overlapping requirements from PSD2,

GDPR, NIS Directive, and payment

security standards

Mandatory Strong Customer

Authentication with dynamic linking for

transaction-specific authorization

API Surface Expansion

Microservices decomposition

multiplies authentication decision

points across service boundaries

Traditional static credentials are

inadequate for context-aware access

control in zero-trust models

Partner Ecosystem

Integration

Third-party provider registration for

open banking account access

Bilateral point-to-point connections create

operational overhead and scaling

limitations

Table 1. Security Challenges in API-First Financial Architectures: Challenges and Implications for Distributed Banking

Systems [3, 4]

OAuth 2.0 and Identity Federation Framework

OAuth 2.0 provides the foundational authorization framework for securing API access through delegated authorization

rather than credential sharing. The protocol introduces token-based access control where client applications obtain time-

limited access tokens from an authorization server. Successful authentication and authorization decisions precede token

Computer Fraud and Security

ISSN (online): 1873-7056

__

2100
Vol: 2025 | Iss: 2 | 2025

issuance. These tokens carry encoded scopes defining permitted operations and resources. Best-grained get right of entry

to manage operates without exposing user credentials to purchaser applications or aid servers. Formal safety analysis

exhibits that OAuth 2.0 implementations face vulnerabilities associated with token leakage, authorization code

interception, and Go-website request forgery assaults. The protocol's security depends critically on proper

implementation of redirect URI validation, state parameter verification, and token binding mechanisms [5]. Security

properties, including authorization, authentication, and session integrity, require careful consideration during deployment

across distributed systems [5].

The OAuth 2.0 framework defines multiple grant types optimized for different architectural patterns. The authorization

code flow with the Proof Key for Code Exchange extension provides secure authentication for web and mobile

applications. This extension prevents authorization code interception attacks by binding authorization requests to token

requests through dynamically generated code verifiers. The client credentials grant enables secure service-to-service

authentication in microservices environments. Backend systems require API access without user context in machine-to-

machine communication scenarios. The token exchange mechanism allows microservices to obtain derived tokens with

reduced scopes when calling downstream services. Least privilege principles operate across service meshes through

scope reduction during token propagation. Formal verification methods demonstrate that implementation errors in grant

type handling can lead to authorization bypass vulnerabilities [5].

OpenID Connect is an extension to OAuth 2.0 that adds an identity layer to the protocol for making authentication

assertions and obtaining basic profile information about an end-user. The protocol gets its name from the inclusion of ID

tokens. Client applications authenticate users and obtain profile information through standardized endpoints. The

authentication layer operates above the OAuth 2.0 authorization framework to provide user identity verification

capabilities. OpenID Connect defines three primary flows: authorization code flow for server-side applications, implicit

flow for browser-based clients, and hybrid flow combining features of both approaches. The protocol supports multi-

factor authentication flows, session management, and logout coordination across multiple applications [6]. Financial

environments require strong authentication mechanisms that combine multiple verification factors. ID tokens contain

claims including issuer identifier, subject identifier, audience, expiration time, and issued-at timestamp [6].

Identity federation protocols enable trust establishment between organizations through standardized assertion exchange

mechanisms. Security Assertion Markup Language and OpenID Connect Federation allow financial institutions to

establish trust relationships with partner organizations. Customers and employees access integrated services using

existing credentials across organizational boundaries. The federation model eliminates redundant authentication systems

and reduces credential proliferation. Organizations still control their identity management policies, but with OAuth 2.0

and OpenID Connect, along with other federation protocols, a complete security architecture is emerging. JSON Web

Tokens serve as the common token format carrying cryptographically signed claims. Stateless verification becomes

possible through public key cryptography. Horizontal scaling of API gateways proceeds without shared session state

dependencies.

Protocol

Component
Functional Purpose Security Mechanism

Authorization

Code Flow

Secure authentication for web and

mobile applications

Proof Key for Code Exchange prevents authorization

code interception through dynamic code verifiers

Client

Credentials

Grant

Service-to-service authentication

without user context

Machine-to-machine communication with simplified

flows eliminating user interaction

Token

Exchange

Mechanism

Derived tokens with reduced

scopes for downstream services

Least privilege implementation across service meshes

through scope reduction

OpenID

Connect ID

Tokens

Standardized identity assertions

with verified claims

Signed JSON Web Tokens containing authentication

context and user profile attributes

Computer Fraud and Security

ISSN (online): 1873-7056

__

2101
Vol: 2025 | Iss: 2 | 2025

Table 2. OAuth 2.0 Grant Types and Protocol Components Authorization Framework Elements for Financial API

Security [5, 6].

Gateway Architecture and Security Enforcement

The API gateway serves as the central enforcement point for security policies in distributed financial architectures.

Gateway implementation consolidates critical security functions, including SSL/TLS termination, token validation, threat

detection, and policy-based routing. Financial institutions position the gateway as a reverse proxy in front of backend

microservices. This creates a uniform security boundary and a consistent way for authenticating and authorizing all API

endpoints. Microservices architectures divide monolithic applications into services deployable on their own. These

services communicate using simple protocols. This architectural pattern provides benefits including technology

heterogeneity, resilience, and independent deployability [7]. However, distributed service architectures introduce

complexity in security enforcement as each service boundary represents a potential attack surface requiring protection.

Token validation within the gateway follows a layered approach combining cryptographic verification with policy

evaluation. The gateway first validates token signatures using public keys obtained from the authorization server's JSON

Web Key Set endpoint. This process ensures token authenticity and integrity through asymmetric cryptographic

operations. Subsequently, the gateway evaluates token claims against access policies. Requested resources, HTTP

methods, client identity, and contextual factors inform authorization decisions. Source IP address ranges and time-based

restrictions augment policy evaluation. Multi-stage validation prevents unauthorized access while maintaining acceptable

response times. Efficient cryptographic operations and policy caching mechanisms reduce computational overhead.

Microservices rely on explicit interface contracts and service discovery to enable communication per [7], and these are

implemented through centralized routing and policies in gateway architectures.

The gateway architecture incorporates multiple layers supporting different security concerns. The edge layer handles

external requests and performs initial security validation, including rate limiting, IP filtering, and SSL/TLS termination.

Transport Layer Security protocols create secure channels for clients and servers. Several components provide these

functionalities: handshake protocols, record layer processing, and session resumption. Implementation vulnerabilities,

such as state mismanagement within authorization servers or failed validations of protocol messages, can occur [8]. The

identity layer interacts with the authorization servers for token validation and for resolving federated identities and

identity claims. The routing layer dispatches authenticated requests toward back-end microservices based on URL

patterns, headers, and token scopes. The observability layer observes security events, audit trails, and measures metrics to

detect threats and adhere to regulatory guidelines.

Mutual TLS authentication can be used for high-assurance use cases by adding a layer. Client identity verification

through certificates supplements token-based authorization. The gateway validates client certificates against trusted

certificate authorities and extracts client identity from certificate subject fields. Combining certificate validation with

OAuth token validation implements defense-in-depth security. Certificate-based authentication particularly benefits

service-to-service communication within trusted network segments. TLS protocol complexity requires careful

implementation to avoid vulnerabilities in certificate validation and cipher suite negotiation [8]. Context-aware

authorization within the gateway enables adaptive security controls. Risk factors, including geographic location, device

fingerprints, and historical behavior patterns, inform access decisions. High-risk transactions trigger additional security

requirements. Low-risk requests proceed with standard token validation.

Gateway

Layer
Primary Functions Security Operations

Edge Layer
External request handling and

initial validation

Rate limiting, IP filtering, SSL/TLS termination for

encrypted channel establishment

Identity Layer
Token validation and

federated identity resolution

Integration with authorization servers, identity claim

enrichment, and cryptographic signature verification

Routing Layer
Request distribution to

backend microservices

URL pattern matching, header evaluation, and token scope-

based routing decisions

Observability Security event capture and Authentication attempt logging, authorization decision

Computer Fraud and Security

ISSN (online): 1873-7056

__

2102
Vol: 2025 | Iss: 2 | 2025

Layer compliance reporting tracking, and audit trail generation for regulatory

requirements

Table 3. API Gateway Security Layers and Functions Multi-Layer Architecture for Distributed Financial Systems [7, 8]

Implementation Strategies and Security Controls

Implementing secure API gateways in financial environments requires careful attention to operational security practices

that complement architectural patterns. Client authentication mechanisms must support rotating cryptographic keys to

limit the impact of credential compromise. Financial institutions implement automated key rotation policies where client

secrets and signing keys undergo regular rotation on defined schedules. These periods of overlap give a smooth transition

between each key pair without interruption to service. To manage cryptographic keys, you must generate, distribute,

store, and revoke them. The time interval for key rotation is a compromise between security and the cost of human effort.

Research indicates that automated key rotation reduces the window of vulnerability following potential key compromise

events, with rotation frequencies ranging from daily to quarterly, depending on key usage patterns and risk assessments

[9]. Token signing keys require particular attention as their compromise enables attackers to forge valid access tokens

bypassing authorization controls entirely.

Access scope design follows the principle of least privilege by defining granular permissions aligned with specific

business capabilities rather than broad resource categories. Financial institutions model scopes around business

operations such as account balance inquiry, payment initiation, or beneficiary management rather than generic read-write

permissions. It allows for fine-grained authorization, as applications are only granted permissions to information they

need access to. Granting applications permissions to the minimum information and actions they need, the principle of

least privilege reduces the potential damage caused by token theft or compromised applications. OAuth 2.0 scope

definitions can support authorization policies that are expressive through scope naming schemes that are hierarchical or

parameterized.However, excessive scope granularity creates management overhead and complicates token validation

processes [9].

Token lifecycle management addresses the full spectrum from issuance through revocation. Access tokens carry short

expiration times, limiting the window of opportunity for token replay attacks. Refresh tokens enable applications to

obtain new access tokens without repeated user authentication. Secure storage mechanisms and rotation policies protect

refresh tokens by invalidating them after use. Token revocation endpoints allow immediate invalidation of compromised

tokens. Gateway-side revocation caches ensure rapid propagation of revocation decisions across distributed gateway

instances. Token revocation mechanisms must address network partition scenarios where revocation information may not

propagate immediately to all validation endpoints. Distributed systems exhibit eventual consistency properties where

revocation decisions take time to propagate across all nodes [10].

Consent management frameworks integrate with authorization flows to support regulatory requirements for explicit

customer consent in data sharing scenarios. Financial institutions implement consent capture mechanisms where

customers explicitly authorize third-party applications to access specific account data or initiate transactions. The consent

record includes scope limitations, validity periods, and revocation capabilities. Consent verification occurs during token

issuance and potentially re-verification during high-risk operations. Consent audit trails provide evidence of authorization

for regulatory compliance and dispute resolution. Security monitoring and incident response capabilities form essential

components of operational security. Comprehensive logging captures authentication attempts, authorization decisions,

token issuance events, and suspicious patterns. Security information and event management systems analyze logs to

detect potential attacks. Machine learning models trained on historical access patterns identify anomalies requiring

investigation [10].

Control

Category
Implementation Requirement Operational Benefit

Cryptographic

Key Rotation

Automated rotation schedules with

overlap periods for graceful transitions

Limits credential compromise impact through

reduced validity windows for signing keys

Scope Design Granular permissions aligned with

business operations rather than generic

Least privilege authorization reduces token theft

through minimal permission grants

Computer Fraud and Security

ISSN (online): 1873-7056

__

2103
Vol: 2025 | Iss: 2 | 2025

categories

Token Lifecycle

Management

Short-lived access tokens with secure

refresh token storage and rotation

policies

Limited replay attack windows combined with

revocation propagation across distributed

gateways

Consent

Management

Explicit customer authorization capture

with scope limitations and validity

periods

Regulatory compliance support through consent

verification and audit trail generation

Table 4. Operational Security Controls for Token Management Implementation Strategies for Financial API

Environments [9, 10]

Conclusion

Financial institutions operating in increasingly distributed digital environments require fundamental transformations in

security architecture to protect API-driven banking platforms. The framework presented addresses critical vulnerabilities

inherent in traditional authentication models through token-based access control, centralized policy enforcement, and

federated trust relationships. OAuth 2.0 authorization protocols eliminate static credential exposure by implementing

time-limited access tokens with cryptographically verifiable claims. OpenID Connect extends authorization capabilities

with standardized identity assertions, enabling strong authentication across multiple factors. Identity federation

mechanisms establish trusted relationships with external organizations without compromising organizational control over

authentication policies. API gateway architectures consolidate security enforcement through layered validation,

combining cryptographic verification, policy evaluation, and context-aware risk assessment. Operational security

practices are essential for successful implementations, including automated key rotation, fine-grained permissions

modeling, token lifecycle management, and security monitoring. Consent management frameworks can help to meet

certain compliance standards related to explicit customer consent for data sharing scenarios and audit logging. Partner

onboarding, frictionless user journeys across digital channels, and scalability to address next-gen financial technology

needs allow the integrated security model to secure a competitive advantage. Any organization adopting the integrated

security model will be well-positioned to meet emerging regulatory compliance requirements, such as strong customer

authentication and open banking legislation. Later generations of decentralized identity, continuous authorization, and

hardware-protected credentials will provide more security as the threat landscape evolves. Security for financial services

should be strong yet practical, with automated controls aimed at frequent attack pathways while minimizing friction to

authentic interactions with customers. The architectural foundation enables the safe pursuit of digital transformation

initiatives essential for maintaining competitive positions in modern financial services markets.

References

[1] Jukka Ruohonen et al., "Crisis Communication in the Face of Data Breaches," arXiv, 2024. [Online]. Available:

https://arxiv.org/pdf/2406.01744

[2] ÁLVARO ALONSO et al., "An Identity Framework for Providing Access to FIWARE OAuth 2.0-Based Services

According to the eIDAS European Regulation," IEEE Access, 2019. [Online]. Available:

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8754671

[3] Marianna Gounari et al., "Harmonizing open banking in the European Union: an analysis of PSD2 compliance and

interrelation with cybersecurity frameworks and standards," International Cybersecurity Law Review, 2024.

[Online]. Available: https://link.springer.com/content/pdf/10.1365/s43439-023-00108-8.pdf

[4] A Rahmatulloh et al., "Performance comparison of signed algorithms on JSON Web Token," IOP Publishing, 2019.

[Online]. Available: https://iopscience.iop.org/article/10.1088/1757-899X/550/1/012023/pdf

[5] Daniel Fett et al., "A Comprehensive Formal Security Analysis of OAuth 2.0," arXiv, 2016. [Online]. Available:

https://arxiv.org/pdf/1601.01229

[6]Anoop Gupta, "An Introduction to OpenID Connect," ResearchGate, 2024. [Online]. Available:

https://www.researchgate.net/publication/387173144_An_Introduction_to_OpenID_Connect

https://arxiv.org/pdf/2406.01744
https://arxiv.org/pdf/2406.01744
https://arxiv.org/pdf/2406.01744
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8754671
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8754671
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8754671
https://link.springer.com/content/pdf/10.1365/s43439-023-00108-8.pdf
https://link.springer.com/content/pdf/10.1365/s43439-023-00108-8.pdf
https://iopscience.iop.org/article/10.1088/1757-899X/550/1/012023/pdf
https://iopscience.iop.org/article/10.1088/1757-899X/550/1/012023/pdf
https://arxiv.org/pdf/1601.01229
https://arxiv.org/pdf/1601.01229
https://arxiv.org/pdf/1601.01229
https://www.researchgate.net/publication/387173144_An_Introduction_to_OpenID_Connect
https://www.researchgate.net/publication/387173144_An_Introduction_to_OpenID_Connect
https://www.researchgate.net/publication/387173144_An_Introduction_to_OpenID_Connect

Computer Fraud and Security

ISSN (online): 1873-7056

__

2104
Vol: 2025 | Iss: 2 | 2025

[7] Nicola Dragoni et al., "Microservices: yesterday, today, and tomorrow," arXiv, 2017. [Online]. Available:

https://arxiv.org/pdf/1606.04036

[8] Benjamin Beurdouche et al., "A Messy State of the Union: Taming the Composite State Machines of TLS,"

Communications of the ACM, 2017. [Online]. Available: https://dl.acm.org/doi/pdf/10.1145/3023357

https://arxiv.org/pdf/1606.04036
https://arxiv.org/pdf/1606.04036
https://arxiv.org/pdf/1606.04036
https://dl.acm.org/doi/pdf/10.1145/3023357
https://dl.acm.org/doi/pdf/10.1145/3023357

