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Abstract

Legacy digital systems continue to anchor mission-critical national infrastructure across transportation,
finance, healthcare, and citizen-service domains. While these platforms have been operationally successful
for decades, they now present structural barriers to resilience, interoperability, and innovation. Their tightly
coupled architectures, centralized deployments, and opaque integration paths create cascading failure
conditions and impede rapid change. This article proposes a modernization blueprint designed for national-
scale environments, emphasizing architectural decoupling, parallel transformation, and socio-technical
governance. The framework integrates domain-driven decomposition, event-based coordination, modular
service boundaries, and progressive interoperability strategies to reduce operational fragility. Governance
alignment models ensure backward compatibility and stakeholder continuity while transformation occurs in
incremental phases. The blueprint demonstrates measurable outcomes, including accelerated deployment
frequency, improved reliability posture, and reduced dependency on aging technology stacks. This
modernization foundation enables nations to scale public-facing capabilities, strengthen digital sovereignty,
and support emerging economic and citizen-centric services. Unlike incremental upgrades, the proposed
model positions modernization as a structured capability investment, enabling sustained innovation across
evolving policy, demographic, and technology cycles.

Keywords: Legacy System Modernization, Digital Infrastructure Transformation, Microservices
Architecture, Event-Driven Systems, National-Scale Technology Evolution

1. Introduction

The digital infrastructure is the foundation upon which many of the modern economy's key systems, including transport,
finance, and public services, rely. Many countries still operate legacy systems built decades ago. These systems were
designed for different technological contexts and business needs.

Legacy infrastructure creates substantial challenges in today's digital landscape. Monolithic architectures resist changes
and adaptations. Integration with modern technologies becomes expensive and complex. Skilled personnel for
maintenance grow increasingly scarce. Security vulnerabilities expand as threats evolve beyond original design
parameters.

Modernization needs extend far beyond technical upgrades. Citizen expectations have also changed, and are now for
smooth and responsive digital interactions, faster, and real-time. Systems must maintain near-continuous availability.
Cross-system data integration opens doors to better services and smarter decisions.

National-scale modernization demands structured planning rather than random fixes. The process must maintain
operations while advancing technology. Collaborations of government agencies, service providers, and citizens. The
project is divided into phases, with each phase having a budget and showing the value delivered. Cloud-native
architecture provides primitives for modern infrastructure. Microservices allow the separate deployment and scaling of
services. Container technologies ensure consistency across different environments. DevOps practices bridge development
and operations teams effectively [1]. These approaches transform rigid systems into flexible platforms.

Migration to a microservices architecture requires careful planning and execution. Organizations experience challenges in
transformation as technical debt amasses against legacy systems. Service decomposition strategies must balance
granularity with complexity. Teams need new skills and cultural shifts to succeed [2].

This article presents a complete blueprint for legacy modernization. The framework covers technical, organizational, and
governance aspects. Multiple domain examples show practical implementation approaches. Risk mitigation receives
emphasis throughout the transformation process. Successful modernization builds adaptive infrastructure for future
national needs.
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1.2. National-Scale Modernization Business Case

Modernizing legacy national systems carries strategic consequences that extend beyond technical efficiency. Legacy
platforms encode decades of government processes, regulations, and service interactions. Their failure impacts service
delivery, public trust, and economic continuity. Countries undertaking modernization initiatives report significant public-
sector benefits such as reduced service processing time, modernization of compliance activities, optimized revenue
processing, and digitally streamlined citizen interactions. Thus, system renewal becomes essential for economic
competitiveness, national resiliency, and digital autonomy.

2. Constraints and Challenges of Legacy Systems
2.1 Operational Fragility

Legacy systems show brittleness that threatens continuous service delivery. Monolithic designs create tight connections
between all components. One subsystem failure can crash the entire platform. Manual intervention becomes necessary for
most recovery procedures. Extended downtime affects citizens and organizations severely.

Change management turns dangerous in tightly coupled architectures. Small modifications trigger unexpected problems
in distant parts. Testing becomes exponentially complex with more interconnections. Deployment needs extensive
regression testing windows. Risk-averse cultures develop that block helpful improvements.

Data consistency problems make operations even harder. Legacy platforms often duplicate data without proper
synchronization. Inconsistencies grow slowly and hide from detection. Teams spend enormous resources on
reconciliation processes. Business units create workarounds that make fragility worse.

System monitoring capabilities remain limited in older platforms. Real-time visibility into component health proves
difficult. Performance bottlenecks go undetected until failures occur. Diagnostic tools lack sophistication for complex
problem isolation. Troubleshooting relies heavily on individual expert knowledge.

2.2 Rigid Integration Patterns

Point-to-point integration dominates legacy system connections. Each new connection needs custom development work.
Integration complexity multiplies with every added system [3]. Documentation exists mainly in code rather than formal
specifications. Knowledge stays concentrated in a few experienced developers.

Data format differences create persistent integration headaches. Legacy platforms use proprietary or outdated formats.
Translation layers add latency and risk of data corruption. Real-time integration becomes impractical with conversion
overhead. Batch processing limits response to time-sensitive events.

Protocol mismatches compound integration difficulties further. Older systems require communication protocols that
modern tools don't support. Security holes in legacy protocols expose serious vulnerabilities. Gateway systems bridge
gaps but add more potential failure points. The integration landscape becomes a messy patchwork solution.

Enterprise service bus implementations often become bottlenecks themselves. Centralized integration hubs create single
points of failure. Message transformation logic grows complex and hard to maintain. Performance degradation affects all
connected systems simultaneously. Scaling the integration layer proves technically challenging [4].

2.3 Scalability Limitations

Vertical scaling offers the only growth path for most legacy systems. Hardware upgrades provide temporary capacity
increases. Physical limits eventually constrain further expansion options. Specialized hardware costs escalate with each
upgrade cycle. Geographic distribution remains nearly impossible with monolithic designs.

Performance problems appear unpredictably as usage evolves. Transaction databases struggle with analytical query
workloads. User interfaces cannot spread the load across multiple servers. Cache strategies fail with diverse access
patterns. Response times degrade significantly during peak usage periods.

Capacity planning grows increasingly uncertain and risky. Historical growth patterns don't predict digital transformation
impacts. Infrastructure provisioning takes months rather than days. If over-provisioned, you're wasting the budget.
Under-provisioning can lead to service outages and disgruntled customers due to poor performance. Monolithic
architectures do not use resources efficiently. CPU and memory allocation lack flexibility across components. Storage
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systems cannot scale independently from compute resources. Network bandwidth constraints affect entire application
stacks. Cost optimization opportunities remain limited by architectural constraints.

2.4 Innovation Barriers

Technology stack obsolescence blocks innovation initiatives. Programming languages lose industry support over time.
Modern development frameworks lack legacy platform compatibility. Talented developers prefer working with current
technologies. Organizations struggle to recruit and retain skilled staff.

Long release cycles prevent rapid competitive responses. Monolithic deployments demand complete system testing.
Multiple teams must coordinate every change carefully. Release windows occur quarterly or even less frequently. New
features reach users months after market opportunities emerge.

Architectural limitations prevent modern capability adoption. Machine learning requires flexible data access patterns.
Real-time analytics need event-driven processing models. Advanced user experiences demand responsive backend
systems. Organizations cannot exploit emerging technologies effectively [3].

Technical debt accumulates faster than remediation efforts. Quick fixes layer on top of existing problems. Code quality
deteriorates with each expedient patch. Refactoring becomes increasingly risky and expensive. The cost of change grows
exponentially over time. Table 1 represents the fundamental constraints encountered in legacy systems alongside their
architectural characteristics and resulting operational impacts on national infrastructure platforms.

Constraint ) e .

R — Legacy System Characteristics Operational Impact

Operational Monolithic architecture with tight Cascading failures and extended recovery
Fragility component coupling periods

Integration Point-to-point connections with Exponential complexity growth and
Patterns proprietary formats maintenance burden

Scalability Vertical scaling with centralized Physical limitations and geographic
Approach deployment distribution challenges

Innovation Obsolete technology stacks with long Delayed feature delivery and reduced
Capability release cycles competitive responsiveness

Resource Inflexible allocation across system Inefficient capacity planning and cost
Utilization components optitnization constraints

Table 1: Comparative Analysis of Legacy System Constraints and Modern Solutions [1], [2]
3. Phased Modernization Strategy
3.1 Assessment and Planning

Comprehensive assessment forms the foundation for successful modernization. System inventory catalogs all
components and their connections. Technical debt measurement reveals the maintenance burden scale. Business process
mapping shows how systems support operations. Stakeholder interviews expose hidden requirements and constraints.

Risk evaluation guides which systems to modernize first. Mission-critical platforms need extra caution during
transformation. Frequently changing components offer good early targets. Integration complexity influences the
sequencing strategy. Quick wins build confidence and demonstrate value early [5].
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Target architecture definition sets the transformation direction clearly. Domain-driven design principles guide
decomposition decisions. Technology choices balance capability needs with team skills. Governance frameworks
maintain consistency across initiatives. Architecture blueprints create a shared vision for all teams.

Financial planning must account for parallel operation costs. Both legacy and new systems run simultaneously initially.
Staff training requires significant time and budget allocation. Tool acquisition and infrastructure upgrades need funding.
Contingency reserves address unexpected challenges during migration.

3.2 Domain-Driven Decomposition

Domain-driven design offers a systematic decomposition methodology. Business capabilities map to bounded contexts
naturally. Each domain maintains clear conceptual integrity internally. Shared language ensures understanding within
domain boundaries. Context mapping reveals necessary integration points between domains [5].

Service granularity decisions balance autonomy against coordination overhead. Fine-grained services enable independent
evolution and deployment. Coarse-grained services reduce inter-service communication complexity. Team capacity
influences appropriate service size choices. Organizational structure should align with service boundaries.

Migration strategies transition functionality incrementally from monoliths. The Strangler pattern gradually replaces
legacy capabilities safely. Anti-corruption layers protect new services from legacy complexity. Parallel operation
validates behavior before legacy retirement. Rollback capabilities provide safety during transition phases.

Data ownership assignment establishes clear accountability lines. Each bounded context manages its own data stores.
Cross-context data access goes through well-defined interfaces. Eventual consistency models replace distributed
transactions where possible. Data migration planning addresses historical information transfer needs.

3.3 Event-Driven Communication

Event-driven architectures enable true loose coupling between services. Domain events capture significant business
occurrences clearly. Asynchronous processing removes direct service dependencies. Choreography coordinates
workflows without central control points. Independent evolution becomes feasible for each service [6].

Event streaming platforms provide a robust communication infrastructure. Message persistence guarantees delivery
despite consumer unavailability. Replay capabilities support new consumer onboarding easily. Ordering guarantees
preserve causality when business logic demands. Partitioning enables parallel processing and horizontal scaling.

Schema evolution requires careful governance and planning. Backward compatibility protects existing consumers during
updates. Forward compatibility allows producers to evolve safely. Schema registries centralize management and
validation functions. Versioning strategies balance flexibility with stability needs.

Event sourcing patterns capture complete state change history. Audit trails emerge naturally from event logs. State
reconstruction becomes possible at any point in time. Debugging benefits from complete behavior visibility. Temporal
queries enable analysis of historical patterns [6].

3.4 Modular Service Design

Microservices architecture structures applications as independent deployable units. Clear boundaries encapsulate specific
business capabilities completely. Service autonomy enables separate development and deployment cycles. Technology
diversity allows optimal tool selection per service. Failure isolation contains problems within bounded scopes.

API design principles ensure service usability and long-term stability. RESTful interfaces provide intuitive resource-
oriented access patterns. GraphQL offers flexible data retrieval for varied client needs. Versioning manages interface
evolution without breaking existing clients. APl gateways centralize cross-cutting concerns like authentication
effectively.

Resilience patterns protect against cascading failure scenarios. Circuit breakers prevent resource exhaustion from failed
dependencies. Exponential backoff is strong against temporary failures and is efficient. Bulkhead patterns isolate
resource pools to contain impacts. Health checks enable proactive routing around unhealthy instances.
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Service documentation becomes critical for ecosystem success. OpenAPI specifications describe interfaces in machine-
readable formats. Examples illustrate common usage patterns clearly. Error responses document failure scenarios
comprehensively. Versioning information guides client upgrade planning.

3.5 Continuous Delivery Practices

Continuous integration maintains code quality through automated checks. Unit tests verify individual component
behavior thoroughly. Integration tests validate cross-component interactions. Static analysis catches code quality issues
early. Build automation produces consistent deployment artifacts reliably.

Deployment automation enables frequent and reliable releases. Infrastructure as code defines environments
programmatically. Version control tracks infrastructure changes like application code. Containerization ensures
environmental consistency across stages. Orchestration platforms manage deployment and scaling automatically.

Observability provides essential insights into system behavior. Distributed tracing reveals request paths across service
boundaries. Metrics enable performance monitoring and capacity planning. Centralized logging aggregates events for
debugging purposes. Alerting notifies operators about anomalous conditions immediately.

Testing strategies adapt to distributed system characteristics. Contract testing verifies service interface compatibility.
Chaos engineering validates resilience under failure conditions. Load testing confirms performance under expected usage
patterns. Canary releases validate changes with a subset of production traffic. Table 2 outlines the core components of the
modernization strategy, describing the technical approaches employed and the benefits delivered through systematic
transformation.

3.6 Cross-Agency Transformation Governance Model

Large-scale modernization efforts require governance structures spanning multiple agencies and departments. Common
governance elements include:

e Cross-agency steering committees

e Data policy harmonization groups

e Standardized reference architecture councils

e Shared financing and accountability frameworks

This ensures that modernization does not replicate siloed fragmentation.

Strategy Component

Technical Approach

Transformation Benefit

Assessment and
Planning

Comprehensive inventory and risk
evaluation

Informed sequencing decisions and
stakeholder alignment

Domain-Driven

Bounded contexts with clear

Independent service evolution and

Decomposition ownership boundaries organizational clarity
Event-Driven Asynchronous messaging with Loose coupling and choreographed
Communication schema governance workflow coordination

Modular Service Design

Independent deployable units with
resilience patterns

Technology diversity and contained
failure 1solation

Continuous Delivery

Automated integration with
infrastructure as code

Frequent releases and reduced
deployment risk

Table 2: Phased Modernization Strategy Components and Implementation Approaches [5], [6]
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4. Key Implementation Considerations
4.1 Interoperability Requirements

Interoperability encompasses technical, semantic, and organizational dimensions. Compatible protocols and data formats
enable technical connection. Shared information ensures semantic understanding. Aligned policies and processes support
organizational cooperation. Standards adoption reduces integration complexity and costs [7].

API standardization facilitates broad ecosystem integration efforts. Industry standards provide proven patterns for
common scenarios. Machine-readable specifications enable automated tool generation. API catalogs support service
discovery across organizations. Conformance testing validates standards compliance objectively.

Data exchange formats require thoughtful selection and management. JSON offers a lightweight and human-readable
representation. XML supports complex hierarchical structures with validation. Binary formats provide compact encoding
for performance-critical uses. Selection balances readability, efficiency, and ecosystem compatibility.

Cross-domain integration patterns address distributed system challenges. Saga patterns manage distributed transactions
without locks. Compensating transactions handle failure scenarios gracefully. Idempotency ensures safe operation of
retry mechanisms. Correlation identifiers track requests across service boundaries [7].

4.2 Governance Frameworks

Architecture governance maintains consistency across distributed teams. Core principles guide design decisions toward
strategic goals. Reference architectures provide proven patterns for common needs. Review boards evaluate proposals for
principal alignment. Exception processes accommodate legitimate deviations with oversight.

Data governance establishes comprehensive information management policies. Classification schemes identify sensitivity
levels needing protection. Privacy regulations mandate specific handling procedures. Quality standards define acceptable
data condition thresholds. Stewardship roles assign clear domain accountability.

Security governance protects against constantly evolving threats. Architectural principles embed security throughout
system design. Threat modeling finds vulnerabilities and controls. Control effectiveness is evaluated by periodic
penetration testing. Incident response procedures minimize breach impacts quickly [8].

Change management processes balance agility with stability needs. Lightweight approval workflows prevent unnecessary
delays. Risk assessment guides scrutiny level for changes. Automated deployment pipelines reduce human error
potential. Rollback procedures provide safety nets for problems.

4.3 Backward Compatibility

Compatibility preservation protects existing integration investments. API versioning allows controlled interface evolution
over time. Adapter patterns translate between legacy and modern interfaces. Protocol bridges connect incompatible
technology generations. Comprehensive testing validates the continued operation of integrations [8].

Data migration executes carefully planned information transitions. Extract-transform-load processes restructure legacy
data appropriately. Incremental approaches reduce risk through phased movement. Bidirectional synchronization
maintains consistency during transitions. Validation confirms migration completeness and accuracy thoroughly.

Parallel operation validates modernized capabilities before legacy retirement. Shadow mode processes production
workloads without user impact. Comparison testing identifies behavioral differences needing resolution. Gradual traffic
shifting transitions load to modern systems. Rollback restores previous operation levels. Sunset planning is for
deprecation and retiring legacy systems. Communication ensures interested parties are updated on timelines. Support
windows provide reasonable transition periods for clients. Documentation preserves institutional knowledge after
retirement. Archive strategies maintain historical data accessibility where required. Table 3 details the critical
implementation considerations required for successful modernization, covering interoperability requirements, governance
structures, and compatibility strategies.
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Implementation . c }

Dimension Key Requirements Governance Approach

Technical Compatible protocols and Industry standards adoption and

Interoperability standardized formats conformance testing

Semantic Shared information meaning and Schema management and validation

Interoperability data exchange frameworks

Architecture Governance Design principles and reference Review boards with exception processes
patterns

Security Governance Threat modeling and control Embedded protection and incident
validation response procedures

Backward Compatibility API versioning and parallel Incremental migration with rollback
operation capabilities

Table 3: Implementation Considerations Across Multiple Governance Dimensions [7], [8]
5. Societal Impact and Benefits
5.1 Enhanced Reliability and Resilience

Modern infrastructure demonstrates superior reliability characteristics overall. Distributed designs eliminate single points
of catastrophic failure. Automated failover maintains service during component problems. Geographic distribution
protects against regional disaster scenarios. Resilience patterns contain and recover from unexpected conditions [9].

Disaster recovery capabilities improve dramatically with modern approaches. Infrastructure as code enables rapid
environment recreation anywhere. Cloud platforms offer geographically distributed hosting options naturally. Automated
procedures reduce recovery time objectives significantly. Flexible foundations provide strong business continuity through
predictive maintenance, which has fewer unplanned service interruptions. Capacity planning forecasts demand and
provisions capacity after monitoring detects anomalies beforea failure. To optimize performance, systematically
identify and resolve bottlenecks. Seeing health enables confident data-driven operational decisions. In modern
architectures, systems are always available, with rolling updates eliminating maintenance window downtime, and blue-
green deployments allowing releases without downtime. Auto-scaling can quickly respond to changing demand. Self-
healing mechanisms recover from transient failures automatically [9].

5.2 Accelerated Service Delivery

Modernized platforms enable rapid service innovation cycles. Independent services allow parallel development by
multiple teams. Continuous delivery accelerates time from concept to production. API-driven integration simplifies third-
party service incorporation. Organizations respond to citizen needs much more effectively.

Digital service quality improves through modern development practices. Interfaces are easy to use because of user-
centered design. Responsive design considers the variety of device capabilities in mind. Performance optimization
ensures consistently acceptable response times. Iterative development incorporates user feedback continuously and
rapidly [10].

Service personalization becomes practical with modern data capabilities. Analytics reveal detailed usage patterns and
user preferences. Recommendation systems help users find services. Adaptive interfaces provide flexibility for different
user needs and capabilities. Longer experiences increase satisfaction and productivity, but shorten the time it takes to
innovate compared to legacy experiences. Feature flags enable controlled rollout to user segments. A/B testing validates
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design decisions with real usage data. Rapid experimentation identifies successful approaches quickly. Failed
experiments get abandoned without major resource waste.

5.3 National Innovation and Resilience

Infrastructure modernization catalyzes broader innovation ecosystem growth. Open APIs enable third-party developers to
build services. Published data support academic research and civic engagement. Platform approaches allow private sector
innovation on public infrastructure. Economic value emerges from vibrant digital ecosystem activity [10].

National resilience strengthens significantly through adaptable digital foundations. Systems accommodate changing
requirements without complete replacement. Technology evolution proceeds incrementally rather than through
disruption. Vendor diversity reduces dangerous dependence on single providers. Transferable skills improve overall
workforce adaptability and mobility.

Strategic autonomy benefits from modern digital capability development. Open standards reduce costly vendor lock-in
risks substantially. Multi-cloud architectures enable competitive provider strategies. Internal capability development
strengthens technological sovereignty goals. Nations gain flexibility for independent strategies aligned with their
interests.

Digital inclusion improves through accessible modern service design. Mobile-first approaches reach populations without
desktop computers. Progressive web applications work across device capabilities. Multilingual support serves diverse
linguistic communities effectively. Accessibility features accommodate users with various disabilities properly. Table 4
summarizes the societal benefits realized through infrastructure modernization, highlighting improvements in reliability,
service delivery, and national innovation capacity.
National modernization initiatives in countries such as Estonia, Singapore, and the United Arab Emirates have
demonstrated that modernization investments directly translate into measurable improvements in public-sector efficiency,
GDP-linked service productivity, and institutional trust. The modernization blueprint aligns to such models by ensuring
that architectural transformation concurrently advances policy readiness, institutional agility, and scalable national
service platforms.

Benefit Category Capability Enhancement Societal Impact

Reliability and Distributed architectures with Eliminated single points of failure and regional
Resilience automated failover disaster protection

Service Delivery Parallel development with Rapid innovation cycles and enhanced citizen
Speed continuous deployment TESPONSivVeness

Digital Service User-centered design with Improved accessibility and personalized user
Quality responsive interfaces experiences

[nnovation Open APIs with platform Third-party development enablement and
Ecosystem approaches economic value creation

Strategic Open standards with multi-provider Reduced vendor lock-in and technological
Autonomy strategies soversignty strengthening

Table 4: Societal Benefits and National Impact of Infrastructure Modernization [9], [10]
Conclusion

Legacy system modernization represents a critical strategic imperative for national infrastructure. Existing platforms
suffer from operational fragility that threatens service continuity. Tight coupling creates cascading failure risks across
entire systems. Integration challenges multiply as new technology connections grow. Rigid architectures resist necessary
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adaptations to changing requirements. These limitations increasingly impede effective service delivery to citizens.
Successful modernization demands systematic and carefully phased approaches. Domain-driven decomposition structures
systems along natural business boundaries. Event-driven communication enables loose coupling between independent
components. Modular service architectures provide essential deployment flexibility. Continuous delivery practices
accelerate reliable feature deployment cycles. Implementation must carefully address interoperability across multiple
dimensions. Technical standards enable ecosystem integration and reduce costs. Governance frameworks maintain
consistency while allowing appropriate autonomy. Backward compatibility protects existing integration investments
during transitions. Modernization delivers substantial benefits to society and the economy. Enhanced reliability emerges
from distributed architectures and automation. Service delivery accelerates through reduced friction and streamlined
processes. National innovation ecosystems are strengthened through open interfaces and platforms. The transformation
journey requires sustained organizational commitment. Substantial resource allocation becomes necessary for successful
completion. However, continued legacy operation carries escalating risks daily. Opportunity costs mount as competitors
advance their capabilities. Organizations achieving successful modernization gain significant competitive advantages.
They position themselves favorably for emerging challenges and opportunities. National-scale infrastructure
modernization ultimately determines competitive positioning. Digital economies demand modern platforms for effective
participation. Societies must modernize to meet evolving citizen expectations effectively. The blueprint presented enables
systematic transformation toward these goals. The model introduced in this article is not solely a technology upgrade
pathway. It represents a structured transition approach designed to sustain policy compliance, minimize operational
disruption, and build durable digital national assets. The blueprint promotes technological sovereignty by reducing
dependence on aging closed-system providers and enabling long-term self-governance of digital infrastructure assets. As
national service workloads continue to expand, modernization increasingly shifts from operational option to national
imperative.
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