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Abstract: To address the voltage stability degradation and increased topological complexity caused by the 

growing penetration of distributed photovoltaic systems in distribution networks, this paper proposes a voltage-

stability-oriented cluster partitioning method. First, a comprehensive cluster partitioning index is established, 

considering both structural and functional aspects of the distribution network framework. Structurally, 

modularity metrics are used to quantify network aggregation characteristics, while functionally, dynamic 

evaluations integrate voltage stability indices and source-load matching indicators. Second, to overcome 

premature convergence in existing clustering algorithms, an improved coati optimization algorithm is 

proposed. This algorithm employs chaotic mapping for uniform population distribution, introduces adaptive 

escape operators to balance global exploration and local exploitation and incorporates optical opposition-based 

learning to enhance its ability to escape local optima. Finally, simulations on the IEEE 33-bus system 

demonstrate that the proposed comprehensive clustering index improves voltage stability by 46.79%, 49.54% 

and 47.83% compared to single indices, respectively. The improved clustering algorithm reduces computation 

time by 62.79% and 65.22% compared to the traditional coati algorithm and moth-flame optimization 

algorithm, while achieving 97.72% of centralized voltage control effectiveness with an 88.84% faster response 

time, verifying the effectiveness of the proposed method. 

Keywords: Distribution network; Distributed photovoltaic; Cluster division; Improved coati optimization 

algorithm; Voltage stability index  

 

INTRODUCTION 

The increasing penetration of distributed photovoltaics (DPV) is transforming distribution networks from passive 

radial systems to active multi-agent collaborative architectures [1-2]. However, the inherent stochasticity and 

variability of high-penetration DPV integration exacerbate voltage fluctuations, particularly during local load 

trough periods, posing significant operational risks. Conventional control strategies primarily include localized 

control (offering fast response and low investment costs but limited regulation capacity) and centralized control 

(enabling global optimization but requiring substantial communication infrastructure investments) [3-4]. The 

emerging cluster-based control paradigm combines the advantages of both approaches through autonomous intra-

cluster operation and inter-cluster coordination, providing an innovative solution for managing highly distributed 

PV integration [5]. 

Originating from complex network research, clustering theory has been progressively extended to distribution 

networks with distributed photovoltaic integration. Current clustering metrics primarily emphasize electrical 

coupling relationships between nodes within clusters, such as the modularity index that measures network 

structural strength-a metric originally developed for community detection in complex networks [6]. Additionally, 

scholars have proposed reactive power-voltage balance indices  to assess intra-cluster voltage regulation 

capability from an operational control perspective, while other studies have introduced active power balance 

indices considering power complementarity characteristics within clusters to address renewable energy 

accommodation issues in planning [7-8]. In distribution network clustering algorithms, current approaches include 

coati optimization, bald eagle search, grey wolf optimization and more traditional optimization methods [9-11]. 

Reference [12] addresses dynamic electrical distance variations caused by wind power fluctuations by 

constructing a multi-scenario full-dimensional electrical distance matrix and using modified power flow state 

distance accumulation values as clustering criteria combined with hierarchical clustering techniques. Reference 

[13] innovatively establishes a three-dimensional evaluation system integrating electrical distance modularity with 

reactive/active power balance, implemented through an improved genetic algorithm. Reference [14] considers the 
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voltage regulation potential of PV inverters and energy storage devices to optimize cluster configurations using 

tabu search algorithms while simultaneously determining energy storage allocation. Reference [15] extracts 

electrical coupling characteristics during power transmission to construct a strength matrix, establishing a 

weighted network model combined with the fast Newman algorithm for grid clustering. Reference [16] 

reconstructs electrical distance calculation methods based on voltage sensitivity parameters, using modularity as 

the optimization objective and implementing reactive power-voltage clustering through an improved particle 

swarm optimization algorithm. 

Existing clustering approaches predominantly rely on topological characteristics for network decomposition, 

fundamentally neglecting post-partition intra-zone voltage stability considerations and the dynamic coupling 

effects of voltage stability in functional dimensions, consequently resulting in inadequate source-load-storage 

coordination capability within partitioned regions and compromised voltage instability mitigation [17]. 

Specifically, current clustering metrics primarily focus on electrical coupling characteristics during the 

partitioning process or static performance indicators, failing to account for power distribution alterations induced 

by clustering, which ultimately undermines the ability to preserve voltage stability margins under variable 

generation-load scenarios [18-19]. Furthermore, prevailing algorithms exhibit two inherent limitations: traditional 

heuristic methods are prone to premature convergence and demonstrate limited adaptability to high-dimensional 

nonlinear optimization problems and conventional partitioning algorithms exhibit deficiencies in initial population 

diversity and convergence precision, leading to suboptimal performance in complex distribution network 

partitioning applications [20-21]. 

To overcome the key limitations of current clustering approaches in high-PV-penetration distribution networks - 

specifically their oversight of dynamic voltage stability and tendency toward premature convergence - this 

research develops a comprehensive framework combining a voltage-stability-focused clustering methodology 

with an enhanced coati optimization algorithm. The methodology utilizes a multi-criteria index assessing 

modularity, source-load matching and voltage stability margins to evaluate partition resilience during power 

fluctuations, facilitating simultaneous optimization of network topology and operational stability. The improved 

coati algorithm integrates chaotic initialization protocols, adaptive nonlinear search mechanisms and opposition-

based refinement techniques to substantially enhance global exploration and solution precision. Extensive 

validation on a modified IEEE 33-bus test system confirms the framework's exceptional performance in delivering 

both superior clustering configurations and enhanced grid stability. 

DISTRIBUTION NETWORK CLUSTER DIVISION INDEX SYSTEM 

The proposed clustering index selection methodology adheres to both structural and functional principles. 

Structural considerations emphasize strong intra-cluster electrical coupling to ensure maximized connectivity 

within clusters and minimized inter-cluster connections, thereby maintaining appropriate cluster scales. 

Functional requirements prioritize enhanced power coordination between clusters and improved voltage stability 

within clusters, which fully leverages the renewable energy accommodation capacity and regulation 

characteristics of each partitioned zone. 

1.1 Structural metrics 

The modularity index, a classical metric for quantifying network community structures originally developed by 

Newman et al. and extended to weighted network partitioning, ranges from 0 to 1 [22]. Higher values indicate 

stronger functional similarity among intra-cluster nodes and weaker inter-cluster connections. In power 

distribution networks, edge weights can be defined using electrical distance parameters, where the modularity 

metric based on electrical coupling strength effectively evaluates structural aggregation characteristics in grid 

clustering. The time-period modularity index t  is formulated as: 
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where: tm  denotes the sum of all edge weights in the network during period t , equivalent to the summation of 

all elements in the edge weight matrix A ; ,ij tA  represents the edge weight between nodes i  and j  during 

period t ; ,i tk  is the sum of edge weights connected to node i  during period t . This study defines edge weights 

based on electrical distance parameters, calculated via voltage-reactive power sensitivity relationships to quantify 

nodal electrical coupling strength. Specifically, electrical distance reflects the tightness of electrical coupling 

between nodes, expressed mathematically as: 

 Δ ΔvQV S Q=  (4) 

where: vQS  denotes the sensitivity matrix; ΔV and ΔQ  represent the voltage magnitude and reactive power 

variation vectors, respectively; The element ,VQ ijS  at row i  and column j  of matrix VQS  quantifies the 

voltage variation at node i  induced by a unit reactive power change at node j . It represents as: 
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where: ijd  represents the ratio of the voltage variation at node j  to that at node i  when the reactive power 

at node j  changes, reflecting the degree of voltage influence exerted by node j  on node i . A smaller value 

of ijd  indicates stronger electrical coupling between nodes i  and j , corresponding to a shorter electrical 

distance. 

In a power network, the relationship between any two nodes is not solely determined by themselves but is also 

influenced by the rest of the network. To account for the interconnected nature of nodal interactions, we define 

the electrical distance between node i  and node j  in an n -node system as: 

 2 2 2

1 1 2 2( ) ( ) ( )ij i j i j in jnA d d d d d d= − + − + + −  (6) 

Given the time-varying impacts of load demand and generation output on electrical distances—and consequently 

on network partitioning results—this study adopts the average modularity index across all daily time periods as 

the final criterion for zone division: 
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where: the total number of time intervals T is set to 24. 

1.2 Functional metrics 

Functional metrics characterize the voltage regulation capability of controllable resources within clusters [23]. 

Post-partitioning, each cluster should achieve maximal self-governance to minimize inter-cluster power 

coordination losses. Traditional clustering relying solely on structural metrics only reflects nodal association 

strength through topological features, demonstrating clear limitations - particularly in renewable-penetrated grids 

where intra-zone energy autonomy must be ensured to reduce cross-regional power transmission losses and 

economic costs. Therefore, this study incorporates functional metrics including source-load matching degree and 

voltage stability indices into the clustering criteria. 

(1) Source-Load Matching Index 

The Source-Load Matching Index dynamically evaluates the spatiotemporal matching characteristics between 

regional photovoltaic generation and load demand. This metric advances beyond traditional static partitioning 

methods by establishing an assessment framework based on typical daily time-series scenarios. By analyzing the 

correspondence between 24-hour DPV output curves and load profiles, the morphological consistency of the two 
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sequences is quantified using cosine similarity algorithm. The index is defined as the cosine value of the two 

sequence vectors, expressed mathematically as: 
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where: m  represents the number of clusters, ,h tx  and ,h ty  denote the aggregate DPV generation and total load 

demand, respectively, within cluster h  at time t . When M  approaches 1, curves x  and y  exhibit strong 

similarity. When M  approaches 0, curves x  and y  show weak correlation. 

(2) voltage stability index 

The voltage stability index L  is a static voltage stability assessment tool based on the feasible solution domain 

of branch voltage equations [24]. It can be rapidly calculated using local measurement data from phasor 

measurement units (PMUs). By constructing voltage-related branch equations and comprehensively considering 

key factors such as voltages at both ends of the branch, current, resistance, reactance, and voltage phase angle 

differences between nodes, the proL  is derived. As an improvement over the L , the index eliminates interference 

from redundant measurement data, relying solely on PMU voltage measurements for computation, ensuring higher 

accuracy and linearity. Additionally, the proL  remains applicable under three-phase asymmetric operating 

conditions, effectively evaluating voltage stability across various operational scenarios and demonstrating strong 

adaptability to complex real-world power systems. Whether in small-scale distribution networks or large 

interconnected grids, the proL  provides consistent and reliable voltage stability assessments. This means power 

systems of different scales and topologies can adopt the same standard and method for voltage stability evaluation, 

offering an efficient and dependable tool for comparative analysis across different systems. The voltage stability 

index for branch ij during time interval t  is expressed as: 
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where: ,i tU  and ,j tU  represent the per-unit voltage phasors at the sending-end node i  and receiving-end node 

j  of the branch during time interval t , respectively. t  denotes the voltage phase angle difference between 

the terminal nodes of the branch during time interval t . 

When the voltage stability coefficient , 1ij tL  , the distribution network system will experience significant voltage 

oscillations, ultimately leading to system instability. Given that voltage instability in a single line may trigger 

system-wide operational risks, this study adopts the maximum value ,pro tL  of the voltage stability parameters 

across all branches as the representation of the overall system voltage stability level during time interval t , 

defined mathematically as: 

  , ,maxpro t ij t
ij S

L L


=  (10) 

where: S  denotes the set of all system branches. The average system voltage stability index across all time 

intervals within a day is adopted as the final criterion for network partitioning, formulated as: 
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where: , ,pro t hL  represents the voltage stability index of cluster h  at time interval t . 
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MULTI-STRATEGY IMPROVED COATI OPTIMIZATION ALGORITHM 

2.1 Coati optimization algorithm 

The traditional Coati Optimization Algorithm (COA) simulates the cooperative attack of coatis on iguanas and 

their dispersed escape from predators [25]. It has the advantages of not requiring control parameter settings, high 

efficiency, strong balance, and powerful global exploration capabilities. Its principle is as follows:  

(1) Exploration phase 

The coati population N  exhibits independent and stochastic spatial distribution X  within the search space. 

The population implements a bifurcated search strategy: 50% of individuals simulate tree-climbing behavior to 

flush out prey (global exploration), while the remaining 50% maintain ground positions to capture randomly 

falling prey (local exploitation). The position update formula for arboreal coatis is given by: 

 
1P

i j i j j i j
X X r L Ix= + −

, , ,
( )  (12) 

Where: i  denotes a coati individual within the population, j  represents the problem dimension in the search 

space, jL corresponds to the current global best position (gbest),   signifies a uniform random number within 

the interval [0,1], I is a randomly selected integer from the discrete set  1,2 , implementing stochastic 

neighborhood sampling around gbest to simulate arboreal coati foraging behavior. 

The positions of the iguanas after random dropping and the ground raccoons are represented by equations (13) 

and (14), respectively. The optimal position of the ground raccoons is updated based on the corresponding 

objective function value and the greedy strategy, as shown in equation (15). 
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Where: ja  and jb  denote the upper and lower bounds, respectively, of the j-th dimension in the search space. 

  represents a uniformly distributed random real number within the interval [0,1]. I  is a randomly selected 

integer from the discrete set [1,2]. 
G

jL  corresponds to the position of the j  iguana (prey) after a stochastic 

descent, with GL
F  being its associated objective function value. 1

,

P

i jX  specifies the position of the i  coati 

(search agent) in the j-th dimension, while 
pl

iF  evaluates its objective function value. 

(2) Exploitation phase 

When predators attack the coati population, the agents implement a dispersed escape strategy to avoid local optima 

entrapment. The position update during this defensive behavior is mathematically modeled as: 
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Where: 
L

ja , 
L

jb  denote the local upper bound and local lower bound of the j-th dimension, respectively. t  is 

the number of iterations and the upper and lower bounds will be reduced with the number of iterations to simulate 

the local search ability of individual raccoons.; the optimal position is updated according to equation (18). 
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2.2 Improved coati optimization algorithm 

To address the standard COA's limitations of inadequate population diversity during initialization and 

susceptibility to local optima during exploitation, this study introduces three key enhancements: circle chaotic 

mapping for uniform population initialization, dynamic nonlinear escape strategy to prevent premature 

convergence and lens opposition-based learning to enhance global search capability. These modifications 

collectively form the Improved Coati Optimization Algorithm (ICOA). 

(1) Circle chaotic mapping for population initialization 

The circle chaotic mapping enhances the search space exploration range of the coati population while improving 

positional diversity. The circle map is defined as follows: 

 
+1

0.5
mod 0.2 sin 2 1

2
tt t

x x x


= + −( ( ) , )  (19) 

Where: mod denotes the modulo operation and t  represents the iteration count. 

(2) Dynamic nonlinear escape strategy 

Building upon the energy consumption principle, this study introduces an adaptive factor with nonlinear 

adjustment to develop an innovative dynamic nonlinear escape strategy. This approach more accurately simulates 

coati escape behavior during the exploitation phase while maintaining adaptability to complex environments, 

enabling progressive emphasis on exploration during different escape stages. The adaptive factor 
( )t

 is defined 

as: 
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Where:   represents a hyperparameter, which is set to 0.6 in this study to enhance spatial search capability. The 

energy parameter is nonlinearly adjusted through a nonlinear function to simulate the dynamic energy 

consumption of coatis during escape, accounting for temporal and positional variations: 

 1 tanh
i j

E E t X   = − 
,

( （ + ）)  (21) 

Where: E  denotes the energy parameter for both coatis and predators, represented as a random number within 

[0,1]. 'E represents the nonlinearly adjusted energy parameter. tanh  is the arctangent function with a range of 

[-1,1].   and   are parameters influencing temporal and spatial effects, respectively, both set to 0.5 to enhance 

local search capability.   is the energy depletion coefficient, which linearly increases from 0 to 1 with iterations 

to simulate progressive energy decay, thereby gradually favoring local exploitation. 

The coati's position during the exploitation phase is determined by equation (22) 
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Where: '
0E  and '

1E  represent the adjusted energy parameters for the coati and predator, respectively. 

(3) Lens opposition-based learning strategy 

This strategy integrates opposition-based learning with lens imaging principles to generate inverse solutions 

relative to current coordinates, thereby expanding the search domain and progressively guiding the optimization 

toward the global optimum. The schematic diagram is illustrated in Figure 1. 
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Fig.1 Schematic diagram of lens opposition-based learning 

The search space range along the x-axis is defined as [a,b], while the y-axis represents the convex lens. Given an 

object A with x-axis projection X and height h, its optical image is formed through the convex lens. The resulting 

image *A  is formed at x-axis *X  with height *h , yielding equation (23):  

 * *
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( ) / 2

a b X h

X a b h

+ −
=
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 (23) 

Where: */K h h= , parameters h  is set to 1, while *h  linearly decreases with iterations to prioritize global 

exploration initially and local exploitation subsequently, thereby enhancing overall optimization performance. 

The opposition solution is expressed as: 
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2
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j j j j j

j

a b a b X
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Where: jX  denotes the coati's position in the j-th dimension, 
*
jX  represents its opposition solution, while ja

and jb  specify the maximum and minimum boundaries of the j-th dimension respectively. 

CLUSTER PARTITIONING MODEL FOR DISTRIBUTION NETWORKS WITH DISTRIBUTED 

PHOTOVOLTAICS 

3.1 Objective function 

The proposed clustering metric system coordinates structural characteristics with operational performance through 

three key indicators: modularity enhancement reflects improved topological aggregation, voltage stability 

coefficient reduction indicates increased security margins and source-load coordination improvement 

demonstrates enhanced supply-demand matching. The optimization model treats nodal cluster assignments as 

decision variables while incorporating: node parameters, branch connections and network topology features. The 

objective function minimizes the comprehensive clustering index: 

 1 2 3)(1min )- (1 meanmeanf w w M w L= + − +  (25) 

Where: f  denotes the objective function value, 1  , 2  and 3  represent the weighting coefficients for the 

modularity index, source-load matching index and voltage stability index, respectively. 

The weighting coefficients for each metric are determined using the Analytic Hierarchy Process, which involves: 

constructing a judgment matrix and performing consistency validation [26]. Given the priority order 

modularity>source-load matching>voltage stability, the judgment matrix P  is formulated as: 
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The calculated weighting coefficients are determined as 1 0.637w = , 2 0.258w =  and 3 0.105w =  for each 

respective metric. Following consistency verification, the judgment matrix P  achieves a random consistency 
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ratio of 0.0332 0.1CR =  , thereby validating the rationality of the weight distribution among clustering 

evaluation indicators. 

3.2 Constraints 

To obtain the optimal clustering solution for distribution networks with distributed photovoltaics, the model 

incorporates the following constraints: 

(1) Power flow constraints 
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Where: iP  and iQ  denote the active and reactive power at node i , respectively. ijG  and ijB  represent the 

conductance and susceptance between nodes i  and j ; ij  indicates the phase angle difference between nodes 

i  and j . 

(2) Power balance constraints 
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Where: PCCN , N  and CN  denote the number of branches connecting to the main grid, the total cluster count, 

and the node count within each cluster, respectively. ,

grid

l tP , , ,load i tP and ,

loss

ij tP represent the active power flow on 

upstream grid branch l , the load demand, and the active power loss on line ij  at time t , respectively. 

(3) Distribution network security constraints 

 
min max

max0 ij ij

U U U

I I

 

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 (29) 

Where: U  represents the per-unit voltage magnitude of all nodes in the distribution system. ijI  denotes the 

branch current between nodes i  and j . 
max

ijI  indicates the maximum allowable current for the branch 

connecting nodes i  and j . 

3.3 Cluster partitioning based on improved coati optimization algorithm 

This study employs the multi-strategy improved coati optimization algorithm to solve the network partitioning 

problem, where the objective function-formulated using the comprehensive clustering index-serves as the fitness 

metric. The optimal partition corresponds to the solution with the minimal fitness value during iterative 

optimization. The complete algorithmic workflow is illustrated in Figure 2, comprising: 
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Fig.2 Flowchart of the ICOA-based cluster partitioning algorithm 

RESULTS AND DISCUSSION 

The improved IEEE 33-node system was analyzed using MATLAB 2016a, as shown in Figure 3.  
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Fig.3 Improved IEEE 33-node system 

The base capacity was set at 10 MW and the voltage level was 12.66 kV. Distributed photovoltaic (DPV) systems 

with a capacity of 500 kW were connected to nodes 9, 14, 18, 22, 25, 28 and 32. The load fluctuation curve and 

photovoltaic output are shown in Figure 4, respectively. The population size of the ICOA algorithm was set to 

=50N  and the maximum number of iterations was max 100T = . 
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Fig.4 Load and photovoltaic power curve: load output (a); photovoltaic output (b) 
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4.1 Effectiveness analysis of the proposed comprehensive index 

To verify the effectiveness of the integrated clustering index, four comparative schemes are evaluated: 

Scheme 1: Modularity index only; 

Scheme 2: Source-load matching index only; 

Scheme 3: Modularity index and source-load matching index; 

Scheme 4: Proposed comprehensive index. 

The performance results are summarized in Table 1. 

Table.1 Comparative analysis of clustering metrics 

Scheme Modularity index 
Source-load 

matching index 

Voltage stability 

index 
Cluster number 

1 0.7531 0.8421 0.1357 3 

2 0.6752 0.9413 0.1431 5 

3 0.7354 0.9355 0.1384 4 

4 0.7181 0.9206 0.0722 4 

As demonstrated in Table 1: Scheme 1 achieves 11.54%, 2.41% and 4.87% higher modularity than alternative 

schemes respectively, while exhibiting significant deficiencies in other metrics. Similarly, Scheme 2 shows 

11.78%, 0.62% and 2.25% superior source-load matching performance but demonstrates comparable limitations 

in remaining indices. Although Scheme 3 maintains balanced performance in both modularity and source-load 

matching without extreme cases, its elevated voltage stability index adversely affects system operational stability. 

In contrast, Scheme 4 not only preserves favorable structural characteristics but also significantly enhances both 

source-load matching and voltage stability, with the latter showing 46.79%, 49.54% and 47.83% improvements 

over Schemes 1-3 respectively. These results confirm the proposed comprehensive index's superior performance 

in network partitioning compared to single-metric approaches, while effectively mitigating voltage instability 

risks.The proposed comprehensive index demonstrates clear advantages over single-metric approaches by 

simultaneously ensuring topological cohesion, energy balance, and voltage security.  

Figure 5 presents the cluster division diagrams for the four schemes: 
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Fig.5 Cluster division result: scheme 1 (a); scheme 2 (b); scheme 3 (c); scheme 4 (d) 
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Figure 5 reveals that partitions generated using solely the modularity metric emphasize topological coupling 

strength between nodes, demonstrating superior structural aggregation characteristics, yet fail to incorporate 

source-load coordination considerations. When exclusively optimizing the source-load matching index, the 

inherent emphasis on supply-demand complementarity leads to reduced cluster counts and oversized single-region 

formations, significantly compromising structural integrity. The combined modularity and source-load matching 

approach maintains reasonable network architecture while improving spatiotemporal energy matching, though 

voltage stability margins remain suboptimal. Notably, the proposed comprehensive index exhibits differentiated 

configuration advantages, achieving balanced DPV capacity distribution across nodes. This configuration permits 

strategic nodal DPV capacities to moderately exceed local peak loads, establishing inter-cluster coordination that 

effectively enhances renewable energy accommodation capacity. 

4.2 Comparative analysis of cluster partitioning algorithms 

To verify the superiority of the proposed improved coati optimization algorithm for distribution network clustering, 

comparative analyses were conducted on a 33-node test system against conventional coati optimization algorithm 

(COA), moth-flame optimization algorithm (MFO), and particle swarm optimization algorithm (PSO). All four 

clustering algorithms employed the comprehensive clustering index proposed in this study, with their respective 

fitness convergence curves and optimization results presented in Figure 6 and Table 2. 

 

Fig.6 Fitness comparison curve 

Table.2 Comparison of optimization algorithm metrics 

Algorithm 
Modularity 

index 

Source-load 

matching index 

Voltage 

stability index 
Runtime/s 

PSO 0.7018 0.9117 0.0785 134 

MFO 0.7056 0.9141 0.0775 92 

COA 0.7095 0.9179 0.0756 86 

ICOA 0.7181 0.9206 0.0722 32 

Figure 6 demonstrates that the COA exhibits premature convergence during later iterations due to gradual loss of 

population heterogeneity during evolutionary processes, while the proposed ICOA effectively maintains 

individual diversity in later stages through integrated dynamic nonlinear escape mechanisms and optical 

opposition-based learning strategies, thereby enhancing global search capability and significantly reducing the 

probability of local optima entrapment. 

As evidenced in Table 2, the ICOA demonstrates superior optimization performance and stability compared to 

conventional methods. Specifically, the COA exhibits 1.10% and 0.68% improvements in modularity and source-

load matching indices over PSO respectively, albeit with a 3.84% reduction in voltage stability. When compared 

to MFO, COA shows 0.55% and 0.42% enhancements in these metrics, accompanied by a 5.51% decrease in 

voltage stability. The proposed ICOA further outperforms COA with 1.21% and 0.29% increases in modularity 

and source-load matching, while maintaining comparable voltage stability (0.47% reduction). Notably, ICOA 

achieves significant computational efficiency gains, reducing runtime by 62.79%, 76.09% and 76.12% relative to 
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COA, MFO and PSO respectively. These results collectively demonstrate that the enhanced algorithm delivers 

both superior solution quality and accelerated convergence speed. 

4.3 Comparison of the pressure regulation effects of different methods 

The proposed clustering methodology establishes multiple DPV-dominated zones, effectively creating a novel 

multi-agent coordination framework for distributed energy resources that achieves dual objectives: maintaining 

strong intra-cluster nodal coupling while minimizing DPV-load power deviations through coordinated 

optimization. This approach enhances cluster-level autonomous regulation capability, improves regional self-

sufficiency and reduces inter-area power exchange losses. For validation, three distinct clustering schemes were 

evaluated against centralized scheduling using daily total network loss, voltage deviation, and stability as 

optimization targets: Scheme A (modularity-only), Scheme B (modularity+source-load matching) and Scheme C 

(comprehensive modularity+source-load matching+voltage stability index). 

The comparison curves of the three performance indicators are shown in Figure 7: 

 

(a) 

 

(b) 

 

(c) 

Fig.7 Comparison curve of operation index: network loss comparison curve (a); voltage offset comparison curve 

(b); voltage stability index comparison curve (c) 

Figure 7 demonstrates that while clustered architectures generally exhibit inferior operational metrics compared 

to centralized systems, the proposed enhanced clustering framework - incorporating modularity, voltage stability, 

and source-load matching indices - shows significant performance improvements across all indicators. 

Experimental results reveal a computational accuracy of 97.72%, with merely 2.28% deviation from the 
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centralized scheduling benchmark, confirming that the clustered scheduling mechanism achieves near-equivalent 

optimization efficacy to centralized approaches and validates its practical applicability in power system operations. 

The implementation of the clustered scheduling paradigm reduces computational time by 88.84% compared to 

centralized approaches, achieved through partitioning the integrated system into multiple autonomous sub-units 

that constrain information retrieval to specific regional domains rather than network-wide analysis, thereby 

significantly optimizing scheduling efficiency. 

The comparison of optimization results are detailed in Table 3. 

Table.3 Comparison of optimization results 

Scheme 

Total daily 

active power 

loss/kW 

Daily voltage 

deviation/pu 

Daily voltage 

stability index 
Optimize time/s 

A 1.8246e+03 13.1037 1.8511 1.81 

B 1.7679e+03 12.2692 1.8125 1.95 

C 1.6888e+03 11.5940 1.7703 1.76 

Overall 

centralized 
1.6103e+03 11.1994 1.7280 15.77 

Table 3 reveals Scheme A's suboptimal performance stemming from its sole dependence on modularity metrics 

that capture topological connectivity but disregard regional supply-demand equilibrium. This approach leads to 

clusters requiring external power transactions due to energy insufficiency and induces system losses through 

compensatory power flows caused by significant PV-load imbalances. Conversely, Schemes B and C demonstrate 

markedly enhanced operational characteristics by integrating source-load matching metrics that strengthen intra-

cluster coordination and optimize spatiotemporal energy distribution for maximal regional self-sufficiency. 

Scheme C's incorporation of voltage stability metrics provides additional refinement by emphasizing autonomous 

stable operation, effectively reducing external power dependencies while preserving robust security thresholds. 

CONCLUSION 

To address voltage stability deterioration and topological complexity in distribution networks with high-

penetration distributed photovoltaics, this study proposes a comprehensive clustering index incorporating both 

structural and functional characteristics, implemented through the ICOA algorithm, yielding the following key 

findings: 

(1) The integrated clustering index combining modularity, source-load matching and voltage stability 

demonstrates superior performance compared to single-metric approaches by simultaneously addressing both 

structural and functional requirements, effectively mitigating voltage instability risks and confirming the validity 

of the proposed comprehensive evaluation framework. 

(2) The proposed ICOA algorithm, incorporating dynamic nonlinear escape strategies and lens opposition-based 

learning mechanisms, effectively addresses the limitations of conventional clustering methods. Post-partition 

analysis confirms the algorithm's capability to maintain network connectivity without isolated nodes while 

demonstrating superior computational efficiency and enhanced global search capabilities in distribution system 

applications. 

(3) The implemented clustering framework demonstrates significant improvements, achieving 46.79%, 49.54% 

and 47.83% voltage stability enhancements compared to single-metric approaches, while reducing computational 

time by 62.79%, 76.09% and 76.12% relative to COA, MFO and PSO algorithms respectively. The voltage 

regulation efficacy reaches 97.72% of centralized control performance with an 88.84% response time 

improvement, conclusively validating the feasibility of both the comprehensive index and optimization algorithm. 

ACKNOWLEDGEMENT 

This project supported by the National Natural Science Foundation of China (NO.52467007). 

 



Computer Fraud and Security  

ISSN (online): 1873-7056 

 

__________________________________________________________________________________ 
1427 

Vol: 2025 | Iss: 02 | 2025 
 

REFRENCES 

[1] Sun, X., & Jing, Q. (2021). Hierarchical voltage control strategy in distribution networks considering 

customized charging navigation of electric vehicles. IEEE Transactions on Smart Grid, 12(6), 4752-4764. 

[2] Gonzalez-Sotres. L., Pablo, F., & Carlos, M. (2017). Techno-economic assessment of forecasting and 

communication on centralized voltage control with high PV penetration. Electric Power Systems Research, 

151: 338-347. 

[3] Xu, X., Li, Y., Yan, Z., Ma, H., & Mohammad, S. (2022). Hierarchical central-local inverter-based voltage 

control in distribution networks considering stochastic PV power admissible range. IEEE Transactions on 

Smart Grid, 14(3), 1868-1879. 

[4] Ji, H., Wang., Li, Peng., Zhao, J., Song, G., Ding, F., & Wu, J. (2018). A centralized-based method to 

determine the local voltage control strategies of distributed generator operation in active distribution 

networks. Applied energy, 228: 2024-2036. 

[5] Chai, Y., Li, G., Wang, C, Zhao, Z., Du, X., & Pan J. (2018). Network partition and voltage coordination 

control for distribution networks with high penetration of distributed PV units. IEEE Transactions on Power 

Systems, 33(3), 3396-3407. 

[6] Li, P., Zhang, C., Wu, Z., Xu, Y., Hu, M., & Dong, Z. (2019). Distributed adaptive robust voltage/var control 

with network partition in active distribution networks. IEEE Transactions on Smart Grid, 11(3), 2245-2256. 

[7] Su, S., Lei, J., Yan, Y., Pan, S., Yang, Y., Bai, H., Li, W., Chen, J., & Zhao, Q. (2023). Voltage regulation 

strategy of distribution network with decentralized wind power based on cluster partition. Recent Advances 

in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering), 

16(1), 30-44. 

[8] Bahramipanah, M., Rachid, C., & Mario, P. (2016). Decentralized voltage control of clustered active 

distribution network by means of energy storage systems. Electric Power Systems Research, 136: 370-382. 

[9] Nguyen, T., & Hak-Man, K. (2020). Cluster-based predictive PCC voltage control of large-scale offshore 

wind farm. IEEE Access 9: 4630-4641. 

[10] Sheng, H., Wu, Q., Zhao, J., & Liao, W. (2019). Distributed optimal voltage control for VSC-HVDC 

connected large-scale wind farm cluster based on analytical target cascading method. IEEE Transactions 

on Sustainable Energy, 11(4), 2152-2161. 

[11] Zhang, H., Peng, M., & Peter, P. (2019). Intentional islanding method based on community detection for 

distribution networks. IET Generation, Transmission & Distribution, 13(1), 30-36. 

[12] Hu, J., Zhou, H., Li, Y., Hou, P., & Yang, G. (2020). Multi-time scale energy management strategy of 

aggregator characterized by photovoltaic generation and electric vehicles. Journal of Modern Power 

Systems and Clean Energy, 8(4), 727-736. 

[13] Abessi, A., Vahid, V., & Mohammad, S, G. (2015). Centralized support distributed voltage control by using 

end-users as reactive power support. IEEE Transactions on Smart Grid, 7(1), 178-188. 

[14] Nayeripour, M., Hossein, F., Eberhard, W., & Saeed, H. (2016). Coordinated online voltage management 

of distributed generation using network partitioning. Electric Power Systems Research 141: 202-209. 

[15] Ali. A., Keerio, M, U., & Laghari, J, A. (2020). Optimal site and size of distributed generation allocation in 

radial distribution network using multi-objective optimization. Journal of Modern Power Systems and Clean 

Energy, 9(2), 404-415. 

[16] Aolaritei, L., Saverio, B., & Florian, D. (2018). Hierarchical and distributed monitoring of voltage stability 

in distribution networks. IEEE Transactions on Power Systems, 33(6), 6705-6714. 

[17] Wang, W., & Keyi, K. (2024). Research on energy storage capacity optimization of rural household 

photovoltaic system considering energy storage sharing. Environmental Science and Pollution Research, 

31(34), 47084-47100. 

[18] Wang, J., Xu, W., Gu, Y., Song, W., & Tim, C, G. (2021). Multi-agent reinforcement learning for active 

voltage control on power distribution networks. Advances in Neural Information Processing Systems, 34: 

3271-3284. 

[19] Dall, A., Emiliano, S, D., & Georgios, B, G. (2014). Optimal dispatch of photovoltaic inverters in residential 

distribution systems. IEEE Transactions on Sustainable Energy, 5(2), 487-497. 



Computer Fraud and Security  

ISSN (online): 1873-7056 

 

__________________________________________________________________________________ 
1428 

Vol: 2025 | Iss: 02 | 2025 
 

[20] Wang, Z., Wang, Y., Liu, G., Zhao, Y., Cheng, Q., & Wang, C. (2020). Fast distributed voltage control for 

PV generation clusters based on approximate newton method. IEEE Transactions on Sustainable Energy, 

12(1), 612-622. 

[21] Procopiou., Andreas, T., & Luis, F, O. (2016). Voltage control in PV-rich LV networks without remote 

monitoring. IEEE transactions on power systems, 32(2), 1224-1236. 

[22] Girvan, M., & Mark, E, N. (2002). Community structure in social and biological networks. Proceedings of 

the national academy of sciences, 99(12), 7821-7826. 

[23] Alyami, S., Wang, Y., Wang, Caisheng., Zhao, J., & Zhao, Bo. (2014). Adaptive real power capping method 

for fair overvoltage regulation of distribution networks with high penetration of PV systems. IEEE 

Transactions on Smart Grid, 5(6), 2729-2738. 

[24] Nguyen, T., & Hak-Man, K. (2020). Cluster-based predictive PCC voltage control of large-scale offshore 

wind farm. IEEE Access 9: 4630-4641. 

[25] Sun, F., Ma, J., Yu, Miao., & Wei, W. (2019). A robust optimal coordinated droop control method for 

multiple VSCs in AC–DC distribution network. IEEE Transactions on Power Systems, 34(6), 5002-5011. 

[26] Li, P., Wu, Z., Zhang, C., Xu, Yan., Dong, Z., & Hu, M. (2021). Multi-timescale affinely adjustable robust 

reactive power dispatch of distribution networks integrated with high penetration of PV. Journal of Modern 

Power Systems and Clean Energy, 11(1), 324-334. 


