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Abstract:  

With the growing garbage flowing into the ocean through inland rivers, garbage detection and cleanup has 

become an urgent and necessary task for the safety of the entire ecosystem. Considering the expensive labor 

cost, Unmanned Surface Vehicle(USV) has been accepted as an important intelligent robot in river 

management field, and camera is widely adopted as a cost-effective way compared to other sensors like radar 

and laser for USVs in garbage detection. However, garbage detection based on vision is often affected by 

factors, such as the small size of distant targets, surface glare, and interference from other floating objects. It 

is a conflicting issue to achieve a higher detection accuracy with limited resources. To solve these problems, a 

novel detection algorithm is put forward for USV in garbage cleanup in the paper. Specifically, Dual Block 

Module(DBM) and QarepC3 modules are proposed based on the reparameterized model and dual-path feature 

fusion approach. EMIOU and Joint Attention Module(JAM) are constructed according to the characteristics of 

floating garbage. Subsequent to comprehensive evaluations, the proposed network exhibits not only high 

detection accuracy and computational efficiency but also robust performance in the complex environments of 

inland river. Moreover, it outperforms state-of-the-art networks in surface garbage detection for USV in the 

experiments. 

Keywords: Floating garbage detection · Unmanned surface vehicles · Reparameterized model · Dual path 

feature fusion. 

 

INTRODUCTION 

 Garbage of water surface has led to increasing severe environmental pollution problem. Garbage on the water 

surface not only affects the ecological environment of the water area, but also poses a threat to aquatic organisms 

and human health. Therefore, detection and cleanup of water surface garbage has become an urgent problem to 

be solved. Traditional detection methods of water surface garbage usually rely on manual inspection and salvage, 

which are not only inefficient but also costly. Therefore, it is of great practical value to research on an efficient 

garbage detection system of water surface based on unmanned surface vehicles(USVs), which could free the 

human and improve the efficiency of garbage cleaning. 

As we know, camera detection is a cost-effective solution for vision detection among commonly used sensors for 

object detection[1]. However, floating garbage such as plastic bottles and cans are small in size and always occupy 

few pixels in images when they are far from the camera, thus little information about their appearance could be 

captured in detection. In addition, the environment of inland waters is often complex. Surface glare, reflections 

from objects on the riverbank, and interference from other floating objects would all bring challenges to the vision-

based object detection system. Thus, an accurate and real-time floating garbage detection system is urgently 

needed for USV to improve cleaning efficiency in inland river. 

With the quick development of deep learning, Convolutional Neural Networks (CNNs) have shown great 

achievements in the field of object detection[2–6]. CNNs-based object detection algorithms are mainly divided 

into two categories: (1) two-stage algorithms based on region proposal represented by the R-CNN series[7–9]. (2) 

one-stage algorithms based on regression represented by SSD[10], RetinaNet [11], and YOLO series[12–15]. The 

former one generates regional proposals before classifying objects. Although it could obtain a high detection 

accuracy, its real-time performance is poor, and the network is too massive to be deployed. By contrast, the latter 
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one transforms the detection into a regression problem and outputs all predicted bounding boxes directly. Thus, it 

is more efficient in computation and more suitable to be deployed in mobile and embedded devices. 

The YOLO series models of one-stage algorithms are widely used in industry and they also performed well in 

floating garbage detection. Niu et,al [16] proposed an automated river trash monitoring system called SuperDock. 

It includes a river trash detection module based on YOLOv3. In addition, a dataset has been generated for training 

and testing. They improve the loss function and lightweight of the original YOLOv3, and the improved YOLOv3 

achieved 81.2% accuracy with an average processing time of only 0.038 seconds. However, the model based on 

the YOLOv3 has low detection accuracy in the face of small targets and complex environments, due to its limited 

feature fusion capability. Hasany et,al [17] presented a novel autonomous robotic system equipped with computer 

vision that helps to detect floating garbage. They first used YOLO and RetinaNet to train on their homemade 

dataset, but the prediction time for every single image is more than 20 seconds. Then they tried Tiny-YOLO, a 

smaller network, which achieves 86.9% mAP and takes 3.5 seconds to process a single image on the Raspberry 

Pi. Kong et,al [18] develop an intelligent water cleaning robot system called IWSCR for collecting floating plastic 

garbage. The network was trained on the proposed floating garbage dataset with 91% mAP. Aldric SiO et,al [19] 

developed a system for identifying plastic bottles on the surface of rivers using Raspberry Pi 4B. The detection 

algorithm is based on YOLOv5, with an overall accuracy of 84.3%. The network was planted with embedded 

hardware, but its detection accuracy is still low. Nguyen et,al [20] reduced computing costs and improved training 

and reasoning speed by using MixConv and reduced detector heads based on YOLOv5, which is more suitable to 

be deployed in embedded device. Recently, transform and attention mechanism began to rise in the field of target 

detection. Chengwenyuan Huang et,al [21] combined YOLOv5 with CBAM and transform to build a new network 

to detect surface targets, which exceeded the performance of the original YOLOv5 with its own dataset. All of 

them improved the detection accuracy of the network based on YOLOv5, which proves its effectiveness in target 

detection. However, these networks are still not good enough in the trade-offs among model size, inference speed, 

and detection accuracy. Kaiyuan Dong et,al [22] proposed a cross-layer weighted path aggregation network that 

incorporates two bottom-up paths for weighted feature fusion, enabling feature interactions across dimensions and 

spatial domains. Additionally, they introduced and applied a double residual group convolution to both the 

backbone network and the cross-layer weighted path aggregation between networks. Consequently, the feature 

layers integrate rich semantic information with fine-grained details. Although these systems obtained some 

achievements in floating garbage detection, few studies are from the perspective of USVs. Moreover, the balance 

and trade-offs among model size, inference speed, and detection accuracy needs to improve. 

YOLOv5n is a kind of YOLOv5, which not only maintain the efficiency but also has small parameters. It is 

conducive to be deployed on embedded devices for unmanned surface vehicles. Thus, we adopted it as a baseline 

in our method for garbage detection which aims to exhibit an optimal trade-off between parameter efficiency, 

real-time performance and detection accuracy. Its structure is shown in Fig.1,and the contributions of this paper 

are summarized as follows. 

(1) Propose Dual Block Module (DBM) for the backbone based on dual path feature fusion to improve accuracy 

while keeping real-time performance. 

(2) Propose QarepC3 module for the neck of the network based on reparameterized model to improve accuracy 

with slightly reduction in parameters. 

(3) Propose a new attention mechanism named Joint Attention Module(JAM) and EMIOU by making full use of 

the unique traits of surface garbage. 

(4) Propose a much feasible solution by integrating efficient modules for surface garbage detection for unmanned 

surface vehicle. 
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Fig. 1 The proposed network architecture 

 

OUR APPROACH 

The DBM structure and a new-style dual backbone 

Detecting garbage on the water is a challenging task due to the dynamic surface conditions caused by factors such 

as weather, sunlight, waves, reflections, and so on. Sometimes, garbage would even share similar colors with the 

water ripples and be obscured by foam or other objects. These presents a big challenge to the feature extraction 

of object detection networks. Thus, improving the capability of backbone, which accounts for most of the 

parameters in the network, is an important mean in feature extraction. 

To enhance the network’s feature extraction ability, DBM, a novel architectural component, was integrated into 

the backbone network. Inspired by the method of two-path feature fusion, the DBM employs a dual-branch 

structure. In contrast to the C3 structure, the DBM architecture comprises two branches of equal depth. 

 

Fig. 2 C3 module 
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As we know, the C3 structure within the YOLOv5 backbone contains two branches: one branch directly passes 

through n bottleneck structures, while the other branch undergoes a single 1x1 convolution. Its structure is shown 

in Fig.2. The green convolution in the figure represents 1*1 convolution. This configuration results in a significant 

depth disparity between the two branches in the C3 structure. Although this depth disparity facilitates the network

’s ability to integrate deep and shallow feature information, during actual network inference process, the shallow 

branch must wait for the deep branch to complete its computations before proceeding with further operations. 

This results in inefficiencies, such as increased inference time and underutilized hardware resources. 

 

Fig. 3 (a)Proposed dual backbone network (b)Traditional 

dual backbone network 

Adopting the concept of dual backbone network, the feature extraction module is added in both branches in DBM. 

Although the C3 structure also has two branches, one of them does not participate in feature extraction, and thus 

it cannot be considered a dual backbone. This parallel architecture enables the model to learn and extract diverse 

features from the input data. By combining their outputs, the model leverages these different features to make 

predictions. This feature fusion enables the model to capture multiple facets of the input data, thereby improving 

performance of feature extraction.The parallel structure allows the model to flexibly adjust the weights and 

parameters of different branches according to the task requirements. During the training process, the model can 

automatically learn how to balance the contributions of different branches to optimize overall performance.  

The structures of the proposed and traditional dual backbone network are shown in Fig.3.The newly designed 

backbone is similar to but different from the traditional dual backbone network, in which one backbone primarily 

serves the other. The newly network fuses features from both backbones at each stage. These fused features then 

serve as the common input for both backbones in the next stage, thereby enhancing the network’s robustness 

and feature extraction capabilities.Additionally, our proposed backbone architecture deviates from the 

combination of two fully independent backbones. Instead, it has two distinct columns of feature extraction 

modules. These columns share specific intermediate layers, resulting in fewer parameters than the traditional dual-

backbone structure. 

At the same time, to avoid introducing additional branches that could increase memory usage and slow down the 

model’s running speed, the Qarepconv is employed based on reparameterization. The final DBM built in our 

network is shown in Fig.4. 
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Fig. 4 DBM of backbone 

The reparameterized convolution involves using a multi-branch model during training, and merging the branches 

into a main 3×3 convolution during inference to create a single-path model [23]. This approach combines the 

higher precision of the multi-branch structure with fewer parameters and higher inference speed of the single-

branch structure.However, common reparameterization models suffer a significant loss of accuracy after 

quantization, which hinders their deployment on hardware platforms. To address this issue, Qarepconv 

implemented improvements by redesigning the network structure and adjusting parameters through analyzing the 

conditions influencing quantization error, so that Qarepconv can greatly reduce the quantization error while 

maintaining the tradeoff between accuracy and speed [24].The transformation process of Qarepconv between 

inference and training is shown in Fig.5. Its principle is that the parameters of the BN layer can be merged with 

the parameters of the convolutional layer, resulting in a convolutional layer with bias. At the same time, parallel 

3×3 convolutions and 1×1 convolutions can also be equivalent to a single 3×3 convolution [23]. During the 

training phase, Qarepconv consists of three parallel branches. After training, each of these three branches is 

individually transformed into a 3×3 convolution. These parallel 3×3 convolutions are then fused and integrated 

with a BN layer to form a single 3×3 convolution for detection. 

 

Fig. 5 Qarepconv transformation process 

The proposal of the QarepC3 in the neck 

In contrast to the backbone, which is mainly responsible for feature extraction, the main function of the neck is 

feature fusion. However, the two branches of the DBM have similar depths, which prevents the module from 

blending features in deep layers and shallow layers. To control the overall network parameters, the Cross-Stage 

Partial (CSP) structure was consistently employed in the neck architecture to combine deep and shallow features. 

The proposed QarepC3 structure, based on CSP, is shown in Fig. 6. It consists of two branches: one branch directly 

passes through n Qarepconv, while the other branch undergoes a single 1x1 convolution. Qarepconv further 

reduces the risks of gradient vanishing and explosion in the network due to its branch design of merging deep and 
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shallow information. Furthermore, owing to its reparameterization design, it does not increase the number of 

network parameters. 

 

Fig. 6 The architecture of QarepC3 

Joint Attention Module 

In real-world scenarios, the accumulation of garbage on the water surface is a prevalent issue caused by the water 

flow. Images captured by USVs often show garbage concentrated in localized areas rather than being evenly 

distributed. This leads to additional challenges for object detection models, with the spatial attention mechanism 

emerging as an effective solution. 

The spatial attention mechanism introduces attention weights during the feature extraction process so that the 

model can automatically identify the key regions of the target. This approach is typically based on a convolutional 

neural network (CNN) architecture that adjusts the weights of different regions by computing the corresponding 

attention weights. Consequently, the model can pay more attention to the target-related regions to improve 

detection performance. Channel attention has also been demonstrated effective in enhancing the performance of 

dual backbone neural networks.The channel attention mechanism adaptively learns the importance of each 

channel and assigns weights accordingly.  

Integrating the spatial and channel attention mechanisms significantly enhances the performance of our network. 

Furthermore, it has been observed that applying channel attention before spatial attention is more effective than 

other combinations [25]. Thus, the JAM was proposed, which incorporates channel attention and spatial attention 

components. 

 

Fig. 7 The architecture of JAM 
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The structure of JAM is shown in Fig. 7. For an input feature map X of dimensions W×H×L, we initially apply 

average pooling and max pooling operations to obtain two 1×1×W feature maps, respectively representing the 

global average and maximum features across each channel. Subsequently, these two feature maps undergo 1×1 

convolution, followed by an element-wise addition and a Sigmoid activation function to constrain the weights 

within the range of 0–1, thereby yielding a 1×1×W channel attention feature map. The employment of 1×

1convolutions instead of traditional fully-connected layers aims to reduce the number of parameters while 

mitigating information loss caused by dimensionality reduction operations [26].This channel attention feature map 

is then element-wise multiplied with the input feature map X, producing an enhanced channel-attentive feature 

representation X′ of dimensions W×H×L. Subsequently, average and max pooling operations are performed 

on X′ to obtain two W×H×L feature maps. These two feature maps are then concatenated, followed by a 7×

7 convolution, producing a single-channel feature map. After applying a Sigmoid activation function, this single-

channel feature map is element-wise multiplied with X′ to get the final enhanced feature representation X′′ 

with dimensions W×H×L, incorporating both channel and spatial attention. 

However, adding the attention module at the low level of the network is not very effective where the number of 

channels in the feature map is too small and the resolution is too high. Additionally, adding the attention module 

in the highest level of the network can easily cause overfitting when the number of channels is excessive. So our 

JAM, which is connected by the channel attention mechanism and the spatial attention mechanism, is integrated 

into the final DBM module at the end of the backbone. It is named Attention Dual Block Module (ADBM), as 

shown in Fig. 8. 

 

Fig. 8 The flow chart of ADBM 

The EMIOU 

When performing target detection on USVs, significant differences arise in comparison to fixed target detection 

equipment or unmanned aerial vehicles. Owing to the motion characteristics of USVs, the distance between the 

USV and the target is continuously changing, leading to substantial variations in the scale of the object to be 

detected . These scale variations present a significant challenge for accurate positioning of bounding boxes for 

networks. 

Specifically, when the USV is near the target, the size of the object to be detected in the image becomes relatively 

large, and when the USV is away from the target, the size of the object to be detected becomes relatively small. 

These scale variations pose a significant challenge for the network to accurately adjust the size and positioning of 

the bounding boxes to adapt to objects of varying scales. 

The bounding box regression loss of YOLOv5 is calculated by CIOU.The formula for CIOU is as follows: 
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Where A and B represent the ground truth bounding box and the predicted bounding box respectively, ctrA  and  

ctrB represent the center point of A and B respectively, w and h refer to the width and height of the rectangular 

box respectively,α is a weighting function, and v is used to measure the consistency of the aspect ratio, c is the 

diagonal distance of the smallest enclosing rectangle.$\rho$ represents the Euclidean distance between two points. 

Building upon the  IOU, the CIOU additionally accounts for the relationship between the central point positions 

and the aspect ratios of the predicted and ground truth bounding boxes. However, it may not adequately address 

the complex scenarios encountered in garbage detection on water surface. 

According to the concept of EIOU[27], the aspect ratio component of the CIOU metric is decoupled to 

independently calculate the  length and width ratios between the ground truth and predicted bounding boxes. This 

directly minimizes the difference between the width and height of the ground truth and predicted bounding boxes, 

resulting in faster convergence.However, this loss function will lose its optimization ability,when the predicted 

and ground truth bounding boxes have the same aspect ratio but the height and width are completely 

different[28].Consequently, we further incorporate the distance loss between the upper left and lower right corners 

of the ground truth and predicted bounding boxes.We call it EMIOU, and its formula is as follows: 
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Where UL and BR stand for Upper Left and Bottom Right respectively, ULA   represents the upper left corner of 

the ground truth bounding box A, while E is the minimum enclosing rectangle of the predicted and ground truth 

bounding boxes.L1 is the functional component that measures the distance between the center points of two boxes, 

L2 measures the distance between the vertices of two boxes, and L3 measures the difference in edge lengths 

between the two boxes. 

EXPERIMENT RESULTS AND DISCUSSIONS 

Experimental Dataset 

The FloW dataset [29] is the world's first floating garbage detection dataset from the viewpoint of USVs. It is 

published by ORCAUBOAT in collaboration with Turing Award winner Yoshua Bengio and other researchers. 

FloW includes an image sub-dataset FloW-Img and a multimodal sub-dataset FloW-Radar-Img(FloW-RI). FloW-
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Img is adopted as the dataset used in this paper,because our model is based on visual tasks. It was collected by  

cameras and contains a total of 2000 images and 5217 ground truths, of which small targets (area $<$ 32×32) 

account for more than half of them. We randomly select 1200 images for training, 400 images for validation, and 

400 images for testing. 

Evaluation Criteria 

To evaluate the pros and cons of the models comprehensively, the evaluation indicators used in this paper include 

Parameters, Giga Floating Point Operations (GFLOPs), Inference Time and mean Average Precision 

(mAP).Parameters refer to the total number of parameters in the model.  GFLOPs stand for billion Floating-Point 

operations, which are used to measure model complexity. Inference Time refers to the time taken by the model to 

infer an image, which is measured in milliseconds. And the mAP is a comprehensive measure of the accuracy of 

the object detection algorithm. mAP@0.5–0.95 is the average mAP on different IOU from 0.5 to 0.95 with astride 

of 0.05. Its formula is derived as follows: 
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Where i stands for a category,  n stands for the total number of categories, P stands for precision rate and R stands 

for recall. AP stands for the area under the precision and recall curves, which represents the precision value of a 

single category. Thus, the mAP stands for the average precision value of all category. 

Implementation Details 

The proposed algorithm is implemented based on Pytorch. The original image sizes are uniformly adjusted to 640 

× 640 during training. In the stage of data preprocessing, HSV color space enhancement is used to randomly adjust 

the hue, saturation, and value of the images to simulate different lighting conditions. And Copy-pasting data 

enhancement is also used to improve the network's detection effect of small targets. Copy-pasting pastes small 

targets (< 32 × 32 pixel) to any position in the image and generates new annotations, increasing the number of 

anchors by enlarging the number of small targets in each image, thus improving the contribution of small targets 

to the loss calculation. All experiments were performed using SGD optimizer with gradient descent, batch-size is 

set as 8, initial learning rate as 1e-2, cosine annealing hyperparameter as 1e-1, learning rate momentum as 0.937, 

and weight decay factor as 5e-4. The network was trained for a total of 300 epochs on a NVIDIA GeForce RTX 

3060 GPU in each experiment. 

Ablation Experiments 

To evaluate the effectiveness of each proposed modules in our algorithm, experiments are conducted on the FloW-

Img dataset to quantitatively analyze the detection accuracy, the number of parameters, and the complexity of the 

model.  
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Fig. 9 Visual comparisons of five different methods 

 Fig.9 shows the visual results of five networks with different modules. Where A represents YOLOv5n,B 

represents YOLOv5n + DBM,C represents YOLOv5n + DBM + QarepC3,D represents YOLOv5n + DBM + 

QarepC3 + JAM. It is evident that YOLOv5n struggles with detecting nearby targets that are partially occluded 

and distant targets that are densely packed. In Fig.9, the blue-circled area highlights the partially occluded targets, 

while the green-circled area indicates the densely packed distant targets. It can be seen that, with the improvement 

made by our proposed network, these difficulties have been progressively conquered. 

The results of the experiments are also shown in Table1. It can be seen that after upgrading the backbone of 

YOLOv5n with the DBM module, the network's accuracy increased. Although the number of parameters and 

calculation amount of the network increased, the inference time of the network did not increase much due to the 

dual branch with the same depth design. This means that increased computing does not require additional hardware 

costs to maintain real-time network performance. On this basis, the QarepC3 structure was constructed in the neck. 

The data shows that the model's accuracy is slightly improved.Due to the reparameterization design, the number 

of parameters and reasoning time are slightly decreased. Furthermore, adding the JAM and modifying the loss 

function   improved accuracy with a small price. Compared to YOLOv5n, the final network exhibits higher 

precision. Despite an increase in both parameters and computational complexity, the inference time has not 

significantly risen. 

 



Computer Fraud and Security  

ISSN (online): 1873-7056 

 

__________________________________________________________________________________________ 

1321 
 Vol: 2025 | Iss: 02 | 2025 

 

Table 1 Comparison between networks with different modules 

 Parameters (M) GFLOPs mAP@0.5–0.95 Inference Time (ms) 

A 1.76 4.1 0.342 10.2 

B 2.36 5.8 0.356 10.5 

C 2.33 6.2 0.357 10.6 

D 2.34 6.2 0.363 11.5 

Ours 2.34 6.2 0.365 11.5 

 

Comparison with State-of-the-arts 

Table 2 Comparison results between state-of-the-arts methods and ours 

 Parameters (M) GFLOPs mAP@0.5–0.95 Inference Time (ms) 

YOLOv8n[27] 3.01 8.2 0.355 14.5 

YOLOv7Tiny[28] 6 13 0.337 8.4 

YOLOXTiny[29] 5.03 18.93 0.359 27.9 

Faster rcnn[30] 41.12 193.78 0.388 120.1 

CenterNet[31] 14.43 48.34 0.396 72.5 

RetinaNet[32] 36.1 204.36 0.398 121.1 

Paper[20] 4.9 13.1 0.360 17.7 

Paper[21] 6.6 15.6 0.361 15.2 

Ours 2.34 6.2 0.365 11.5 

We also compare the proposed model with eight state-of-the-arts object detection methods, including the Faster-

RCNN, CenterNet ,RetinaNet, YOLOX-Tiny , YOLOv7-Tiny, YOLOv8n and network proposed by 

reference[20]and[21]. To ensure the consistency of the comparison, all the models are trained on the FloW-Img 

dataset. As shown in Table 2, it can be observed that larger networks such as Faster R-CNN, CenterNet, and 

RetinaNet achieve relatively high accuracy.However, their parameters, GFLOPs, and inference time are 

considerably much higher, often several times greater than those of lightweight networks. Obviously, they are not 

suitable to be deployed on USVs with limited hardware performance. At the same time, YOLO series including 

YOLOv8n, YOLOv7-Tiny, YOLOX-Tiny are relatively lightweight networks, but their Parameters and the 

GFLOPs still exceed our network. In addition, comparing with other two state-of-the-art models specifically 

designed for garbage detection on water surface, our model still outperforms in overall performance. Considering 

the detection accuracy, speed and model size comprehensively, it can conclude that our model is the best choice 

in garbage detection on water surface for actual deployment. 

CONCLUSION 

In this paper, we propose a novel lightweight and high-precision network architecture based on YOLOv5n, 

addressing the challenge of garbage detection on water surface for USVs. In this paper, the DBM structure has 

constructed and employed in backbone part to effectively enhance the network's performance while preserving its 
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real-time capabilities. Then, QarepC3 constructed by Qarepconv is used to  neck part to further improve network 

performance. Finally, according to the characteristics of floating garbage on the water surface, the JAM and 

EMIOU are constructed to further improve the network performance.Comprehensive comparative evaluations 

with state-of-the-art networks suggest that the proposed network offers a potentially optimal solution for garbage 

detection on water surface in the current field. Our6 further work will be dedicated to model deployment and 

enabling real-time garbage detection algorithm on embedded devices. 
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