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Abstract: In human disease modeling, blood transcriptomics data has played a crucial role in revealing 

regulatory abnormality. As patterns underlying blood transcriptomics data are subtle, it is insufficient to rely 

on temporal expression features to predict future stages of brain diseases. Spatial features have encoded 

meaningful information about gene-level and cell-level interactions. Progression of neurological disorder lasts 

10-15 years, indicating that disease-specific gene graphs are changing. In order to employ dynamic spatial 

features, this work proposes a novel dynamic spatiotemporal graph learning (DST-GNN) to conduct disease 

progression prediction. The DST-GNN method aims to integrate expression patterns and dynamic gene graphs. 

Validation experiments about benchmark whole-blood RNA-seq datasets from the AMP-PD platform have 

demonstrated the effectiveness and advantages of the DST-GNN. 
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1. INTRODUCTION 

In precision medicine, it is important to recognize disease stages accurately. There are multiple types of 

biomedical dataset that can be used to conduct disease modeling. Among these datasets, gene expression data 

have played a crucial role. Previous works have investigated changes of gene expression levels to conduct 

molecular diagnosis. However, this is not accurate due to lack of deep-level representations. 

Compared with brain expression data [1]-[3], transcriptomic data measured from blood samples is extremely 

complicated and contain limited information. Traditional pattern recognition approaches [4]-[6] face difficulty in 

extracting and detecting meaningful patterns from blood expression data [7],[8]. With development of powerful 

deep learning models, it has became feasible to evaluate the process of dementia and cognitive decline from the 

subtle changes of blood expression levels. Such investigation may involve dysfunction of immune systems. 

In this case, spatial features could be useful in boosting performance and reliability diagnositic models. As it 

reflect structural changes or topological changes at the molecular level. For instance, gene network are inferred to 

capture meaningful changes of regulatory systems. It is noted that static gene graphs encode regulatory 

information at a specific time snapshot. Dynamic gene networks, which were inferred at multiple disease stages, 

have the potential to describe disease progression. Motivated by this, dynamic gene networks are inferred to get 

deep-level representations about disease states [9]. 

For pattern recognition approaches in biomedical model [10], graph neural network have been widely used in 

recognize meaningful patterns. Among multiple GNN derivatives, dynamic GNN has enhanced capabilities to 

capture meaningful patterns from omics data. More impotantly, multi-view learning technology offer the 

possibility of integrating temporal expression dynamics and gene graphs. 

With the support of dynamic gene graphs, a novel spatial-temporal graph learning framework has been proposed 

to deal with PD progression modeling. Using blood transcriptomics data as a training set, a dynamic GNN has 

played the backbone in assessing disease states as well as motor dysfunction. 

The contributions of this study are summarized as follows: 

- Spatial features of gene networks have been taken into account in disease modeling. 

- A dynamic spatial graph neural network was designed to capture dynamic spatial features and improve the 

performance of the model. 

- A Dual-Channel Transformer model framework was designed to integrate spatiotemporal (ST) 

representations. The Kolmogorov-Arnold Networks (KAN) model was used as a classifier to enhance 

nonlinear modeling capabilities. 
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2. RELATED WORKS 

2.1 Inference of gene network graphs 

Gene network analysis is a crucial method for uncovering the complex relationships between genes, exploring 

biological mechanisms, and identifying the underlying patterns of disease onset and progression. At present, 

various methods have been widely applied to the construction and analysis of gene networks. WGCNA [11] is a 

classical approach that constructs weighted networks by calculating correlations between gene expressions, 

identifies co-expression modules, and associates them with phenotypic traits. However, WGCNA primarily 

focuses on static networks, making it challenging to capture the changes in networks during dynamic biological 

processes. To address this limitation, MEGENA [12] was proposed. By employing multiscale embedded analysis, 

MEGENA reveals hierarchical and topological structures within gene networks, making it more suitable for 

analyzing complex biological systems. 

In recent years, deep learning techniques have also been introduced into the field of gene network inference. For 

instance, DeepTFni [13] is a deep neural network-based approach that focuses on identifying regulatory 

relationships between transcription factors and their target genes. By integrating gene expression and multi-omics 

data, DeepTFni significantly improves the accuracy of regulatory network predictions; however, its robustness in 

noisy data environments requires further optimization. On the other hand, PySCENIC [14], as a comprehensive 

toolkit, combines motif analysis based on transcription factor binding sites with co-expression network inference. 

This enables the simultaneous identification of transcription factors' direct target genes and their regulatory 

networks. 

2.2 Dynamic Graph Neural Networks 

In the context of temporal tasks, Dynamic Graph Neural Networks (DGNNs) [15] have become an important 

research direction in recent years, particularly in tasks that require capturing both graph structure and temporal 

evolution features, demonstrating superior performance. Traditional static Graph Neural Networks (GNNs) [16] 

primarily rely on fixed graph structures and node features, making it difficult to effectively handle temporal 

changes. However, DGNNs address this challenge by introducing a temporal dimension, enabling dynamic 

updates of node and edge features in the graph to adapt to time-varying conditions. For instance, CTGCN [17] 

introduces a dynamic graph neural network architecture based on a gating mechanism, which effectively captures 

the temporal and spatial dependencies by integrating temporal information with Graph Convolutional Networks 

(GCNs). ASTGCN [18], on the other hand, incorporates an attention mechanism to adaptively learn the spatial 

relationships between different nodes and the temporal dependencies between different time steps, overcoming 

the limitations of fixed weights in traditional methods and allowing the model to dynamically adjust its focus 

based on the specific characteristics of the data. DGCNN [19] presents a network architecture that combines 

dynamic graphs with spatiotemporal convolutions, effectively capturing the dynamic characteristics of traffic flow 

over time while adaptively modeling the spatial structure, thus overcoming the limitations of traditional methods 

that cannot simultaneously handle spatiotemporal dependencies. 

2.3 Multi-view Learning 

Multiview Learning [20]-[22] integrates data from different perspectives, enabling a more comprehensive 

understanding of the underlying structure and relationships within the data. It strengthens the complementarity 

between various perspectives, thereby facilitating the model’s thorough understanding of the data features. 

Traditional multiview learning methods mainly focus on how to effectively fuse information from different 

perspectives, such as through weighted fusion or feature-level fusion strategies. However, these methods often 

face challenges related to inconsistencies between perspectives and information redundancy, making it difficult 

to preserve the effectiveness of the information while avoiding the interference of redundant data. 

In multiview learning frameworks, deep neural networks, through information sharing and cross-modal learning, 

can automatically extract effective features from different perspectives and optimize and fuse these features. For 

example, the multiview learning approach based on Graph Attention Networks [23] enhances the model's 

discriminative ability by processing images from different perspectives. MAET [24] introduces a novel 

multimodal adaptive emotion transformer, which can flexibly handle inputs from multiple perspectives. TNNLS 
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[25] combines multi-task learning and multiview learning in the field of graph representation learning, achieving 

better performance. 

3. THE PROPOSED DST-GNN METHOD 

In order to conduct high-quality disease progression prediction model, this work proposes dynamic spatiotemporal 

graph learning architecture (DST-GNN) to integrate dynamic spatial features about gene networks, under the 

framework of multi-view learning. The model framework is shown in Fig 1. In this work, gene graphs play the 

role of spatial features. Specifically, spatiotemporal learning framework is employed to integrate temporal 

expression patterns and spatial features. 

 

Fig 1: The overview of DST-GNN method. The gene co-expression network represents spatial data, while the 

blood transcriptomics data corresponds to temporal data. A dynamic spatial GNN model is employed to integrate 

dynamic spatial information, followed by a dual-channel Transformer model to jointly model both spatial and 

temporal information, thereby obtaining a rich spatiotemporal representation. The KAN layer is subsequently 

applied for feature transformation, further enhancing the model's nonlinearity. 

3.1 Inference of dynamic gene graphs 

During computational modeling of disease dynamics,  genes expression levels contribute to a temporal 

perspective. For blood transcriptomics, changes of gene expression levels are subtle.  In order to enhance the 

predictive accuracy, deep-level representations are necessary. In this case, dynamic gene networks could 

contribute to a more powerful progression prediction model.  

The data from the past t time steps are used to predict the disease severity at time step t+1. In the whole blood 

transcriptomics data, the gene expression data X at each time snapshot consists of m patients and n genes. To 

construct a dynamic gene atlas, the MEGENA algorithm  is employed to infer the gene co-expression network  

[26]-[28] for Parkinson's disease (PD-GCN). 

𝑟𝑖𝑗 =
∑ (𝑥𝑖𝑘−𝑥𝑖)(𝑥𝑗𝑘−𝑥𝑗)
𝑚
𝑘=1

√∑ (𝑥𝑖𝑘−𝑥𝑖)
2∑ (𝑥𝑗𝑘−𝑥𝑗)

2𝑚
𝑘=1

𝑚
𝑘=1

(1)

The 𝑟𝑖𝑗  is the gene correlation score. For genes i and j , the expression levels in the m-th patient are represented 

as (xi1,xi2 ,... ,xim) and (xj1,xj2,... ,xjm) (xj1,xj2 ,... ,xjm), respectively. xi and xj represent the average expression 

levels of genes  i  and j across all patients. 
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The PD-GCN at each time snapshot p is defined as Gp = (Vp, Ep), where the vertex set Vp  represents the set of 

genes, i.e., Vp = g1, g2, … , gp, with each gene gi corresponding to a vertex. The edge set Ep represents the co-

expression relationships between genes at time p , where if 𝑟𝑖𝑗 > 1, an edge exists between gene i and gene j. 

𝐸𝑝 = {(𝑔𝑖 , 𝑔𝑗) ∣ 𝑟𝑖𝑗 > 0.1} (2) 

3.2 Dynamic Spatial Graph Neural Network 

In gene co-expression network analysis and whole blood transcriptome data processing, the interactions between 

genes are not static; they change with time, experimental conditions, and biological states. Traditional static graph 

neural networks are not capable of effectively capturing these dynamic changes, whereas dynamic graph neural 

networks can track changes in the graph structure and capture the dynamic characteristics of gene expression 

patterns over time, thereby enabling a better understanding of gene interactions under different biological 

conditions. Overview of dynamic graph neural networks is shown in Fig 2. 

 

Fig 2: The architecture of Dynamic Spatial Graph Neural Network. This framework integrates multi-stage 

dynamic gene graphs to capture structural changes in gene networks, enabling the investigation of evolutionary 

mechanisms that drive disease progression. 

In Fig 2, the Graph Attention Network (GAT) is used to process spatial information, while the Gated Recurrent 

Unit (GRU) plays a key role in dynamically updating the network parameters to capture the structural changes of 

the dynamic gene graph over time. Specifically, Gtand Xt represent the spatial and temporal information at time 

snapshot t, respectively. The gene graph G is then fed into the stack of GAT layers to construct multi-level graph 

features, thereby enhancing the dynamic spatial representation. Through this process, GAT effectively captures 

the complex spatiotemporal relationships between nodes in the graph over time. The attention coefficient aij is 

computed according to the following formula: 

α𝑖𝑗 =
exp (𝑊2(𝑊1𝑣𝑖 ∥ 𝑊1𝑣𝑗))

∑ exp(𝑊2(𝑊1𝑣𝑖 ∥ 𝑊1𝑣𝑘))𝑘∈𝑁𝑖

(3) 

Where W1  and W2  represent the weight matrices of the fully connected layers, || denotes the concatenation 

operation, and v represents the nodes in the graph. k ∈ Ni refers to the first-order neighboring nodes of node i. 

Subsequently, the attention coefficient αij is used to compute the feature output corresponding to node i: 

𝑣𝑖
′ = σ(∑ α𝑖𝑗𝑊1𝑣𝑗

𝑗∈𝑁𝑖

) (4) 

In Eq (4), W represents the weight matrix, and σ denotes the non-linear activation function. This study employs a 

three-layer GAT (Graph Attention Network) architecture, which produces outputs G1, G2, and G3, respectively. 

To obtain a more comprehensive spatial representation, these outputs are concatenated along the feature 

dimension to generate the final spatial feature XS. 

𝑋𝑆 = 𝐶𝑜𝑛𝑐𝑎𝑡[𝐺1, 𝐺2, 𝐺3] (5) 
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To encode the dynamic gene graph and obtain the hidden states of the nodes at future time steps, the final spatial 

representation XS is fed into the GRU, with its forward propagation formula defined as follows: 

𝑧𝑡 = σ(𝑋𝑆𝑊𝑍 + 𝑈𝑍ℎ𝑡−1) (6) 

𝑟𝑡 = σ(𝑋𝑆𝑊𝑟 + 𝑈𝑟ℎ𝑡−1) (7) 

ht̃ = tanh(XSWx + Uh(rt ⋅ ht−1)) (8) 

ℎ𝑡 = (1 − 𝑧𝑡)ℎ𝑡 − 1 + 𝑧𝑡 ∗ ℎ𝑡̃ (9) 

Where XS  represents the input vector of the t-th time snapshot, while Wz, Wr, Wh, Uz, Ur, and Uh are weight 

matrices. ht−1 retains the structural information of the previous time snapshot t-1, and σ denotes the non-linear 

activation function. XS is linearly transformed to generate the update gate zt and the reset gate rt. In this process, 

the temporal information is preserved through the reset gate and updated as ht̃. 

3.3 Dual-Channel Transformer 

This section introduces a dual-channel Transformer architecture designed to establish an effective interaction 

mechanism between the temporal and spatial views, thereby enhancing the representation of data features. 

As shown in part (B) of Fig 1, XS represents dynamic spatial features, and XT represents temporal features. These 

two features are mapped to the corresponding query (Q), key(K), and value(V) vectors through linear layers. The 

corresponding formulas are as follows: 

𝑄 = 𝑋𝑊𝑞 (10) 

𝐾 = 𝑋𝑊𝑘 (11) 

𝑉 = 𝑋𝑊𝑣 (12) 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑆 , 𝐾𝑇 , 𝑉𝑇) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑆𝐾𝑇

𝑇

√𝑑𝑘
)𝑉𝑇 (13) 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑇 , 𝐾𝑆, 𝑉𝑆) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑇𝐾𝑆

𝑇

√𝑑𝑘
)𝑉𝑆 (14) 

Where Wq, Wk, and Wv are learnable parameters of different feedforward neural networks, and (QS, KS, VS) and 

(QT , KT , VT ) are the query, key, and value corresponding to XS  and XT , respectively. Then, the spatial and 

temporal features XS and XT generated by Attention(QS, KT, VT) and Attention(QT, KS, VS) are concatenated to 

obtain a consensus representation Xconsensus. 

𝑋𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 = 𝐶𝑜𝑛𝑐𝑎𝑡[𝑋𝑆, 𝑋𝑇] (15) 

The fused feature Xconsensus is fed into a classifier composed of Kolmogorov-Arnold Networks (KAN) to predict 

the classification result. 

𝑦̂ = 𝑓𝐾𝐴𝑁(𝑋𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠) (16) 

Where fKAN represents the KAN, and ŷ is the predicted output. Ultimately, we compute the cross-entropy loss 

using ŷ and y nd optimize the model using gradient descent. 

𝐿𝑆𝑇𝐺𝐴𝑇
(𝑡) = −

1

𝑁𝑇
∑∑∑𝑦𝑖,𝑡,𝑐

𝐶

𝑐=1

log(𝑦̂𝑖,𝑡,𝑐)

𝑇

𝑡=1

𝑁

𝑖=1

+ 𝜆∑‖𝜃𝑗‖
2

𝑗

(17) 

Where N epresents the number of samples, and T represents the number of time snapshots. yi,t,c denotes the true 

label of the i-th sample at time snapshot t belonging to class c, while 𝑦̂𝑖,𝑡,𝑐 represents the predicted probability of 

the i-th sample at time snapshot t. A regularization term, λ∑ |j θj|
2, is introduced into the original loss function to 

maintain the balance between the two penalty terms. 
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4. EXPERIMENTAL OUTCOMES AND ANALYSIS 

4.1 Datasets 

Experiments were conducted on two real datasets, PPMI and PDBP. The data is represented as two-dimensional 

matrices, where the rows correspond to patient IDs and the columns correspond to gene IDs. The labels are derived 

from the Hoehn & Yahr (H&Y) [29] staging included in the Unified Parkinson’s Disease Rating Scale (UPDRS) 

[30]. H&Y staging is a clinical tool for assessing motor function in Parkinson’s disease, consisting of five stages 

that describe disease progression from mild unilateral symptoms to severe bedbound dependency: Stage 1 

represents mild unilateral symptoms without affecting daily activities; Stage 2 involves bilateral symptoms 

without postural instability; Stage 3 is characterized by postural instability while retaining independent living; 

Stage 4 indicates severe functional disability requiring assistance; and Stage 5 corresponds to bedridden or 

wheelchair dependency with loss of independent living. 

In the PDBP dataset, 385 patients were included, and data collected at 6 months (M6), 12 months (M12), and 18 

months (M18) post-baseline was used to predict the H & Y staging at 24 months (M24). In the PPMI dataset, 203 

patients were included, and data collected at 6 months (M6), 12 months (M12), and 24 months (M24) post-baseline 

was used to predict the H&Y staging at 36 months (M36). For both datasets, the top 500 most variable genes were 

selected to construct dynamic gene graphs. The detailed information is shown in Table I. 

TABLE I: Dataset description 

Dataset Source Samples Features Nodes Visits Edges 

PPMI Whole blood data 278 58780 500 

M6 1470 

M12 1447 

M24 1469 

M36 1467 

PDBP Whole blood data 278 58780 500 

M6 1459 

M12 1440 

M18 1447 

M24 1450 

 

4.2 Implementation Details 

All experiments were implemented and evaluated on an NVIDIA GeForce RTX 4090 GPU. For model training, 

we utilized the AdamW [31] optimizer, with learning rates tuned to 0.000001, 0.00001, and 0.0001. The cross-

entropy loss function was employed for loss computation. In our experiments, the graph neural network adopted 

a three-layer GAT model with attention heads set to 4, 3, and 4, respectively. Additionally, the dual-channel 

Transformer model used 8 attention heads. 

In this study, four effectiveness metrics were employed to evaluate the performance of the prediction model: 

Accuracy (Acc), F1-score(F1), Recall(Rec), and Precision(Pre). Additionally, to mitigate the impact of random 

initialization, five-fold cross-validation is conducted for all experiments, and the average results are utilized for 

comparison. 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(18) 

𝑅𝑒𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(19) 

𝑃𝑟𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(20) 
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𝐹1 =
2 × 𝑃𝑟𝑒 × 𝑅𝑒𝑐

𝑃𝑟𝑒 + 𝑅𝑒𝑐
(21) 

Where TP, TN, FP, and FN represent the number of true positive cases, true negative cases, false positive cases, 

and false negative cases, respectively. 

4.3 Inference of dynamic gene graph 

    

(a) PPMI-M6 (b) PPMI-M12 (c) PPMI-M24 (d) PPMI-M36 

    

(e) PDBP-M6 (f) PDBP-M12 (g) PDBP-M18 (h) PDBP-M24 

Fig 3: The topological structures of PD-GCN at different disease stages were visualized. For the PPMI cases, 

these stages include follow-ups at 6 months (M6), 12 months (M12), 24 months (M24), and 36 months (M36) 

after the onset of Parkinson's disease. Using a Parkinson's disease progression prediction model, the study 

investigates the relationship between changes in gene network topologies and the H&Y staging scale. 

In Fig 3, it can be observed that over time, the gene co-expression network for Parkinson's disease (PD-GCN) 

gradually becomes more complex and chaotic, with increasingly intricate relationships between genes. For 

example, in the case of PDBP, in the early stages (M6), the network structure remains relatively stable, and the 

interactions between genes are balanced. This stage represents the onset of the disease, where, despite the 

beginning of neurodegenerative damage, the overall gene regulatory network has not yet experienced significant 

disruption, and the gene co-expression relationships remain stable. However, over time, particularly in the middle 

stages (M12, M24) and the later stage (M36), the gene co-expression network becomes more complex and 

disordered. This change reflects the degenerative alterations in neural cells and the gradual loss of synaptic 

function, leading to more complex regulatory relationships between genes. As the disease advances, neurons in 

the nervous system progressively lose function, and the connectivity between neurons, as well as gene expression, 

changes, which in turn leads to instability and disorder in the network structure. During this process, the 

interactions between genes become imbalanced, with some genes being excessively activated or suppressed, 

thereby exacerbating neurodegenerative changes. This transformation not only reflects the molecular progression 

of the disease but also highlights the trend of increasing severity of neurodegenerative diseases with age. 

4.4 Performance comparison 

This study presents a network architecture called Dynamic Spatiotemporal Graph Learning (DST-GNN), aimed 

at investigating subtle variations in blood expression data and topological distortions in gene graphs for predicting 

short-term disease progression. To validate the effectiveness of the proposed method, comparative experiments 

were conducted on multiple public datasets, and its performance was compared with state-of-the-art baseline 

methods. These methods briefly presented as below: 
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⚫ FC-LSTM [32]: FC-LSTM introduces fully connected layers on top of the LSTM, enabling the model to 

effectively integrate information at each time step and capture both short-term and long-term dependencies 

in the time series. 

⚫ Transformer [33]: Transformer effectively captures complex nonlinear relationships and long-term 

dependencies in the sequence through its self-attention mechanism. 

⚫ MLA-GNN [34]: The Multi-level Attention Graph Neural Network is a graph neural network that uses gene 

co-expression networks as input. 

⚫ STGAT [35]: Spatial-Temporal Graph Attention Networks use the graph attention mechanism to capture 

spatial dependencies in the graph, while incorporating an LSTM network to extract temporal features. 

⚫ STS-DGNN [36]: The Dynamic Graph Neural Network with Spatial-Temporal Synchronization fully 

considers the dynamics of graph sequences. 

TABLE II: Comparison of evaluation metrics obtained by DST-GNN and candidate PD progression prediction 

methods. 

Datasets Method Acc F1 Rec Pre 

PPMI 

FC-LSTM [32] 0.672 ± 0.009 0.546 ± 0.005 0.669 ± 0.009 0.463 ± 0.001 

Transformer [33] 0.663 ± 0.013 0.541 ± 0.012 0.659 ± 0.014 0.457 ± 0.006 

MLA-GNN [34] 0.673 ± 0.011 0.572 ± 0.028 0.672 ± 0.011 0.647 ± 0.040 

STGAT [35] 0.675 ± 0.019 0.595 ± 0.039 0.678 ± 0.019 0.707 ± 0.014 

STS-DGNN [36] 0.679 ± 0.024 0.617 ± 0.041 0.684 ± 0.023 0.697 ± 0.036 

DST-GNN(Ours) 0.749 ± 0.013 0.718 ± 0.009 0.748 ± 0.017 0.784 ± 0.025 

PDBP 

FC-LSTM 0.650 ± 0.009 0.518 ± 0.006 0.649 ± 0.007 0.432 ± 0.013 

Transformer 0.633 ± 0.008 0.504 ± 0.001 0.615 ± 0.044 0.438 ± 0.026 

MLA-GNN 0.685 ± 0.006 0.595 ± 0.017 0.687 ± 0.006 0.721 ± 0.008 

STGAT 0.683 ± 0.005 0.590 ± 0.021 0.684 ± 0.006 0.725 ± 0.007 

STS-DGNN 0.691 ± 0.008 0.611 ± 0.023 0.691 ± 0.005 0.730 ± 0.005 

DST-GNN(Ours) 0.744 ± 0.009 0.710 ± 0.012 0.744 ± 0.008 0.770 ± 0.011 

 

Table II presents a detailed comparison of DST-GNN with other candidate prediction methods across various 

evaluation metrics. Meanwhile, Fig 4 illustrates the ROC curve comparison of the respective candidate methods. 

We can categorize the models into two types. The first type consists of single-view models, such as FC-LSTM, 

Transformer, and MLA-GNN. Among them, FC-LSTM and Transformer utilize only blood transcriptomics data, 

while MLA-GNN is based solely on gene co-expression network graphs. The second type includes dual-view 

spatiotemporal collaborative models, such as STGAT and STS-DGNN, which simultaneously leverage blood 

transcriptomics data and gene graphs. Research indicates that models trained on gene graphs outperform those 

trained solely on blood transcriptomics data, demonstrating the critical value of gene graphs as spatial features in 

disease evolution modeling. Furthermore, dual-view spatiotemporal collaborative models, which integrate the 

spatial distribution and temporal dynamics of the data, significantly outperform models that rely solely on 

temporal or spatial information. Our model, by fusing the dynamic changes in gene expression patterns with the 

topological features of the co-expression network, provides a more precise representation of gene regulatory 

mechanisms and identifies key regulatory factors. Compared to all baseline methods, our model achieves superior 

performance across all evaluation metrics. 
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(a) PPMI (b) PDBP 

Fig 4: Performance comparison of DST-GNN with other baseline methods 

4.5 Ablation study 

As shown in Table III, ablation experiments were designed to assess the impact of each component on model 

performance. The experiments include three different configurations: (i) DST-GNN without dynamic spatial 

GNN, (ii) DST-GNN without the dual-channel Transformer, using concatenation for spatiotemporal feature 

fusion, and (iii) DST-GNN without KNN, using a standard fully connected layer as the classifier. 

TABLE III: Ablation analysis for DST-GNN 

Dynamic 

Spatial GNN 

Dual-Channel 

Transformer 
KAN 

PPMI PDBP 

Acc F1 Rec Pre Acc F1 Rec Pre 

 √ √ 0.743 0.719 0.717 0.730 0.690 0.614 0.691 0.734 

√ √  0.748 0.721 0.744 0.792 0.741 0.692 0.743 0.771 

√  √ 0.758 0.728 0.759 0.809 0.760 0.720 0.755 0.775 

√ √ √ 0.761 0.733 0.762 0.820 0.763 0.726 0.765 0.785 

 

From Table III, it can be observed that the dynamic spatial GNN component has the most significant impact on 

the performance of the DST-GNN model compared to the other two components, with an average increase of 9.5% 

in accuracy (ACC) across both datasets. This component is capable of dynamically updating the nodes and edges 

in the gene co-expression network, allowing it to capture subtle changes in real time. Furthermore, the dual-

channel Transformer architecture and the KAN structure also significantly improve the accuracy of PD 

progression prediction. While traditional spatio-temporal collaborative models consider the dynamics of the graph, 

they overlook changes in gene expression levels. In contrast, DST-GNN, through the dual-channel Transformer, 

effectively captures the relationships and interactions between gene expression and graph dynamics. Moreover, 

the KAN structure, compared to fully connected layers, better captures the complex dependencies in the temporal 

sequence, thereby enhancing the model’s ability to predict disease progression and gene dynamic changes. 

5. CONCLUSION 

Based on whole-blood RNA-seq data, the proposed DST-GNN method is effective to conduct progression 

prediction for Parkinson’s disease(PD). Under the framework of spatiotemporal learning, blood expression levels 

and dynamic gene graphs have been integrated to boost model performance in investigating motor dysfunction 

process of PD. As a kind of spatial feature, gene graphs are proven to valuable in disease modeling. The DST-

GNN has achieved superior performance than conventional ST-GNN and dynamic GNN, validating the 

effectiveness and advantage of dynamic gene graphs. It is noted that dynamic gene graphs are more informative 

than static graphs, by capturing evolving patterns of molecular networks. 
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