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Abstract: As real-life time series data are usually complex, the traditional dynamic time series 

model cannot achieve satisfactory prediction results. In this paper, we combine gray prediction with 

dynamic time series to construct a dynamic time series model based on gray prediction to improve 

the prediction accuracy of dynamic time series. Aiming at the missing data problem often faced in 

the process of dynamic time series modeling, we design the missing data recovery algorithm for 

dynamic time series based on Bayesian learning, and model the missing data prediction problem in 

dynamic time series as a multi-sparse vector recovery problem based on the theory of compressed 

sensing. Carrying out dynamic time series prediction simulation experiments, the residual sum of 

squares, residual median error, and average relative error of the dynamic time series model based 

on gray prediction in this paper are 0.616, 0.307, and 0.297, respectively, which are lower than those 

of the comparative traditional GM(1,1) model, and the time series analysis model. And in the 

missing data recovery simulation experiments, this paper's algorithm has a smaller RMSE at any 

data missing rate, and the RSME value of this paper's algorithm remains lower than 0.2 when the 

data missing rate reaches the highest 95%. 

Keywords: dynamic time series; Bayesian learning; gray prediction; compressed perception theory 

1 Introduction 

Obtaining data through a series of observations at a point in time is a commonplace activity, and in social, 

economic and other activities, many data are generated based on chronological order, such as weekly interest rates, 

daily stock closings, monthly price indices, annual sales volumes, etc., as observed in business [1-3]. Therefore, 

time series are widely covered within the fields of finance and economics, meteorology and hydrology, 

engineering and technology, natural sciences, social sciences, etc [4]. The study of such time-varying data has 

given rise to the discipline of time series analysis, which has contributed to the development of time series 

modeling and forecasting. Time series analysis is the theory and methodology established to analyze 

systematically observed time series data in order to seek its trend of change [5]. Statistical patterns of the object 
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of study are obtained through time series analysis, so as to predict its possible future values and make decisions 

about possible future problems for the purpose of controlling the whole system [6-8]. So far, this discipline has 

been fully developed, with a complete theoretical system and strong application, which is a good means to solve 

probability statistics and other related problems. 

Since the linear operation is closed in the Bayesian space, discussing the time series modeling problem under 

the algebra of Bayesian space can effectively overcome the adverse effects of various constraints on the time 

series data [9-10]. And based on the linear operation and inner product operation in Bayesian space, it can give 

the definition of numerical characteristics of time series data, which lays the foundation for subsequent statistical 

analysis [11-13]. In the face of the uncertainty problem of “little data” and “poor information”, the gray system 

theory occupies an important low-dimensional time series modeling in the absence of data [14-15]. The advantage 

of gray time series modeling is that there are no special requirements and restrictions on data, and it mainly extracts 

valuable information by mining part of the known information, so as to realize the correct description and effective 

supervision of the system's operation behavior and evolution law [16-18]. Therefore, the combination of Bayesian 

learning and gray forecasting to build a time series analysis model, and determine the dynamic relationship 

between the trend time series, to provide managers with scientific and reasonable basis and methods. 

In order to solve the problem that the traditional dynamic time series model can not accurately predict the 

complex data, this paper combines the gray prediction with the dynamic time series, establishes the gray prediction 

model according to the collected data, constructs the dynamic gray model on the basis of which the trend term in 

the time series is fitted, generates the smooth time series by using the inverse order method, determines the 

retrospective order in the time series model as well as the parameter of the model, and establishes the time The 

time series model is established. The optimal criterion function fixed-order method is used to determine the 

backward order in the model, and the dynamic gray model is used to predict the trend term in the sequential 

residual column, fit the dynamic time series fluctuations, and construct a time series combination model based on 

gray prediction. The missing data problem encountered in the dynamic time series modeling process, this paper 

introduces the sparse Bayesian learning principle in Bayesian network theory. Applying the theory of compressed 

perception, the missing data prediction problem in time series is modeled as a multiple sparse vectors recovery 

problem, and an efficient recovery algorithm based on sparse Bayesian learning is designed for the characteristics 

of dynamic time series, which obtains part of the support information through learning, thus solving the recovery 

problem of multiple sparse vectors at the same time. The prediction performance of the dynamic time series model 

proposed in this paper is examined by means of simulation experiments, and the data recovery capability of the 

dynamic time series missing data recovery algorithm is explored. Finally, the application practice of dynamic time 

series prediction of raw coal production is carried out to study the effect of the dynamic time series model based 

on Bayesian learning and gray prediction constructed in this paper in the real time series prediction work. 

2 Dynamic time series model based on gray forecasting 

Gray prediction model has the characteristics of small amount of required data and good macro change trend 

of predicted data, but it is not adaptable enough in the face of data fluctuations and cannot analyze the causes and 

consequences of data changes [19]. At the same time, due to the complex and dynamic changes in the time series 

scenario, and the existence of seasonal components, trend components and other complex structural features in 

the time series data, the traditional time series can not meet the increasingly diverse and complicated data analysis 
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tasks. For this reason, this paper will combine gray prediction with time series to achieve dynamic time series 

modeling, enhance the adaptability to data fluctuations, and improve the accuracy of time series prediction. 

2.1 Principle of gray prediction model 

2.1.1 Gray prediction model 

Gray model (GM) is through a small amount of incomplete information, the establishment of gray differential 

prediction model, the development of the law of things to make a fuzzy long-term description, is a fuzzy prediction 

in the field of the theory and method of the more perfect branch of forecasting. 

There are primitive series: 

 
(0){ ( )}, 1, 2,X i i n=  (1) 

Add them up to generate a new series: 

 
(1){ }, 1( ) , 2,X i i n=  (2) 

The corresponding differential equation is: 
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The constant vector is: 

 
(0) (0) (0) T[ (2), (3), , ( )]nY X X X n=  (5) 

The coefficients of the solution are obtained by the least squares method: 

 
T 1 T( ) n

a
B B B Y

u
 − 
= = 
 

 (6) 

A further derivation reduces to: 
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 (7) 

Equation (7) is the prediction equation of the GM(1, 1) model. At this point its actual predicted value is Eq. 

(8): 

 
(0) (1) (1)( 1) ( 1) ( )X t X t X t+ = + −  (8) 

2.1.2 Dynamic Gray Model 

A dynamic gray model is a model that uses the latest monitoring data to guide and predict subsequent monitoring. 

The process of constructing a dynamic gray model is described in detail below. 

In the absence of known information, the original series can be morphed into the following form: 

 
(0) (0) (0) (0){ (1), (2), , ( )}X X X X N=  (9) 

For the sequence in Eq. (9) follow the modeling process above to build the GM(1, 1) model, which in turn 

leads to the predicted value 
(0) ( 1)X N +  at the moment of ( 1)N + , which is added to the original modeling 

series, then the new modeling sequence is Eq. (10): 

 
(0) (0) (0) (0) (0){ (1), (2), , ( ), ( 1)}X X X X N X N= +  (10) 

Then the next prediction is made for the GM(1, 1) model, and so on. 

Modeling prediction according to the above method, it will be found that the data of modeling sequence 

(0)X  will become more and more large, and the prediction accuracy will be affected. In order to solve the problem 

of larger data volume, this paper adopts equal-dimensional data for constraints, i.e., the latest monitoring data is 

used to replace the earlier monitoring information in the monitoring cycle for modeling. The new modeling 

sequence can be obtained after doing isodimensional data processing on the original monitoring data, as shown 

below: 

 
(0) (0) (0) (0)ˆ{ (2), , ( ), ( 1)}X X X N X N= +  (11) 

2.2 Dynamic time series modeling 

2.2.1 Smoothness test for dynamic time series 

When modeling time series for application data, it is necessary to monitor the series as a smooth time series, 

so the following focuses on the process of generating a smooth time series using the reverse order method. The 

specific process is as follows: 

1) First, establish a variance series based on the residual values of the predicted values derived from the gray 

model, and divide the time series into M  segment according to a certain length of time based on the length of 

the variance series, assuming that the resulting series is 1 2, , , My y y . 
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2) Calculate the total number of backward sequences of the mean sequence obtained above. For a 

( 1,2, , 1)iy i M= − -mean sequence, if the value of the later sequence is greater than the value of the previous 

sequence, i.e., ( )jy j i , the comparison process is said to be an inverse order count. Assuming that the number 

of inverse sequences of a sequence is iA , the total number of inverse sequences of the mean value sequence is: 

 

1

1

M

i

i

A A
−

=

=  (12) 

3) Calculate statistics for statistical tests: 

 
1
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And there are statistics: 
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Z
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asymptotically obeys the (0,1)N  distribution. Therefore, for the mean series 1 2, , , My y y  can rely 

on equations (12), (13) and (14) to find out the value of statistic Z . In the case of significant level 0.05 = , 

if | | 1.96Z  , the mean series is considered to have no significant trend, i.e., the mean series is a smooth time 

series; otherwise, it is considered that the mean series is non-smooth. After the verification of the smooth time 

series, it is also necessary to zero-mean the original series as follows: 

 
'

i i ie e e= −  (16) 

2.2.2 Dynamic time series modeling 

After the smoothing and homogenization of the dynamic time series, the time series can be modeled starting 

from the use of a certain length of smooth series samples. The first step is to determine the order of backtracking 

in the time series model and the parameters to be taken in the model, and then build the time series model, which 

is shown by the inverse function [20]: 

 1 1 2 2

1

t t t t j t j t
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X I X I X a I X a
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− − −

=

= + + + = +  (17) 
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In order to reduce the cumbersome computational process and at the same time ensure that the prediction 

accuracy of the model will not be degraded Ben, this paper utilizes the higher-order ( )AR n   model as an 

alternative to the time series model. 

2.2.3 Dynamic time series model ordering 

The two key parameters for establishing a time series model have been mentioned above, and for the method 

of determining the number of retrospective orders in the model, this paper adopts the optimal criterion function 

to determine the order method. The optimal criterion function method, that is, through a criterion function to 

determine the time series model of the retrospective order in the case of meeting the forecasting requirements, to 

the optimal value, and so that the criterion function to reach a very small value of the retrospective order of the 

model is the best model. 

For time series { ,1 }tX t N  , this paper describes it with a higher order ( )AR n  model, defining the 

AIC criterion function as follows: 

 2 2
( ) ln ( )a

n
AIC n n

N
= +  (18) 

The highest order of the backtracking order ( )M N  is usually some number between    / 3 2 / 3N N− . 

After determining ( )M N , the number of backtracking orders is determined by the following equation, if the 

following equation holds: 

 
0

1  | |
( ) min ( )

n M N
AIC n AIC n

 
=  (19) 

Then 0n  is taken as the backward order of the time model. However, when the length of the time series is 

not enough or the lagged data is more, the retrospective order determined by the AIC method will have a large 

deviation; therefore, this paper chooses another criterion calculation method, which is referred to as AICC. the 

expression is as follows: 

 2ˆ( ) ln ( )
2

a

N n
AICC n N n

N n


+
= +

− −
 (20) 

2.3 Dynamic time series combination model based on gray forecasting 

The key point of the combination of time series and equal-dimensional dynamic gray model is that the equal-

dimensional dynamic gray model predicts the trend term in the column of ordinal residuals to build a time series 

model to fit the fluctuations in the series, and finally the fitted value of the time series plus the dynamic predicted 

value of the gray model is used to correct the subsequent prediction results and to improve the accuracy of the 

prediction. The combination can be written in the following form: 

 t t tX d y= +  (21) 
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Where, td  is the trend term of the equidimensional dynamic gray model, and at the same time the series is 

non-smooth need to be smoothed and homogenized; ty  is the smooth series after processing; in this paper, we 

use the equidimensional dynamic gray model to fit td , and use the higher-order ( )AR n  to fit ty . 

3 Dynamic time series prediction simulation experiment 

In the previous chapter, this paper proposed a dynamic time series model based on gray forecasting, in which 

gray forecasting is combined with time series in order to achieve tapping time series modeling and improve the 

forecasting accuracy of time series. In this chapter, simulation experiments of dynamic time series prediction will 

be conducted to verify the prediction performance performance of the dynamic time series model in this paper. 

3.1 Data pre-processing 

The data used in this simulation experiment are, the deformation simulation data of pit construction at 

monitoring point A of a subway station during the period of August 2024-September 2024, named Data1 dataset. 

The simulation experiment will use the dynamic time series combination model based on gray prediction proposed 

in this paper to carry out dynamic time series modeling based on the original data of the 62nd-91st period of the 

monitoring point A, and predict the cumulative settlement in the next 5 periods through the established model.The 

original data of the 62nd-91st period of the cumulative settlement of the monitoring point A are shown in Table 1. 

Table 1 Original Cumulative settlement  

Period Cumulative settlement(mm) Period Cumulative settlement(mm) 

62 2.4 77 10.03 

63 3.75 78 9.98 

64 4.84 79 10.07 

65 5.2 80 11.07 

66 5.22 81 11.25 

67 6.18 82 9.88 

68 7.57 83 10.01 

69 7.94 84 10.4 

70 8.02 85 10.7 

71 8.97 86 11.4 

72 8.51 87 12.61 

73 8.57 88 12.78 

74 8.63 89 11.96 

75 8.83 90 12.65 
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76 9.07 91 13.23 

The dynamic time series model in this paper was utilized to fit the data for the first 30 periods to generate 

the residual series specifically shown in Table 2. 

Table 2 Cumulative settlement residuals 

Period Residual error(mm) Period Residual error(mm) 

62 0 77 0.79 

63 -2.3 78 0.55 

64 -1.32 79 0.47 

65 -1.27 80 1.3 

66 -1.29 81 1.03 

67 -0.58 82 -0.6 

68 0.66 83 -0.87 

69 0.71 84 -0.62 

70 0.67 85 -0.69 

71 1.37 86 -0.3 

72 0.6 87 0.59 

73 0.55 88 0.17 

74 0.3 89 -0.86 

75 0.21 90 -0.41 

76 0.22 91 -0.42 

3.2 Analysis of residual series 

  As the dynamic time series analysis model in this paper can fully explore the continuity and correlation of 

the time series data, and then understand the influence of the historical information within the data on the current 

information contained in the data. Therefore, the dynamic time series model of the data residual series can be 

obtained by modeling the random part of the original data through time series analysis, and now the random part 

of the original data (i.e., the residuals generated when extracting the trend term using the gray prediction) is tested 

for smoothness and zero-meanness. The plot of the residual series is specifically shown in Fig. 1. From the figure, 

it can be seen that after extracting the trend term of the original observation series through the dynamic time series 

analysis model in this paper, the residual series appears to be smoother compared to the original data. 
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Figure 1 Residual sequence diagram 

  Continue to do unit root test on the residual series to finalize its smoothness, as shown in Table 3. After the 

unit root test, according to the P-value and T-statistic, the residual series after differencing is confirmed to be 

smooth, with a P-value of 0.0016<0.01, showing a significant difference, which confirms that the residual series 

after differencing is smooth and meets the conditions of dynamic time series modeling. 

Table 3 Unit root test 

- T P 

Augmented Dickey-Fuller test statistic -4.51388 0.0016 

Test critical values 

1%level -3.66887 - 

5%level -2.96235 - 

10%level -2.62653 - 

3.3 Analysis of dynamic time series prediction results 

  The dynamic time series model of this paper is used to analyze and forecast the data of period 62-91, and 

obtain the predicted values of the last 5 periods of 92-96. The prediction results of this paper's model are compared 

with those of the traditional GM(1,1) model and the time series analysis model to explore the prediction effect of 

each model. The prediction results of each model are specifically shown in Table 4. From the table, it can be seen 

that the difference between the predicted and measured cumulative settlement of this paper's model in period 92-

96 is 0.1, 0.1, 0.11, 0.06, 0.11, respectively, and the difference is lower than that of the traditional GM(1,1) model 

and time series analysis model, and the best prediction results are obtained. 

Table 4 Fitting results of the composite pattern 

Period 
Measured 

value 

GM(1,1)model 
Time series analyzes 

model 
Model of this article 

Predicted 

value 

Residual 

error 

Predicted 

value 

Residual 

error 

Predicted 

value 

Residual 

error 

92 13.71 13.99 0.25 13.1 0.27 13.61 0.35 

93 14 14.42 0.44 13.72 0.22 14.1 0.15 
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94 14.76 14.89 0.11 14.08 0.7 14.65 0.41 

95 14.05 15.29 1.17 14.35 0.29 14.11 41.03 

96 14.65 15.74 1.08 14.63 -0.02 14.76 0.19 

   

The prediction accuracy of the three models is further compared by calculating the residual sum of squares, 

residual median error, and average relative error, and the prediction results of each model are shown in Table 5. 

The residual sum of squares of this paper's model is 0.475, which is less than the traditional GM(1,1) model and 

the time series analysis model 2.4401 and 0.2462, respectively. In the residual medium error, this paper's model 

reaches 0.3079, which is lower than the traditional GM(1,1) model and the time series analysis model 0.4604 and 

0.0675. In the average relative error, the difference between this paper's model and the traditional time series 

analysis model is smaller, which is only 0.01 less than that of the traditional GM(1,1) model, the traditional 

GM(1,1) model, and the traditional GM(1,1) model, and the traditional GM(1,1) model. In terms of average 

relative error, the difference between this model and the traditional time series analysis model is small, only 0.01 

less than that of the traditional GM(1,1) model, and 0.329 less than that of the traditional GM(1,1) model, and it 

is obvious that the model of this paper has an excellent prediction effect in the dynamic time series prediction. 

Table 5 Comparison of several models 

Model 

Sum of 

residual 

squares 

Residual 

mean square 

error 

Average 

relative error 

GM(1,1)model 2.9151 0.7683 0.616 

Time series analyzes model 0.7212 0.3754 0.307 

Model of this article 0.475 0.3079 0.297 

 

4 Algorithms for recovering missing data from dynamic time series 

In the process of dynamic time series modeling, the problem of missing data in the original time series caused 

by some uncontrollable factors at the time of data collection often hinders the construction of dynamic time series 

models and affects the dynamic time series forecasting work. In this paper, we will also design an efficient 

recovery algorithm based on sparse Bayesian learning to effectively predict the missing data in multiple dynamic 

time series and solve the modeling problem of the dynamic time series model with gray prediction constructed in 

this paper in the face of missing data. 

4.1 Design of sparse representation bases 

Facing the common problem of missing data in dynamic time series modeling, a dynamic time series with 

missing data is listed. 1 2 3 4{ , , , , , }KS s s s s s=  denotes the multi-source time series, 
N

js R  denotes the 

data collected from the j rd data source, it  denotes the i th sampling moment, ijs  denotes the sampling value 
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at the  j th data source at the i th sampling moment, and “?” denotes missing data. In addition, we define a 

matrix N KW R   to indicate whether the data in S is missing or not. 

 
l

If  is abs, en0

1, Or e se

tij

v

s
W


= 


 (22) 

The aim of this work is to use all or some of the observations to predict all missing data. 

Compressed perception theory suggests that if a signal Ns R   is sparse, i.e., 0|| ||s N  , it can be 

sampled at a rate lower than Nyquist's law according to the observation matrix 
M NR   and the original 

signal can be recovered with high probability from the observations 1My s = . Many signals in practice are 

not sparse per se, but can be sparsely represented under some sparse representation basis   , i.e., 

0,|| ||s x x N=  , and can likewise be undersampled according to the observation matrix    and the 

original signal recovered with high probability via observation value y x=  [21]. In fact, most time-series 

signals have natural time-domain smoothing, e.g., the temperature of a room, the energy consumption of a city, 

the price of a commodity, etc., all of which change significantly only at a few moments. Therefore, only a small 

number of values in the difference between two neighboring sampled values of signal s  should be large, while 

most of the others can be ignored. Therefore, the matrix shown in equation (2) is designed: 

 
1

1

0 1

0

1 0

0 1

1

− 
 

−
  =
 
 
 

 (23) 

Let the data collected from j  data source can be represented as: 1 2 3{ , , , , }j j j j Njs s s s s= , js  The 

projection vector under matrix 1  is: 

 

1 1 2

2 2 3

1

1

1

0 1

0

1 0

1

0 1

j j j

j j j

j

Nj Nj j

s s s

s s s
x

s s s

−−     
     −−     = =
    
    

−        

 (24) 

Element ( 1)i i js s +−   in 1jx   represents the difference between two neighboring sampled values of time 

series js . Therefore, only a small number of elements in 1jx  are larger and most of the other elements can be 
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ignored. Other matrices commonly used to represent time-domain smoothness are second-order difference 

equations, as shown in Eq. (25): 

 
2

2 1 0 0

1 2 1 0

0 1 2 1

− 
 
− −
  =
 − −
 
 

 (25) 

The projection vector of js  under matrix 2  is: 

 

1

2

2

1 2

2 1 3

( 1)

2 1 0 0

1 2 1 0

0 1 2 1

2

2

2

j

j

j

Nj

j j

j j j

Nj N j

s

s
x

s

s s

s s s

s s −

−   
  

− −   =
  − −
  
    

− 
 

− −
 =
 
 

−  

 (26) 

Element ( 1) ( 1)( ) ( )ij i j i j ijs s s s− +− − −   in 2jx   approximates the magnitude of the acceleration of the 

change in time series js . Thus, only a small number of elements in 2jx  are also larger, and most of the other 

elements can be ignored. Let 
1 1

1 1 2 2, − −= = , collectively 1  and 2  be  , 1jx  and 2jx  be jx , 

and 1  and 2  be  , then the dynamic time series can be expressed as ( 1,2,3, , )j js x j K= = . 

4.2 Design of the observation matrix 

As mentioned above, column j  of matrix W  indicates whether the data in time series js  are missing 

or not. In this paper, we will utilize those non-missing data as measurements to recover the original time series. 

Therefore, the observation matrix should be designed to correspond to the positions of the non-missing data one 

by one [22]. Based on this, the observation matrix shown in equation (27) is designed: 

 

1 0 0 0

0 0 1 0

0 0 0 1
j

 
 
 =
 
 
 

 (27) 
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If the value at ( , )m n  in matrix 
jm N

j R


  is 1, it indicates that the m rd measurement was obtained 

at the n th sampling moment. Let 
m

jy R , denote the set of unmissing data in js , then there is: 

 j j j j jy x A x = =  (28) 

The problem to be solved now is to find jx  by jy  and jA , while ideally jx  is sparse. Therefore, in 

this paper, the missing data prediction problem in coevolutionary time series is modeled as a multiple sparse vector 

recovery problem by designing the corresponding sparse representation bases and observation matrices. 

4.3 Sparse Bayesian learning 

Previous joint recovery algorithms for multiple sparse vectors require the common support information of 

multiple sparse vectors to be known in advance, which is more difficult to realize in practical applications, 

especially in the presence of a large amount of missing data. Based on this, a sparse Bayesian learning-based 

recovery algorithm is designed, which can learn to obtain partial support information to recover multiple sparse 

vectors simultaneously [23]. 

First, assume that ( | )j jp y x   satisfies a Gaussian distribution with variance 2  : 

2 2( | ; ) ( , )
jj j j j mp y x A x I = N  . where 

jmI   is a discrimination matrix. Let 1 2 3( , , , , )KX x x x x=  , 

for row i  of matrix X , consider the following two Gaussian prior models: 

 a( 1) ~ (0 Line sp r, )( )s y| itb

ij i ip x M N =  (29) 

 
n( 0) ~ (0 )Eleme t r, ( sp) ity| a ss

ij i ijp x M N =
 (30) 

The binary sequence iM   represents the model labels in row i  . 
b

i   and 
s

ij   are unknown variance 

parameters. The row sparse model has the same variance for all elements of the row, while the element sparse 

model has its corresponding variance for each element. Let 1 2 3 }{ , , , , NM M M M M=  be the set of all row 

model labels. Combined with the characteristics of dynamic time series, it is known that at least part of M  is 1. 

Each time series js   defines a diagonal matrix 
N N

j R     whose i  th diagonal element is 
b

i   or 
s

ij  

determined by the model label of that row. Let 
2

1 2 1 2{ , , , , , }, { , , , }K KM Y y y y =    = , the goal 

of this paper is to find the    that maximizes the probability ( ; )p Y    Since Y   is known, once    it is 

determined, we can obtain the value of X  it by solving for its maximum a posteriori arg max ( | ; )p X Y   
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probability. However, it is very difficult to compute the maximum value of 

( ; ) ( | ; ) ( ; )p Y p Y X p X dX  =   directly, since picking the most appropriate model from M  requires 

solving 2N
 different non-convex optimization problems. Sen can use variational Bayesian theory to convert 

( ; )p Y   the computation into the form of Eq. (31): 

 ln ( ; ) ( ( )) ( | ; )) ( ( ), )p Y KL q X p X Y F q X  = +  (31) 

where the variational distribution ( )q X   is an approximation of the posterior probability distribution 

( | ; )p X Y  . Since the KL scatter is non-negative, there is ln ( ; ) ( ( ), )p Y F q X   and the equation holds 

if and only if ( ) ( | ; )q X p X Y = . Similar to the EM algorithm, one can maximize the value of ln ( ; )p Y   

by iterating ( )q X  and  . 

1) Step E: Let the KL scatter be zero, then the variational distribution ( )jq x  can be updated according to 

equation (32): 

 
2( ) ( ; , , ) ~ ( , )|j j j j j jq x p x y M N =  =   (32) 

j and j  were calculated according to equations (33) and (34), respectively: 

 
T 1( )y

j j j j jA y −=   (33) 

 
T 1( )y

j j j j j j jA A− = −    (34) 

where 
y 2 T

j j j jI A A = +  . 

2) Step M: Substituting ( )q X  into ( ( ), )F q X   gives   as: 

 
1

2

, , , 1

2

arg max ( ) ln ( , ; )

{arg max ( ) ln ( ; , , , )

arg max ( ) ln ( | ; ) }

KM K

q X p Y X

q X p X M dX

q X p Y X dX


 



 

=

=  

=







 (35) 

Once M  is determined, then parameter j  can be updated to: 

 
1

1 1 2arg max ( ) ln ( ; , , , , )K
j i

opt K

j j Kq X p X M dX
=

−  
  =     (36) 

Then there is: 
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2

, ,

1

2

, ,

1

0

((

)

) ) 1

(

K

j i i i j ib
ji

s

ij j i i i j i

M
K

M




 

=


 + =

= 
 =  + =


 (37) 

where ,i j  denotes the i rd element of j  and ( )j i , i  denote the i th diagonal element of j . 

However, it is necessary to find M  the correct way of updating, otherwise it is necessary to compare the values 

of 2N
  times 

1( ) ln ( ; ,{ } )t K

jq X p X M f dX

−   to find the best M  . To easily derive an efficient model 

selection scheme, an upper bound on 
1( ) ln ( ; ,{ } )t K

J jq X p X M dX

−  can be considered: 

 ( ) ln ( ; ) ln ( ) ( ; )q X p X M dX q X p X M dX   (38) 

Argument  
1

K

J j



−
  is omitted here to maintain flushness. This alternative objective function allows us to 

decide independently whether each row is row sparse or element sparse. Considering X  as an “observation”, 

( ; )p X M  becomes the evidence for the model. Applying BIC theory, the approximation of the evidence for 

the model in row i  of X  for ix  can be computed as: 

 

0

2

1

0

1
ln ( | 1) max ln ( | ) ln

2

ln (1 ln 2 )
2 2

1
ln

2

b

i i i i

K

ij

j

p x M p x K C

x
K K

K

K C




=

=  − +

= − − +

− +


 (39) 

 

1 0, ,

2

0

1

ln ( | 0) max ln ( | , , ) ln
2

1
ln (1 ln 2 ) ln

2 2 2

s s
i i

s s

i i i i iK

K

ij

j

K
p x M p x K C

K K
x K C

 
 


=

=  − +

= − − + − +
 (40) 

where 0C  is a constant: 

 

2

, ,

1

0

2 ( )
ln

ln ( ) ( ; 1) ln
2 2 2

K

i j j i i

j

i i i i

K K K
q x p x M dx C

K

 
=

+ 

= = − − − +


  (41) 
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2

, , 0

1

1
ln ( ) ( ; 0)d ln( ( ) (1 ln 2 )

2 2

K

i i i i i j j i i

j

K
q x p x M x K C 

=

= = − +  − + +  (42) 

Finally, the noise variance can be updated by maximizing the first term of equation (43): 

 

2

2 2

2 2 1

, ,

1 1 1

1

( ) arg max ( ) ln ( | ; )

(1| (| ) ( ) )||
j

new

K K N

j F j i i j i i

i j i

K

j

j

q X p Y X dX

y A

m





 

 −

= = =

=

=

− + −  

=



 



 (43) 

5 Dynamic time series missing data recovery simulation experiments 

This paper proposes a time series missing data recovery algorithm based on sparse Bayesian learning to solve 

the problem of missing data that may exist in the dynamic time series model in the process of data collection and 

to ensure the function of dynamic time series prediction of the model in this paper. In this chapter, simulation 

experiments of dynamic time series missing data recovery will be carried out to test the performance of this 

algorithm in the face of dynamic time series data recovery under the situation of missing data. 

The dataset used in this simulation experiment is the time series data collected from 54 sensors deployed by 

Intel Berkeley Research Laboratory over a period of one month, which is named as GAS dataset. According to 

different data missing rates, some data are randomly deleted from the complete GAS dataset to simulate the 

missing data. The missing rate is defined as the ratio of the number of missing data to the total amount of data. In 

this paper, Root Mean Square Error (RMSE) and Average Running Time (ART) are used as performance 

evaluation criteria. 

Root Mean Square Error: i.e. RMSE. The smaller the RMSE value, the better the prediction of the model. 

Average Running Time: i.e. ART. In order to analyze the computational complexity of different methods, 

each method was repeated 100 times to calculate its average running time in seconds. 

5.1 Performance Comparison with Different Data Missing Rates 

The SI, RNN, KPPCA and TDMF algorithms are selected for comparison in the simulation experiments in 

this chapter. The simulation results of each algorithm on the GAS dataset are compared using RMSE as the 

criterion. The performance of each algorithm under different data missing rates is specifically shown in Table 6. 

From the table, it can be seen that compared with other algorithms, this paper's algorithm has a smaller RMSE at 

any data missing rate. When the data missing rate reaches the highest 95%, the RSME value of this paper's 

algorithm is 0.1589, which is always lower than the level of the RSME of less than 0.2, which is consistent with 

the other cases of data missing rate. The simulation results show that the algorithm in this paper is applicable and 

very effective in solving the problem of missing data in time series when there is more missing data. 

Table 6 Performance comparison under different data missing rates 

Algorithm Data missing rate(%) 
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20 50 80 90 95 

Algorithms in this 

article 
0.0186 0.0145 0.092 0.1031 0.1589 

TDMF 0.0367 0.0921 0.1932 0.2524 0.3784 

SI 0.0932 0.1624 1.0202 1.7712 3.5164 

RNN 0.0472 0.1021 0.8835 0.9114 1.0629 

KPPCA 0.0378 0.0648 0.1876 0.2819 0.4476 

 

5.2 Comparison of computational complexity 

The computational complexity of each algorithm is compared at different data true rates using ART as a 

criterion. The comparison of average runtime (ART) of different algorithms is specifically shown in Table 7. From 

the table, it can be seen that the SI algorithm requires the shortest operation time, with the lowest ART value of 

0.7216 s. This is because the SI algorithm only carries out simple interpolation operations on the data, so the 

operation time is also the least. In this paper, the algorithm needs to extend the data to multi-dimensional operation, 

so the operation time is relatively long. However, during the whole algorithm operation, only one modeling is 

performed and it is a simple dimension expansion operation, and the algorithm only solves a 1-dimensional sparse 

vector recovery problem, so the operation time is still very considerable. 

Table 7 ART of different algorithms 

Data 

missing 

rate(%) 

SI RNN KPPCA TDMF 
Algorithms 

in this article 

20 0.7216 2.5216 10.8683 8.4362 2.9032 

50 0.8942 3.1832 11.5781 8.9381 3.0802 

80 1.2647 5.161 14.944 14.411 3.8317 

90 3.4823 7.032 20.445 20.4093 4.923 

95 3.6491 10.491 24.8685 22.699 5.1441 

 

6 Example Application of Dynamic Time Series Forecasting of Raw Coal Production 

This chapter applies the dynamic time series model based on gray prediction constructed in this paper to the 

prediction of raw coal production in reality, and at the same time applies the dynamic time series missing data 
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recovery algorithm based on sparse Bayesian learning to solve the problem of missing data in the prediction of 

raw coal production, and explores the practical utility of the model and the missing data recovery algorithm in 

this paper. 

6.1 Data sources and processing 

The data used in this chapter comes from the National Bureau of Statistics, and the monthly data of China's 

raw coal production in 2019-2023 are selected to train the model with the monthly data in 2020-2023 to predict 

the future changes with its trend changes. The data of January and February of each year are missing.The raw coal 

production of each month in the period of 2020-2023 is specifically shown in Figure 2. Figures (a) to (d) represent 

the raw coal production in 2020, 2021, 2022 and 2023 in turn. From the figure, it can be seen that the raw coal 

production in each month shows an increasing trend. Meanwhile, the raw coal production fluctuates more in 2020 

and 2023, and the raw coal production fluctuates less in 2020 and 2021. Next, the dynamic time series model 

based on Bayesian learning with gray forecasting proposed in this paper will be used to forecast the raw coal 

production in 2024. 

  

(a)Raw coal production in 2020 
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(b)Raw coal production in 2021 

 

(c)Raw coal production in 2022 
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(d)Raw coal production in 2023 

Figure 2 Raw coal production in 2020-2023 

6.2 Missing value interpolation 

In this section, the monthly data of raw coal production from 2020 to 2023 will first be tested for normality, 

after which 10% of the number of missing data will be randomly generated, and the sparse Bayesian-based time 

series missing data recovery algorithm proposed in this paper will be utilized for iteration to recover the raw coal 

production data of January and February. The EM algorithm is selected as a comparison object, and the time spent 

by the EM algorithm of this paper and the algorithm of this paper in filling the missing data is compared, as shown 

in Figure 3. It can be seen that the time consumed by this paper's algorithm to recover data basically fluctuates 

around 4.5s, and the fluctuation is relatively smooth. In contrast, the EM algorithm's data recovery time is also as 

low as 10.27s, which is also greater than 10s, and the fluctuation is more intense. At the same time, using the ADF 

test of this paper's algorithm and the EM algorithm's missing value interpolation results, both of which show better 

smoothness. In general, this paper's algorithm performs better in the recovery of missing data of raw coal 

production. 
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Figure 3 Time consuming of rejecting missing data 

6.3 Dynamic time series forecasting analysis 

The traditional GM (1,1) model is selected as a comparison model, using the dynamic time series model 

based on gray prediction proposed in this paper and the traditional GM (1,1) model to predict the raw coal 

production in 2024 The comparison of the prediction results of the raw coal production in 2024 with the actual 

value is shown in Table 8.The actual value of the raw coal production in 2024 is subtracted from the predicted 

production value to the prediction error. It can be seen that the traditional GM (1,1) model yield forecast value is 

generally higher than the actual value of raw coal production, in 2024, January to July, October yield forecast 

value is higher than the actual value of raw coal production of more than 1,000 levels. In the remaining months 

of August, September, November, and December, the production prediction values obtained from the traditional 

GM(1,1) model are lower than the actual value of raw coal production, with the differences of 1312.07, 1044.4, 

1418.84, and 1599.73, respectively, which are also greater than the 1000 level. In contrast, the predicted value of 

raw coal production of this paper's model in January, May, June, October and November is higher than the actual 

value of raw coal production of 492.32, 717.02, 314.32, 390.58, 382.11, respectively, and the predicted value of 

raw coal production of the remaining other months is lower than the actual value of raw coal production, but the 

difference is still maintained at the level of less than 1000. Obviously, the predicted values of the dynamic time 

series model proposed in this paper are closer to the actual production values and perform better in the real 

dynamic time series forecasting work. 

Table 8 Comparison of prediction results 

Month 
Actual raw 

coal output 

Prediction 

of the 

model of 

this article 

Error 
Prediction of 

GM(1,1)model 
Error 

2024-01 33005.13 33497.45 -492.32 34569.16 -1564.03 

2024-02 33023.85 32483.61 540.24 34455.15 -1431.3 
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2024-03 33726.17 32955.75 770.42 35720.47 -1994.3 

2024-04 32212.16 31729.61 482.55 33829.36 -1617.2 

2024-05 31884.43 32601.45 -717.02 32938.52 -1054.09 

2024-06 33427.68 33742 -314.32 35048.31 -1620.63 

2024-07 31794.15 31593.69 200.46 33158.47 -1364.32 

2024-08 32580.96 32312.18 268.78 31268.89 1312.07 

2024-09 33742.47 33084.55 657.92 32698.07 1044.4 

2024-10 31593.88 31984.46 -390.58 32795.99 -1202.11 

2024-11 32312.74 32694.85 -382.11 30893.9 1418.84 

2024-12 32601.54 32154.69 446.85 31001.81 1599.73 

 

7 Conclusion 

This paper constructs a dynamic time series model based on Bayesian learning and gray prediction, which 

provides a solution to the missing data problem often encountered in the dynamic time series modeling process 

while improving the prediction accuracy of dynamic time series. 

In the simulation experiment of dynamic time series prediction, based on the deformation simulation data of 

pit construction at monitoring point A of a subway station, the residual series of this paper's model after extracting 

the trend term of the original observation series is smoother than that of the original data, and the P-value is 

0.0016<0.01, which meets the conditions of dynamic time series modeling. The simulation prediction of the 

cumulative sedimentation in the five periods after 92-96, the difference between the predicted cumulative 

sedimentation in the 92-96 period of this paper's model and the measured value is only 0.1, 0.1, 0.11, 0.06, 0.11, 

and the difference is much lower than that of the traditional GM (1,1) model and the time-sequence analysis model 

as a comparison, and the prediction result is the best. In terms of the residual sum of squares, residual medium 

error, and average relative error, the model in this paper can obtain 0.616, 0.307, and 0.297 respectively by 

calculation, which are still less than the other comparative models, and show excellent prediction results. 

  In order to test the data recovery performance of the dynamic time series missing data recovery algorithm 

proposed in the text model, further data recovery simulation experiments are carried out. Compared with SI, RNN, 

KPPCA and TDMF algorithms, this paper's algorithm has smaller RMSE at any data missing rate, and the RSME 

value is only 0.1589 when the data missing rate reaches the highest of 95%.In terms of the computational 

complexity at different data real rates, the SI algorithm has the lowest ART value of 0.7216s, and the computation 

time of this paper's algorithm is comparatively longer and only slower than the SI algorithm, which is still very 

objective. 

  Finally, the dynamic time series prediction of raw coal production is carried out, and the model of this paper 

is applied to the real raw coal production prediction work to analyze the realistic utility of the model of this paper. 

Recovering the missing raw coal production data of January and February in the period of 2020-2023, the recovery 

time of this paper's dynamic time series missing data recovery algorithm basically fluctuates around 4.5s, and 
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presents a better smoothness, which is better than the comparative EM algorithm. The traditional GM(1,1) model 

is selected as the comparison model to forecast the raw coal production in 2024. The difference between the 

predicted value and the actual predicted value of the traditional GM(1,1) model always stays above the level of 

1000, while the predicted difference of this paper's model is always lower than 1000, and the prediction effect is 

better. 

  In conclusion, the dynamic time series model based on Bayesian learning and gray prediction proposed in 

this paper has excellent prediction performance and good data recovery ability in the face of missing time series 

data, which is outstanding in the prediction of dynamic time series data in reality. 
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