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Abstract: The industrial sector demands high precision in the classification of surface defects to ensure 
product quality. Traditional visual inspection methods, limited by their inconsistency and inability to 
scale, necessitate an advanced solution for defect detection and classification.  This research introduces an 
enhanced ConvNeXt architecture that integrates deformable convolutions, attention mechanisms, and a 
multi-scale fusion approach to address the complex nature of defect imagery in industrial settings.  Firstly, 
deformable convolutions are employed to provide the model with the flexibility to adapt to the varied 
and irregular shapes of surface defects.  Unlike standard convolutions, these allow the network to modify 
its receptive field dynamically, enhancing its ability to capture crucial textural and geometric nuances. 
This adaptation significantly boosts the model’s accuracy in feature extraction from complex industrial 
surfaces.  Secondly, to refine the focus within these enhanced feature maps, an attention mechanism is 
integrated.  This mechanism prioritizes the most informative parts of the image, thus directing 
computational resources towards areas with potential defects.  By doing so, it not only improves the 
model’s efficiency but also its effectiveness in recognizing subtle yet critical defect features that might 
otherwise be overlooked.  Thirdly, the multi-scale fusion strategy is implemented to harmonize and leverage 
information across different scales and resolutions. This aspect of the model ensures comprehensive coverage 
and consistent performance across varying sizes and types of defects. It effectively aggregates the detailed local 
features captured by deformable convolutions and the prioritized global features enhanced by attention 
mechanisms, providing a robust classification output. Experimental results on diverse industrial datasets 
have demonstrated that the proposed model substantially outperforms existing methods in terms of both 
accuracy and reliability.   The  integration of these three advanced techniques—deformable convolutions,  
attention  mechanisms,  and  multi-scale  fusion—creates  a synergistic effect that significantly elevates the 
capability of ConvNeXt for precise classification of industrial surface defects.   This study not only proves 
the feasibility of enhancing a sophisticated architecture like ConvNeXt for industrial applications but also 
sets a new standard for automated defect classification systems, combining deep learning innovation with 
practical, impactful industrial use. 
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1.     INTRODUCTION  

In contemporary industrial production, maintaining stringent  quality  control  standards,  particularly  

in surface  defect  detection,   is  vital  for  safeguarding product  integrity Ngan  et  al.  (2011).    The  
tradi- tional methodologies employed in detecting such de- fects typically oscillate between manual 
inspections and semi-automated techniques.  Manual inspection, while thorough, is inherently limited by 
its subjec- tivity, potential for human error, and significant re- source demands. These factors contribute 
to substan- tial variability in product quality assessment, which can  compromise  the  overall  reliability  
of manufac- tured goods Chen et al. (2021). 

Semi-automated  methods,  often  based  on  basic image processing technologies, offer some relief from 
the labor intensity of manual inspections but intro-duce  their  own  set  of  challenges.     These  systems 
generally  lack  the  sophistication  needed  to  handle the complexity and diversity of surface defects effec- 
tively Francesco et al. (2018).  Industrial defects can manifest in a multitude of forms, varying greatly in 
size, shape, texture, and contrast.   Such variability presents a formidable challenge for conventional im- 
age processing techniques, which are not inherently designed to adapt to the unpredictable nature of de- 
fect presentations. 
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The advent of deep learning has provided promis- ing new pathways for enhancing defect detection sys- 

temsRath  et  al.  (2021), Mishra  and  Tyagi  (2022), Blake and Michalikova  (2021).  Among these, Con- 

volutional Neural Networks (CNNs) have shown sub- stantial potential due to their ability to learn and gen- 
eralize from complex data inputs.  However, despite the advancements facilitated by CNNs, their appli- 
cation in the industrial setting is often hampered by architectural rigidity. Standard CNNs typically 

oper- ate with fixed receptive fields, which are not optimal for capturing the highly irregular patterns 
that char- acterize many surface defects. 

To  address  these  limitations,  this  research  pro- poses  a  strategic  adaptation  of  the  ConvNeXt  ar- 

chitecture Liu  et  al.  (2022),   a  model  that  mod- ernizes  conventional  convolutional  neural  networks 

(CNNs) by incorporating design principles inspired by  the  Vision  Transformer  (ViT)  without  
directly using transformer  mechanisms.   Our  adaptation  is tailored specifically to meet the unique 
demands of surface defect detection in industrial environments. The research is focused on three main 

innovations designed to enhance the base ConvNeXt model: 

•  Integration  of  Deformable  Convolutions: By    incorporating     deformable    convolutions 

within the ConvNeXt model, this research ad- dresses the challenge of accurately capturing the 

complex and irregular forms of surface defects. Traditional convolutional layers, with their fixed 

geometric  structure,  are  often  inadequate  for this  task.    Deformable  convolutions  allow  the 

network’s filters to adjust dynamically, aligning with the contours of each specific defect.  This 

capability significantly enhances the accuracy of feature  extraction  across  various  defect  types, 

providing a more detailed and precise analysis of each defect’s characteristics. 

•  Implementation of Attention Mechanisms: The   introduction   of   attention    mechanisms 

within the ConvNeXt architecture marks a sub- stantial  improvement  in the  model’s  efficiency and 

effectiveness. By focusing computational re- sources on image regions most likely to contain defects, 

these mechanisms enhance the model’s ability to discern subtle yet critical defect fea- tures that 

conventional methods might overlook. This focus not only improves the detection accu- racy but also 

optimizes the overall resource usage 

of the model, leading to faster and more efficient defect identification. 

•  Employment  of  Multi-Scale  Fusion:   The multi-scale fusion strategy implemented in this 

research tackles the variability in defect sizes, a common issue in industrial settings.    By  inte- 

grating features extracted at multiple scales, the model is equipped to detect defects ranging from minute 

to prominent with consistent precision. This approach ensures a comprehensive analysis of each 

inspected item,  enabling the model to provide a detailed assessment irrespective of the defect size or 

complexity. 

These contributions collectively enhance the Con- vNeXt model’s utility for industrial applications, par- 

ticularly in automating the detection and classifica- tion of surface defects.  The strategic enhancements 
not only improve the model’s adaptability to a va- riety of defect characteristics but also ensure that it 
can operate efficiently in a real-world manufacturing environment. This research thereby sets a new stan- 

dard for defect detection systems, facilitating more reliable and precise quality control in industrial pro- 
duction processes. 

 

2.    Related Work 

The rise of Industry 4.0 has fundamentally altered the manufacturing landscape by incorporating advanced 

technologies  like the  Internet  of Things  (IoT),  big data, and artificial intelligence Xu et al. (2018), Hof- 

mann and Ru…sch (2017), Ghobakhloo (2020).  These technologies not only automate and optimize manu- 
facturing processes but also provide the adaptability required for mass production to meet changing mar- 

ket demands. 

Traditional  techniques  for  detecting  surface  de- fects in manufacturing, which are mainly manual and 

error-prone, are progressively being replaced by auto- mated systems that utilize computer vision and ma- 

chine learning. This transition aims to eliminate the inefficiencies and inaccuracies associated with manual 
inspections.   Key  historical  perspectives on  surface inspection  techniques  were  outlined  by  Chin Chin 
(1988) in the late eighties and by Newman and Jain Newman  and  Jain  (1995)  in  the  mid-nineties.    Li 

and  Gu Li and  Gu  (2004)  later reviewed  advance- ments in free-form surface inspection.   However,  in 
the years that followed, there have been substantial improvements in the field of surface inspection with 
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computer vision.   Emerging  areas  such  as  tonality inspection and the growing implementation of color 
imaging technologies call for new algorithms capa- ble of efficiently processing vector-valued data.  This 

paper delves into the latest developments in vision- based surface inspection, with a particular focus on 
techniques for analyzing textures. 

Recent  strides  in  deep  learning  have  consider- ably  advanced  the  capability  for  defect  detection 
within  industrial  environments.   A  thorough  anal- ysis of deep learning applications in surface defect 
detection across various industrial goods is provided by  Saberironaghi  et  al.     (2023),  which  delineates 
common issues such as the challenge of unbalanced data  distributions  prevalent  in  real-world  datasets 
Saberironaghi et  al.  (2023).   Their  findings  under- score an intensified effort to refine X-ray defect de- 
tection  methodologies  through  deep  learning,  aim- ing to enhance both the precision and speed of these 
systems.  Simultaneously, Li et al.   (2023) have un- veiled an innovative automatic defect detection sys- 
tem crafted for Wire and Arc Additive Manufacturing (WAAM), employing a YOLO-attention 
mechanism. This system offers swift and dependable defect detec- tion,  meeting the exigent requirements 
of dynamic manufacturing environments Li et al.  (2023).   This development is indicative of a broader 
movement to- wards implementing real-time, efficient detection sys- tems in manufacturing workflows.   In 
a related en- deavor, Akhyar et al.  (2023) present their work on a deep learning-driven surface defect 
inspection system engineered specifically for the steel industry.  Dubbed the Forceful Steel Defect Detector 
(FDD), this system is designed to confront the unique challenges associ- ated with detecting defects on steel 
surfaces Akhyar et al. (2023).  This breakthrough highlights the cus- tomization of deep learning solutions 
to meet specific industry needs, thereby improving the efficacy of au- tomated inspection systems.  
Additionally, Chen et al.   (2023)  examine  defect  detection  techniques  for 3D-printed ceramic parts with 
curved surfaces, which typically present low contrast.  They propose a deep learning approach tailored to 
manage the intricacies of advanced ceramic materials, showcasing the adapt- ability of deep learning to a 
range of materials and complex geometric challenges Chen et al. (2023). 

Despite  significant  advancements  in  leveraging deep learning for industrial defect detection, the po- 

tential of newer architectures like ConvNeXt has yet to  be  fully  explored  in  this  domain.    While  
Con- vNeXt has shown promise in general image classifica- tion tasks due to its efficient balance of model 

depth, width, and resolution, its applications in specific in- dustrial settings remain underdocumented.   
Recent works have begun to tap into the capabilities of Con- vNeXt for complex image-related tasks. For 
instance, the research Chen et al. (2023) demonstrates the ap- plication of ConvNeXt in identifying 
manufacturing defects in nuclei segmentation and classification How- ever, these studies often do not 

address the unique challenges posed by the high variability of defects in different manufacturing 
processesgao  ?.   This  vari- ability  can  significantly  affect  the  performance  of deep learning models, 
which typically require large volumes of labeled data that represent the range of possible  defect  types  

and  severities  encountered  in production environments.  Furthermore, while Con- vNeXt’s architecture is 
inherently suited for handling detailed and complex image data, its integration with technologies 
specifically tailored for industrial appli- cations, such as industrial imaging, has not been ade- quately 

studied. There is a gap in research regarding the optimal configuration of ConvNeXt’s parameters to 
enhance its effectiveness in detecting subtle and non-uniform defects. 

Moreover, the need for enhancements that specifi- cally address the intricacies of defect variability in in- 

dustrial settings becomes apparent.  Introducing at- tention mechanisms can significantly augment Con- 
vNeXt’s ability to prioritize salient features in com- plex industrial images, potentially improving the 
pre- cision of defect detection.  Alongside, the deployment of deformable convolutions and a multi-scale 

fusion strategy could further refine the model’s adaptability and accuracy across different scales and types of 
de- fects, thus tailoring it more effectively to the diverse conditions  encountered  in  industrial  
environments. Yang et al. (2023) explore innovative developments in the application of lightweight deep 

learning networks for diagnosing plant diseases, particularly focusing on rice disease.  They employ a 
Squeeze-and-Excitation (SE) attention mechanism in their network, which en- hances both the accuracy and 
efficiency of the model. This approach demonstrates how effectively integrat- ing attention mechanisms with 
dynamic convolutions can enhance performance, especially in the field of ecological informatics. 

Further  building  on  these  concepts,  Zhu  et  al. 

(2019) have carried out an in-depth empirical study that examines the role of spatial attention mecha- 

nisms within deep learning architectures.  Their re- search explores the combined use of attention,  de- 

formable convolutions,  and dynamic convolutions,  in- vestigating how these components can be synergis- 
tically used to boost model performance Zhu et al. (2019).  The findings underscore the significant role 
that various attention mechanisms play in enhanc- ing the accuracy of deep learning models tasked with 

analyzing complex visual data. 
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In a related vein, Wu et al.  (2019) present a coun- terintuitive perspective in the domain of natural lan- 
guage processing (NLP). They propose that employ- ing less attention can sometimes lead to better out- 

comes.   Their research introduces a novel approach using lightweight and dynamic convolutions designed to 
lessen the typically high computational demands of content-based self-attention mechanisms, without 

sacrificing cutting-edge results Wu et al. (2019).  This work provides a scalable solution that balances high 
performance with reduced computational needs.  Col- lectively,  these studies highlight the flexibility  and 

effectiveness of attention mechanisms and dynamic convolutions in diverse fields, ranging from ecologi- 
cal informatics to natural language processing.  The ongoing advancements and applications of these tech- 

nologies are crucial for the development of more effi- cient and potent deep learning systems. 

 

3.    Methodology  

This research proposes an enhanced ConvNeXt ar- chitecture tailored for industrial surface defect detec- 

tion. The model is designed to efficiently process im- ages by leveraging advanced convolutional features, 
while specifically addressing the challenges associated with the variability and complexity of defect appear- 
ances in industrial settings.   The architecture inte- grates several key modifications to improve detection 
accuracy and processing efficiency:  deformable con- volutions, attention mechanisms, and multi-scale fea-

ture fusion.  Figure 1 provides a schematic overview of the adapted ConvNeXt model.

 

 

Fig.  1:   Enhanced  ConvNeXt  Architecture  incorporat- ing deformable convolutions, attention 

mechanisms, and multi-scale feature fusion. 
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The flow of data through the model starts with the input image, which undergoes initial preprocess- 
ing by a standard convolutional layer (Conv2d) to ex-tract basic features. These features are then normal- 
ized using layer normalization to stabilize the learn- ing process.   Following  this,  the  features  enter the 
first of several  ConvNeXt blocks, which have been modified to include deformable convolutional 
layers. These specialized layers allow the network to adjust its receptive field dynamically, enhancing its 
ability to accurately capture the irregular shapes of defects. 

After   the   deformable   convolution   layers,    an attention  mechanism,   specifically   a   Squeeze-and- 

Excitation  (SE) block, is applied within each Con- vNeXt block. This mechanism focuses the network’s 

processing capabilities on the most salient features, which is critical for detecting subtle and complex de- 
fect patterns. 

Subsequent to the attention-enhanced feature ex- traction, a multi-scale feature fusion process is em- 

ployed.   This  process  combines  features  from  vari- ous depths within the network, enabling the model to 
capture and utilize information from different scales effectively.  The fusion is achieved through a combi- 
nation of upsampling and concatenation followed by a convolution operation, which integrates these fea- 

tures into a comprehensive representation that feeds into the final stages of the network. 

The processed features are then passed through additional downsampling layers to reduce dimension- 

ality  and  increase  the  receptive  field,  followed  by global average pooling to summarize the features into a 

single vector.  Another layer normalization step is applied before the final linear layer, which classifies the 

presence and type of defects based on the learned features. 

3.1.    Deformable Convolutions 

Deformable convolutions are an innovative addition to the standard convolutional layers,  which enable 
the network to better adapt to geometric variations in the input data.  Within the context of the Con- 
vNeXt architecture, they enhance the model’s ability to capture the diverse and irregular forms that indus- 
trial surface defects may take. 

Given an input feature map X, a standard convo- lution operation at a location p0 on the output feature 

map Y can be defined as: 

 

where R is the regular grid of points over which the convolution kernel w is applied, and pn  indexes 

positions in the kernel.  In contrast, the deformable convolution introduces an offset ∆pn  to the regular 

grid positions pn: 

 

 

The offsets ∆pn  are learned parameters that al- low the convolutional operation to deform according 

to the input features, hence the name ”deformable.” This  dynamic  adjustment  of the  kernel’s  receptive 
field to the data allows for more flexible and precise extraction of features, particularly around the edges 
and contours of defects. 

Incorporating  deformable  convolutions  into  the ConvNeXt blocks, as illustrated in the flowchart, 
in- volves modifying the standard convolutional layers to include the learnable offsets.  This is performed 
im- mediately after the initial downsampling layers to en- sure that the network captures high-resolution 
defect features before they are condensed by further down- sampling operations. 

∆pn  = fθ (X)                           (3) 

where fθ represents a function parameterized by θ , typically a small convolutional network, that outputs 

the offsets from the input feature maps X . 

The integration of deformable convolutions within the ConvNeXt architecture allows for the model 
to better handle the varied appearance of defects in in- dustrial images, aligning with the overall flow of 
the network and contributing to the enhanced defect de- tection performance. 
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3.2.    Attention Mechanism 

The integration of attention mechanisms within the ConvNeXt  architecture  significantly  enhances  the 

model’s capability to focus on salient features within the image, particularly useful for highlighting 

areas with potential defects. One effective form of attention used  in  this  context  is  the  Squeeze-and-

Excitation (SE) block, which recalibrates channel-wise feature responses by explicitly modelling 

interdependencies between channels. 

The  SE  block  operates  in  two  main  phases: squeeze and excitation.  Given an input feature map U 

from the previous ConvNeXt block, the squeeze operation first global average pools each channel, re- 

sulting in a descriptor that encapsulates global dis- tributional information of the channel’s features: 

 

where zc  is the channel-wise descriptor of channel c, uc (i,  j) denotes the value at position (i,  j)  in 

chan- nel c, and H and W are the height and width of the feature map, respectively. 

Following  the  squeeze  operation,  the  excitation phase employs a simple gating mechanism with a sig- 
moid activation to capture channel-wise dependen- cies. This is achieved by: 

s = σ(W2 δ(W1 z))                     (5) 

where z is the squeezed channel-wise descriptor, σ denotes the sigmoid function, δ represents the ReLU 

activation, and W1  and W2  are the parameters of two fully connected layers that scale down and 

then scale up the dimensions, respectively.  The output  s is a collection of modulation weights that are 
applied to the feature map: 

c  = sc  · uc                                          (6) 

c  is the recalibrated feature map for chan- nel  c  and  sc   is  the  channel-specific  weight  derived 

from the SE block. 

By  applying  the  SE  attention  block  after  each ConvNeXt block and before multi-scale feature fu- 
sion, the architecture is refined to focus more on po- tentially defective regions within the image, making 
the detection process more accurate and efficient. 

This method of attention not only boosts the rep- resentational power of the network by focusing on 
important features but also aligns with the overall objective of enhancing defect detection accuracy in 
industrial settings. 

 

3.3.    Multi-Scale Feature Fusion 

The integration of multi-scale feature fusion within the ConvNeXt architecture is designed to ensure that 

the model effectively captures and utilizes informa- tion from various scales, enhancing its ability to de- 
tect defects of different sizes and complexities.  This approach leverages the inherent hierarchical nature of 
convolutional networks, where lower layers capture fine details and higher layers capture more abstract 
representations. 

The process of multi-scale feature fusion involves combining feature maps from different layers of the 

network.   This  is typically implemented before the final  classification  layers,  ensuring  that  the  fused 

features contribute directly to the detection perfor- mance.   The  fusion  process can be mathematically 

described as follows: 

Ffused  = γ(F1 , F2,... , Fn )                  (7) 

where  Ffused   represents the  fused feature map, F1 , F2,..., Fn  are the feature maps from different 

lay- ers or blocks within the network, and γ is a fusion function.  Commonly, γ can be a concatenation 
fol- lowed by a convolution layer, or more sophisticated operations like weighted averaging or feature 
pyra- mids, which are designed to retain critical informa- tion across scales. 

To implement this in the ConvNeXt framework, feature maps from selected ConvNeXt blocks are first 
adjusted  to  the  same  dimensionality,  typically  us- ing upsampling or downsampling techniques to match 
their spatial resolutions: 
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Fk′  = Resample(Fk )                      (8) 

where Fk′  is the resampled feature map of Fk , and 

Resample represents the resampling operation (either upsampling or downsampling) to match the size of 
the target feature map for fusion. After aligning the dimensions, the feature maps are combined using a 
fusion technique, which can in- volve learnable parameters to optimally blend fea- tures from different 
levels: 

Ffused  = Conv(Concat(F 1′ ,  F2′ , . . . ,  Fn′ ) )        (9)  

where Concat denotes the concatenation of fea- ture maps, and Conv represents a convolution oper- 
ation applied to the concatenated maps to produce a cohesive feature map that integrates multi-scale in- 
formation effectively. 

By employing multi-scale feature fusion, the Con- vNeXt  model  gains  a  more  comprehensive  under- 
standing of the image, which is crucial for accurately detecting and classifying defects across various indus- 
trial scenarios.  This method ensures that no detail, regardless of its scale, is overlooked, and enhances the 

model’s robustness and accuracy. 

 

4.    Experiment and Results 

4.1.    Datasets 

The  performance  of our  method  in  accurately  de- tecting and classifying surface defects is heavily in- 
fluenced  by  the  quality  and  scope  of  the  datasets employed during its training and validation phases. 
This study employs two distinct industrial datasets, each designed to represent various defect types and 
industrial contexts, in order to thoroughly evaluate the efficacy of the proposed methodologies. 

NEU Surface Defect Dataset The NEU Sur- face  Defect  Dataset  Schlagenhauf  and  Landwehr 

(2021) comprises 1,800 images that specifically target defects appearing on hot-rolled steel strips. It classi- 
fies these defects into six unique categories, each sym- bolizing a different kind of surface anomaly: Crazing 

(Cr), Patches (Ps), Rolled-in Scale (Rs), Pitted Sur- face  (Ps),  Inclusion  (In),  and  Scratches  (Sc).    The 

dataset ensures each category is equally represented with 300 images, subdividing them into 240 for train- 

ing purposes and 60 for testing.  This dataset offers a detailed portrayal of typical defects found in metal 

surfaces,  including  inclusions—both  embedded  and detachable,  crazing that shows unavoidable surface 
cracks, patches that illuminate distinct metal char- acteristics, pitted surfaces marked by localized corro- 

sion creating small cavities,  and scratches indicative of surface abrasions.  Rolled-in scale,  another defect 

classification, refers to mill scale that becomes em- bedded in the metal during the production process. 

Figure 2 presents visual examples of each type of de- fect. 

Ball  Screw  Drives  Dataset  Overview  The Ball Screw Drives Dataset Schlagenhauf (2021) con- 
tains 21,835 high-resolution images in  .png format. These images are divided into two distinct categories: 
P for pitting—representing localized failures on the surface,  and  N  for  no  pitting,  which  includes  
im- ages free from surface defects.  Specifically, the collec- tion has 11,075 images categorized as defect-free 
and 10,760 images marked with surface defects.  For this research, 20% of the dataset is reserved for 
validation and testing, while the bulk of it, 80%, is designated for training.   Examples  of both defective 
and non- defective conditions from this dataset are showcased in Figures 3. 

Both  datasets  are meticulously partitioned  into training and testing groups to ensure comprehensive 
training and stringent evaluation under diverse con- ditions.  Table 1 outlines the distribution and clas- 
sification of the datasets, offering a detailed view of their structure and the particular challenges each de- 
fect type presents. 

 

4.2.    Experimental Setup 

The experimental setup to assess the efficacy of In- dustNet is carefully crafted to ensure robustness and 
reproducibility in our findings. Here, we elaborate on the hardware and software configurations, parameter 
adjustments,  and the metrics utilized to gauge the model’s performance in identifying and categorizing 
surface defects in industrial goods. 
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4.2.1.    Hardware and Software 

Our experiments were executed on a computational platform featuring an NVIDIA GeForce RTX 3090 
GPU,  renowned  for  its  adeptness  in  deep  learning tasks owing to its high computational prowess and 
efficiency. Complementing this GPU is an Intel Core i9-10900K CPU and 32GB of RAM, facilitating seam- 
less data management and processing capabilities. 

In  terms  of  software,  we  leveraged  Python  3.8 alongside PyTorch  1.7.0,  which  provides  a  rich  ar- 
ray of libraries and utilities for deep learning explo- ration. The dynamic computation graph of PyTorch 
facilitated effective model tuning and debugging. Ad- ditionally, CUDA 11.0 was employed to harness GPU 
acceleration, substantially reducing the time required for both training and testing phases. 

4.2.2.    Parameter Settings 

IndustNet underwent training employing the Adam optimizer, lauded for its adaptive learning rate fea- 

tures that expedite model convergence.  The initial learning rate was configured at 1e - 3, adjusted via a 
ReduceLROnPlateau schedule, which diminishes the learning rate by a factor of 0.1 in the absence of per- 
formance enhancements on the validation set over 20 consecutive epochs. 

Training extended across 200 epochs, with early stopping  mechanisms  in  place  to  avert  overfitting. 
This halts the training process if the validation loss fails  to  improve  over  20  consecutive  epochs.     To 
enhance model robustness against real-world varia- tions, data augmentation techniques such as random 
rotations, translations, and scaling  (detailed in the Dataset subsection) were applied to the training im- ages. 

 

 

Fig. 2: Examples of NEU dataset. 

 

Fig. 3: Examples of Surface of the Ball Screw Drive. 

4.2.3.    Evaluation Metrics 

The evaluation of IndustNet’s performance incorpo- rates several pivotal metrics customary in defect de- 

tection studies: 
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•  Precision:   It  denotes the  ratio  of accurately predicted positive observations to the total pre- 

dicted positives, emphasizing a low false positive rate. 

•  Recall (Sensitivity): This metric signifies the ratio  of accurately  predicted  positive  observa- 

tions to all observations in the actual class. 

•  F1-Score: It represents the weighted average of Precision and Recall, offering significance when the  

costs  of false  positives  and  false  negatives differ significantly. 

•  Accuracy: This metric gauges the ratio of cor- rectly predicted observations to the total obser- 

vations, though its interpretation may be skewed in the presence of class imbalance. 

 

5.    Results Summary 

The enhanced performance of our adapted ConvNeXt architecture was thoroughly evaluated using two spe- 
cialized industrial datasets tailored to the detection and classification of surface defects.  The results, as 
detailed  in  Table  2,  underscore  the  significant  im- provements  achieved  in  precision,  recall,  F1-score, 

and overall accuracy across various defect categories. 

For the NEU Surface Defect Dataset, our method demonstrated remarkable capabilities with precision 
values ranging from 92% to 99%, and recall rates from 91% to 99%.   The  model was particularly effective 
in identifying and classifying patches and inclusions, achieving a perfect F1-score of 99% for patches. The 
overall accuracy for this dataset stood at 95%, indi- cating robust performance across all types of defects. 

Similarly, the evaluation on the Ball Screw Drives Dataset revealed an exceptional consistency in the 
detection of surface failures, with both precision and recall reaching as high as 99.5%.  The accuracy for this 
dataset was impressive at 99%, highlighting the model’s effectiveness in environments with diverse de- fect 
characteristics. 

These results validate the efficacy of integrating deformable convolutions, attention mechanisms, and multi-
scale feature fusion within the ConvNeXt ar- chitecture. The modifications not only enhanced the model’s 
sensitivity to subtle and complex defect fea- tures but also improved its ability to generalize across different 
industrial contexts. Such advancements con- tribute substantially to the fields of automated visual inspection 
and quality control, promising significant reductions in manufacturing defects. 

 

Table 1 - Characteristics of the Surface Defect Datasets 

Dataset Class label Instances in Training Instances in Testing Total 

 

 

NEU Surface Defect Dataset 

Crazing (Cr) 240 60 300 

Patches (Ps) 240 60 300 

Rolled in Scale (Rs) 240 60 300 

Pitted surface (Ps) 240 60 300 
Inclusion (In) 240 60 300 

Scratches (Sc) 240 60 300 
Total 1440 360 1800 

Surface of the Ball Screw Drives 

Surface failure (P) 8608 2152 10760 

No Surface failure (N) 8860 2215 11075 
Total 17468 4367 21835 

Table  1:  This table  summarizes the  characteristics of the two major datasets used in this 

study, detailing their distribution across training and testing phases, along with total instances 

for each class label. 

Table 2 Classification results 

Dataset Class Label Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Accuracy 

(%) 

NEU 

Surface 

Crazing (Cr) 96 95 95.5  

 Inclusion (In) 97 98 97.5 

Patches (Ps) 99 99 99 
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Defect 

dataset 

Pitted surface 

(Ps) 
94 93 93.5 95 

Rolled in scale 

(Rs) 
95 94 94.5 

Scratches (Sc) 92 91 91.5 

Ball Screw 

Drives 
Dataset 

Surface failure 

(P) 
99.5 99.5 99.5 

99 
No Surface 

failure (N) 
99 99 99 

Table 2: Classification results showing enhanced performance metrics across two datasets for various 
defect types. 

5.1.    Ablation Study 

The ablation study will be carried out by method- ically  deactivating  each  critical  component  of  
our method one at a time, and then evaluating the ef- fects on performance metrics across both datasets. 

The ablation study results, as summarized in Ta- ble 3,  indicate that removing any of these compo- 

nents results in  a measurable decrease in  accuracy across both tested datasets. Specifically, the absence of 

deformable convolutions led to a reduction in ac- curacy by 1.5% on the NEU Surface Defect Dataset 
and 0.9% on the Ball Screw Drives Dataset.   Simi- larly, omitting the attention mechanism and multi- 
scale feature fusion resulted in further performance declines.   This  underscores  the  synergistic effect of 
these components in enhancing the model’s capabil- ity to accurately identify and classify a wide range of 

defect types. 

The  full  model,  incorporating  all  proposed  en- hancements,  achieved an accuracy of 95.0% on the 

NEU Surface Defect Dataset and 99.0% on the Ball Screw Drives Dataset, setting new benchmarks for de- 

fect detection in industrial applications.  These find- ings not only validate the proposed methodological 
enhancements but also highlight the potential of ad- vanced deep learning architectures in improving the 

quality control processes within manufacturing envi- ronments. 

In  conclusion,  this  research  contributes  signifi- cantly  to  the  field  of  automated  visual  inspection 
by providing a robust, scalable, and highly accurate model for industrial defect detection.   Future work 

will focus on further refining these techniques,  ex- ploring additional datasets, and potentially integrat- 
ing more advanced computational strategies to ex- tend the  application scope  and enhance real-world 
deployment effectiveness. 

6.     Conclusions 

This research explored the development and enhance- ment of a ConvNeXt-based architecture specifically 

adapted for the challenging task of industrial surface defect detection.   The  study demonstrated the sig- 
nificant impact of incorporating deformable convo- lutions,  attention mechanisms,  and multi-scale fea- 

ture  fusion  into the  ConvNeXt  framework.   These enhancements collectively improved the model’s abil- 

ity to accurately detect and classify a wide range of surface defects, reflecting a substantial advancement in 

automated visual inspection technology.  The re- sults from extensive evaluations on two specialized 
datasets—the NEU Surface Defect Dataset and the Ball  Screw Drives Dataset—highlight the effective- 

ness of the proposed model enhancements: The intro- duction of deformable convolutions allowed the model to 

adapt more flexibly to irregular defect shapes and sizes, enhancing detection accuracy. The integration of 

attention mechanisms helped to focus the model’s computational resources on the most salient features, 

significantly improving the precision of defect clas- sification.    Multi-scale  feature  fusion  enabled  the 
model to effectively capture and utilize information across different scales, ensuring robust detection per- 

formance across various defect types.  The enhanced model achieved high accuracy rates, with 95.0% on the 

NEU Surface Defect Dataset and 99.0% on the Ball Screw Drives Dataset, demonstrating its poten- tial to 

serve as a reliable tool in industrial quality control systems.   These  improvements suggest that the 
adoption of such advanced deep learning mod- els  can  lead  to  significant  enhancements  in  manu- 

facturing processes, potentially reducing costs asso- ciated with defects and ensuring higher quality stan- 

dards.  Future research will focus on expanding the capabilities of this model to include additional types 

of manufacturing materials and defect forms, explor- ing further integration with real-time manufacturing 

systems, and enhancing the model’s efficiency to fa- cilitate deployment in resource-constrained environ- 
ments.   Continuous  improvement of the algorithms and exploration of new deep learning techniques will 
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also be crucial to maintaining the relevance and ef- fectiveness of this technology in rapidly evolving in- 

dustrial scenarios. 
In  conclusion,  the  advancements  presented  in this  research  not  only  underscore  the  potential  of 

deep learning in industrial applications but also pave the way for more sophisticated, accurate, and cost- 
effective solutions in automated manufacturing and quality control. 

 

Table 3: Ablation Study Results on Accuracy 

Model Configuration 
Accuracy on 

NEU Surface Defect Dataset (%) 

Accuracy on 

Ball Screw Drives Dataset (%) 

w/o Deformable Convolutions 93.5 97.8 

w/o Attention Mechanism 93.2 97.5 

w/o Multi-Scale Fusion 93.0 97.2 

Full Model 95.0 99.0 

Table 3: Ablation study results demonstrating the impact of each component on the overall accuracy of 

the adapted ConvNeXt model across two datasets. 

 

 

Fig. 4: Ablation study results. 
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