
Computer Fraud and Security  

ISSN (online): 1873-7056 

__________________________________________________________________________________________ 

982 
Vol: 2025 | Iss: 02 | 2025 

 

Emergence of Rich Patterns in a Discrete System with Migration 

and Diffusion  

Jie Gao¹*, Jincheng Zheng1, , Chaofan Hu1,  

¹Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, 

Beijing 102206, P.R. China 

* Corresponding author 

E-mail: 120222209089@ncepu.edu.cn 

 

Abstract 

This study employs the pattern formation of a discrete system with migration and diffusion. 

By analyzing the stability of fixed points and flip and Neimark-Sacker bifurcations, we demonstrate 

the non-spatial form of the system can generate complex dynamical behaviors, including periodic, 

quasiperiodic and chaotic orbits. Numerical simulations reveal the emergence of rich patterns which 

show different ways of transitions, especially on the routes to chaos with the variation of bifurcation 

parameter. We find the migration in the discrete system enhances spatial coupling and reshapes 

pattern stability. This work connects bifurcation with spatiotemporal dynamics, revealing how 

migration-diffusion interaction drives pattern self-organization.  
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1. Introduction 

The development of mathematical models has significantly advanced our understanding of pattern formation 

in spatiotemporal systems [1, 2]. Until recently, reaction-diffusion models remained the most mainstream 

theoretical framework [3–5]. Reaction-diffusion models reflect two fundamental features: the reaction between 

system variables and the diffusion of these variables in space [6]. With the development of reaction-diffusion 

models, researchers have further incorporated another movement—migration—to explore the self-organization of 

patterns. Studies have found that the occurrence of migration significantly influences pattern formation, leading 

to the emergence of traveling waves [7, 8]. 

Building on reaction-diffusion models, the coupled map lattice (CML), which features discrete 

spatiotemporal properties and continuous variables, has been developed to explore the spatiotemporal dynamics 

[9, 10]. With the application of CML, researchers have uncovered new insights into the nonlinear characteristics 

of discrete systems [11]. Comparisons between reaction-diffusion model and corresponding CML demonstrated 

that CML can describe a broader range of spatiotemporal dynamics [6, 12]. Through the nonlinear mechanisms 

of CML, a deeper understanding of the spatiotemporal complexity of discrete systems has been achieved [1-2, 5-

6, 9, 12]. 

In this research, we investigate the pattern formation in the spatiotemporally discrete predator-prey with 

diffusion and migration which is described by a three-chain CML,  
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𝑢(𝑖,𝑗,𝑚+1) = 𝑓1(𝑢(𝑖,𝑗,𝑚)
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where u(i, j, m) and v(i, j, m) (i, j ∈ 𝑁) represent the prey density and the predator density in the (i, j) site at iteration 

m; 𝑢(𝑖,𝑗,𝑚)
′  , 𝑣(𝑖,𝑗,𝑚)

′  , and 𝑢(𝑖,𝑗,𝑚)
″  , 𝑣(𝑖,𝑗,𝑚)

″   are intermediate states after the stages of migration and diffusion, 

respectively; parameters τ and l describe the temporal and spatial scales; D1 and D2 are prey and predator diffusion 

coefficients, and C1 and C2 are the migration coefficients; and  
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𝛤𝑑𝜓(𝑖,𝑗,𝑚) = 𝜓(𝑖−1,𝑗,𝑚) − 𝜓(𝑖,𝑗,𝑚),  (2a) 

𝛥𝑑𝜓(𝑖,𝑗,𝑚) = 𝜓(𝑖+1,𝑗,𝑚) + 𝜓(𝑖−1,𝑗,𝑚) +𝜓(𝑖,𝑗+1,𝑚) + 𝜓(𝑖,𝑗−1,𝑚) − 4𝜓(𝑖,𝑗,𝑚), (2b) 

𝑓1(𝑢, 𝑣) = 𝑢 + 𝜏 (𝑅 (1 −
𝑢

𝑆
)𝑢 −

𝑆𝑢𝑣

𝑣+𝑆𝑢
), 𝑔1(𝑢, 𝑣) = 𝑣 + 𝜏 (

𝑆𝑢𝑣

𝑣+𝑆𝑢
−𝑄𝑣),  (2c) 

in which symbol 𝜓 represents the variable of either u or v; R, S and Q are nondimensionalized parameters of the 

ratio-dependent predator-prey system, and parameters R and Q can be regarded to represent the prey growth rate 

and the predator mortality rate.  

2. System dynamical characteristics 

To explore the pattern formation of system (1), its dynamical characteristics should be understood firstly. Via 

stability analysis and bifurcation analysis on the system, we can obtain the results for the fixed points, Turing 

instability, flip and Neimark-Sacker bifurcations. For the calculations, one can refer to the literature [9, 12]. The 

system (1) has two fixed points,  

(u1, v1) = (S, 0),  (3a) 

(u2, v2) = (
𝑆(𝑅+𝑆(𝑄−1))

𝑅
,
𝑆2(1−𝑄)(𝑅+𝑆(𝑄−1))

𝑄𝑅
), 1−R/S < Q < 1,  (3b) 

and the stability of the two fixed points can be described as the following:  

(1) The fixed point (u1, v1) is always unstable if (u2, v2) exists in the system;  

(2) The fixed point (u2, v2) is stable if - p < 1 + q, - p > - 1 - q, q < 1, where 𝑝 = −2 + 𝜏𝑅 −

𝜏(𝑄 − 1)(𝑄 − 𝑆(𝑄 + 1)), 𝑞 = 1 − 𝜏(𝜏𝑄(𝑄 − 1) + 1)𝑅 − 𝜏2𝑆𝑄(𝑄 − 1)2 + 𝜏(𝑄 − 1)(𝑄 − 𝑆(𝑄 + 1)).  

The occurrence conditions for Turing instability can be described as 

𝐿 = max
𝑖̄,𝑗̄

{𝑚𝑎𝑥(|𝜆̄+(𝑖̄, 𝑗̄)|, |𝜆̄−𝑖̄, 𝑗̄|)} > 1.  (4) 

where 𝜆̄±(𝑖̄, 𝑗̄) =
1

2
((𝐴11 + 𝐴12) ± √(𝐴11 − 𝐴12)2 + 4𝐴12𝐴21) and 𝐴𝑖𝑗 is the elements of the Jacobian matrix 

associated to the spatiotemporal system (1).  

The non-spatial system of (1) undergoes flip bifurcation at (u2, v2) if the following conditions are satisfied: 

(1) 𝑅∗ = −𝑆(𝑄 − 1) +
4+2𝜏𝑄(𝑄−1)(1−𝑆)

𝜏2𝑄(𝑄−1)+2𝜏
 ; (2) 𝜏𝑅∗ − 𝜏(𝑄 − 1)(𝑄 − 𝑆(𝑄 + 1)) ≠ 2, 4 ; (3) 𝜂1 = 𝜇3 ≠ 0 , and 

𝜂2 = 𝜇6 + 𝜇1
2 ≠ 0. Moreover, if 𝜂2 > 0, the period-2 points bifurcating from (u2, v2) are stable; if 𝜂2 < 0, the 

bifurcating period-2 points are unstable. In the above conditions, the terms 𝜇1, 𝜇3, and 𝜇6 can be described as 

𝜇1 = 𝑓1200, 𝜇3 = 𝑓1110, 𝜇6 = 𝑓1300 + 𝑒1𝑓1101, and the detailed calculations of these terms can be seen in [9, 12]. 

Simultaneously, the non-spatial system of (1) can also undergo a Neimark-Sacker bifurcation at the fixed point 

(u2, v2), and the bifurcation conditions can also be calculated using the method as described in previous approach 

[9, 12].  

   

(a) 4.5-7.5 (b) 4.5-5.0 (c) 6.8-7.3 
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(d) 4.5-7.5 (e) 4.565-4.834 (f) 6.8-7.3 

Fig. 1 Bifurcation diagram with the variation of parameter R the corresponding maximum Lyapunov 

exponent diagram.  

Fig. 1a-1c shows the occurrence of Neimark-sacker bifurcation and flip bifurcation occur with the increase of 

parameter R. Fig. 1d-1f exhibits the maximum Lyapunov exponent diagrams corresponding, suggesting that 

chaotic behavior can take place on the routes to chaos induced by both Neimark-Sacker bifurcation and flip 

bifurcation. To be more accurate, system begins entering chaos from Neimark-Sacker bifurcation at R = 4.65, and 

R = 7.2 for flip bifurcation. 

3. Pattern formation simulations 

Numerical simulations are performed to demonstrate the pattern formation in a space with 200×200 grid 

cells. A group of feasible parameter values are provided in Table 1. The initial conditions for the pattern 

simulations are set as perturbing (u2, v2) using small random spatially heterogeneous perturbations. It should be 

noticed that the migration direction is set as from up to down in all pattern graphs.  

Table 1. Parameter values provided for the pattern simulations of Figs. 2-4.  

Parameter R Q S 𝜏 𝛿 D1 D2 C1 C2 

Fig. 2a 0.47 0.1 1 0.05 0.5 0.1 1 0 0 

Fig. 2b 0.48 0.1 1 0.05 0.5 0.1 1 0 0 

Fig. 2c 0.5 0.1 1 0.05 0.5 0.1 1 0 0 

Fig. 2d 0.52 0.1 1 0.05 0.5 0.1 1 0 0 

Fig. 2e 0.54 0.1 1 0.05 0.5 0.1 1 0 0 

Fig. 2f 0.56 0.1 1 0.05 0.5 0.1 1 0 0 

Fig. 3a 0.65 0.6 1.45 0.05 0.5 0.2 0.2 0 0 

Fig. 3b 0.6 0.6 1.35 0.05 0.5 0.2 0.2 0 0 

Fig. 3c 0.5 0.6 1.25 0.01 0.25 0.02 0.2 0 0 

Fig. 4a 4.575 0.5 6.2 1 1 0.02 0.2 0.40 0 

Fig. 4b 4.5875 0.5 6.2 1 1 0.02 0.2 0.40 0 

Fig. 4c 4.5975 0.5 6.2 1 1 0.02 0.2 0.40 0 

Fig. 4d 4.5775 0.5 6.2 1 1 0.02 0.2 0 0.20 

Fig. 4e 4.5825 0.5 6.2 1 1 0.02 0.2 0 0.20 

Fig. 4f 4.5925 0.5 6.2 1 1 0.02 0.2 0 0.20 

Fig. 4g 4.5775 0.5 6.2 1 1 0.02 0.2 0.30 0.03 

Fig. 4h 4.4875 0.5 6.2 1 1 0.02 0.2 0.30 0.03 
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Fig. 4i 4.5975 0.5 6.2 1 1 0.02 0.2 0.30 0.03 

 

Fig. 2 demonstrates the spatial patterns induced by pure Turing instability undergo two significant transitions 

as the value of parameter R increases. The first transition progresses from hot spot patterns through stripe-spot 

hybrid states to stripe patterns, while the second evolves from stripe patterns via hybrid states into fully cold spot 

patterns. Fig 3 shows the occurrence of non-Turing patterns. Fig. 3a and 3b display the spiral patches, and it is 

found that increasing the values of R and S can enhance the curl degree of the spirals. Fig. 3c displays the circle 

patches, and the pattern is alternating between regular and irregular rings.  

   

(a) (b) (c) 

   

(d) (e) (f) 

Fig. 2 Transition of spots and stripes Turing patterns with the increase of R. 

 

   

(a) (b) (c) 

Fig. 3 Occurrence of non-Turing patterns with spirals and circles.  
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(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

Fig. 4 Complex patterns and pattern transition on the route to chaos. 

Notice that the patterns in Figs. 2 and 3 are formed without the effect of migration. Fig. 4 demonstrates the 

complex pattern self-organization and pattern transition on the route to chaos induced by the bifurcation, under 

the impact of migration. Three cases are shown, prey migration without predator migration (Fig. 4a-c), predator 

migration without prey migration (Fig. 4d-f), predator and prey migration (Fig. 4g-i). We find the formation of 

banded, turbulent, irregular spot, spiral, stripe patterns, and etc. Here, notice that the migration will not inevitably 

lead to the formation of stripe or band patterns. With the variation of parameter R, the transition of patterns on the 

routes to chaos are really vary complicated. These results display the spatiotemporal complexity of the discrete 

system under the influence of diffusion and migration. And the quantitative analysis on the pattern formation and 

transition should be extended in the future research. 

4. Conclusions 

This study explores the pattern formation in a discrete predator-prey system with migration and diffusion. 

The analysis reveals that migration significantly enhances spatial coupling, influencing pattern formation and 

transition. Numerical simulations demonstrate diverse pattern formations, showing the complexity of the system. 

These results provide insights into spatiotemporal dynamics and highlight the role of migration in pattern self-

organization. 
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