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Abstract: The proliferation of Internet of Things (IoT) devices has led to a significant increase in the 

number and complexity of cyberattacks, posing severe challenges to global cybersecurity and exposing the 

limitations of traditional signature-based intrusion detection systems (IDS) in addressing unknown or evolving 

threats. To tackle this issue, we propose TCNSE, a network intrusion detection model that integrates a 

Temporal Convolutional Network (TCN) with a Squeeze-and- Excitation (SE) module. The TCN effectively 

captures temporal dependencies in network traffic through dilated convolutions, while the SE module enhances 

feature representation by modeling inter-channel relationships. Our model maintains high detection accuracy 

with low computational complexity, making it suitable for deployment on resource-constrained IoT devices. 

We applied our model to the CIC-IDS 2018 dataset, implementing efficient data preprocessing and feature 

selection techniques that reduced the number of features from over 80 to 20. We also addressed class imbalance 

using hybrid sampling methods and Focal Loss. Experimental results demonstrate that the TCNSE model 

outperforms existing advanced intrusion detection models, achieving key performance metrics of 98.4% 

accuracy, 99.4% precision, 98.7% recall, and a 99.1% F1 score. 

Keywords: Intrusion Detection System; Temporal Convolutional Networks;Attention Mechanisms; 

CIC-IDS 2018; Feature Selection 

 INTRODUCTION 

The rapid evolution of information technology and the widespread expansion of the Internet have significantly increased 

both the frequency and complexity of cyberattacks. Network intrusions now present severe challenges to global cybersecurity, 

often resulting in critical issues such as data breaches, identity theft, and data tampering[1]. For instance, the 2023 FBI Internet 

Crime Report [2] indicates that cybercrime losses in the United States exceeded $12.5 billion in 2023—a 22% increase from 

the previous year. Furthermore, with nearly 38 billion IoT devices installed globally by the end of 2023 [3], many of which 

are equipped with inadequate security measures, the attack surface has expanded considerably. A notable example is the 

September 20, 2016, Mirai botnet DDoS attack, which exploited vulnerable IoT devices to disrupt the website of a prominent 

security journalist, causing widespread service interruptions and significant economic losses [4]. 

Intrusion Detection Systems (IDS) are fundamental to network security defenses, as they are tasked with identifying and 

mitigating attack activities. Traditionally, IDS have relied on signature-based detection methods that compare network traffic 

against predefined attack patterns. Although effective for known threats, such approaches often fall short when confronted 

with novel or evolving attacks, primarily due to the inherent limitations of static signature databases [5]. In contrast, anomaly-

based detection systems monitor for deviations from established normal behavior, providing a more flexible means of 

identifying previously unseen threats. Despite their promise, the increasing complexity of network environments continues to 

pose significant challenges to both detection strategies. 

Recent advances in deep learning have opened new avenues for enhancing intrusion detection capabilities. In this paper, 

we introduce the TCNSE model—a hybrid architecture that combines a Temporal Convolutional Network (TCN) [6] with a 

Squeeze-and-Excitation (SE) module [7]. The TCN is adept at modeling long-range temporal dependencies via dilated 

convolutions, while the SE module refines feature representations by dynamically reweighting channel responses based on 

inter-channel relationships. This integration not only leverages temporal features more effectively but also enhances the quality 

of feature representations, thereby bolstering the model's ability to detect diverse and evolving network threats. Moreover, the 

parallel computation capabilities inherent in the TCN contribute to reduced computational complexity, making the TCNSE 

model particularly well-suited for deployment on resource-constrained IoT devices and enabling efficient real-time 

detection.The main contributions of this paper are as follows: 

1. We propose an effective data preprocessing and feature selection method tailored for the CICIDS 2018 dataset. Our 

approach includes comprehensive data cleaning, a combination of various feature selection methods, and the application of 

hybrid sampling techniques to address class imbalance issues. Experimental results demonstrate that this method significantly 

enhances the detection performance of the model. 
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2. We design and implement the TCNSE network intrusion detection model. This model effectively captures the temporal 

dependencies of network traffic through the integration of the TCN and SE module, while also enhancing feature representation 

capabilities through the channel attention mechanism, leading to improved detection performance. 

3. We conduct thorough experimental evaluations of the TCNSE model on the CIC-IDS 2018 dataset and compare it 

with various advanced intrusion detection models. The results show that the TCNSE model outperforms existing methods in 

key metrics such as accuracy, precision, recall, and F1 score. 

4. We employ Focal Loss as the loss function to address class imbalance issues, dynamically adjusting sample weights 

and enhancing the model’s ability to learn from difficult-to-classify samples. 

 RELATED WORK 

Convolutional Neural Networks (CNNs) are renowned for their ability to extract spatial features through local receptive 

fields. In the context of intrusion detection, Kim et al. [8]transformed one-dimensional network data into two-dimensional 

images (grayscale or RGB), demonstrating that CNN-based approaches can achieve superior accuracy for DoS attack detection 

compared to RNN-based methods. 

To capture both spatial and temporal features, Du et al. [9] proposed a hybrid CNN-LSTM model that leverages CNNs 

for spatial feature extraction and LSTMs for temporal dependency modeling. Altunay et al.[10] further validated the 

effectiveness of such hybrid approaches in industrial IoT scenarios, showing that combined CNN+LSTM models outperform 

standalone models in both binary and multiclass tasks. 

Yao et al. [11]introduced a cross-layer feature fusion technique that integrates intermediate CNN features into an LSTM, 

yielding improved accuracy on datasets such as KDD Cup 99 and NSL-KDD. Similarly, Qazi et al. [12]developed a hybrid 

CNN-RNN system that achieved high precision and recall on the CIC-IDS 2018 dataset, though its reliance on oversampling 

to address data imbalance may increase the risk of overfitting. 

Addressing low-sample challenges, He et al. [13] designed a Deep Feature-based Autoencoder Network (DFAE) by 

combining a pre-trained CNN with an autoencoder reconstruction module. This approach significantly enhanced detection 

metrics on datasets like CIC-IDS 2017 and USTC-TFC2016, despite introducing additional complexity. In the realm of 

vehicular networks, Kabilan et al. [14] proposed an unsupervised IDS for the CAN protocol by merging autoencoder-based 

feature extraction with Fuzzy C-Means clustering, though its performance on minority attack types remains suboptimal. 

Alrawashdeh [15] presented an online anomaly detection system that combines Restricted Boltzmann Machines (RBM) 

with Deep Belief Networks (DBN), achieving 97.9% accuracy on the KDD CUP 99 dataset by effectively reducing feature 

dimensions through unsupervised learning. Filho et al. [16] introduced "Smart Detection," an ML-based system employing 

Random Forests for real-time DDoS detection, which bypasses the need for traffic redirection yet raises concerns about privacy 

and generalization. 

More recent studies have explored Transformer-based approaches. Wang et al. [17] proposed RUIDS, a self-supervised 

IDS that leverages context reconstruction to improve robustness, albeit with increased computational complexity. Ullah et 

al.[18] developed IDS-INT, a transfer learning method that uses multi-head attention and SMOTE in conjunction with CNN-

LSTM layers to effectively manage imbalanced network traffic, though its high resource consumption poses challenges for 

edge deployment. 

Although these methods have achieved notable results in their respective application scenarios, they generally suffer 

from issues such as complex model architectures, high computational resource consumption, and insufficient real-time 

performance when deployed on edge devices. In response to these challenges, this paper proposes a lightweight intrusion 

detection system that, through efficient feature selection and model architecture optimization, significantly reduces model 

complexity and resource consumption while maintaining high detection performance, thereby providing a superior real-time 

protection solution for resource-constrained IoT environments.  

METHODOLOGY, APPROACH AND PROPOSED MODEL 

In the following sections, we outline our methodology and introduce the proposed intrusion detection model. We begin 

by discussing the datasets utilized in this study, followed by detailed data processing procedures. We then present the 

architecture of our intrusion detection system, as illustrated in Figure 1, which includes both the data processing workflow and 

the model training process. 
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Figure 1 Architecture of the intrusion detection system 

 Intrusion detection datasets 

The effectiveness of IDS relies on high-quality datasets for training and testing models. In recent years, several widely 

utilized network intrusion detection datasets have been employed to assess IDS performance, the most notable of which include 

KDD CUP 99, NSLKDD, CIC-IDS 2017, CIC-IDS 2018, and UNSW-NB15. 

 KDD CUP 99 and NSL-KDD 

KDD CUP 99 is one of the earliest benchmark datasets in the field of network intrusion detection, generated from the 

DARPA 1998 dataset. However, this dataset presents numerous issues, including a significant amount of redundant data and 

an imbalanced class distribution [19]. Research indicates that approximately 78% of the records in the KDD CUP 99 dataset 

are duplicates, resulting in biased evaluations, particularly in detecting minority class attacks. About 98% of the training set 

records and 86% of the test set records can be completely recognized by all 21 classifiers (seven machine learning algorithms, 

each trained three times), suggesting that many records are overly simplistic for classifiers, leading to an inaccurate reflection 

of their capability in identifying complex and real-world attacks. To address these shortcomings, the NSL-KDD dataset was 

introduced, which improved upon KDD CUP 99 by removing redundant records and adjusting class distributions. 

Nevertheless, the NSL-KDD dataset has a limited range of attack types and does not encompass new attack vectors commonly 

found in modern networks, making models trained on it less effective against actual network threats.  

 UNSW-NB15 

UNSW-NB15 represents a more contemporary dataset, generated using the IXIA PerfectStorm software in a 31-hour 

simulated environment. It encompasses nine categories of modern attacks and is based on a more realistic network setting [20]. 

Despite this, UNSWNB15 still relies on simulated data, which may result in discrepancies with real-world network traffic 

[21], thereby limiting the generalizability of models trained on it in practical applications. 

 CIC-IDS 2017 and CIC-IDS 2018 

CIC-IDS 2017 and CIC-IDS 2018, published by the Canadian Institute for Cybersecurity (CIC), are modern datasets 

extensively used in network intrusion detection research. Both datasets are derived from genuine network traffic and 

encompass various complex attack types while aiming to mimic the characteristics of traffic in actual network environments 

during generation. The CIC-IDS 2017 dataset [22] contains five days of network traffic data, with approximately 19.7% 

classified as attack traffic. In contrast, the CIC-IDS 2018 dataset expands the network topology, covering a broader array of 

attack types and scenarios. This dataset includes 16,233,002 instances, with its volume and diversity of attack types making it 

an ideal choice for network intrusion detection in the current big data landscape[23]. 

 Data processing 

Without systematic data analysis procedures, achieving the desired protective effects in IDS is challenging; thus, the data 

processing phase is critical. Leevy et al. [24] highlighted in their review that there is a scarcity of literature detailing the data 

cleaning processes for intrusion detection datasets, which poses numerous challenges for researchers attempting to replicate 

experimental models due to the lack of clarity regarding original data handling methods. In light of this, this section provides 

a comprehensive description of the cleaning process for the CIC-IDS 2018 dataset. The CIC-IDS 2018 dataset consists of ten 

CSV files, with the distribution of attack types illustrated in Figure 2. Notably, the 02-20-2018.csv file contains four additional 
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columns: Flow ID, Src IP, Src Port, and Dst IP, which need to be removed for uniform processing. The data processing steps 

are as follows: 

Figure 2 Distribution of attack types in each CSV file of the CIC-IDS 2018 dataset 

 Data preprocessing 

• Remove rows containing , ‘infinity’ or other invalid values. 

• Eliminate duplicate columns. 

• Delete constant columns (i.e., columns where all row values are identical, which can be identified quickly by checking 

if the column variance equals zero). 

• Discard highly correlated columns (with a threshold set at 0.95; if the correlation between two columns exceeds this 

threshold, retain only one). 

• Remove specified columns and rows. The ‘Protocol’ column is omitted since the ‘Dst Port’ column sufficiently 

represents the protocol. Rows containing negative values in the ‘Fwd Header Len’, ‘Flow Duration’, and ‘Flow IAT Min’ 

columns are deleted, as these values should not be negative, indicating erroneous data. Similarly, the ‘Init Fwd Win Byts’ and 

‘Init Bwd Win Byts’ columns are removed because nearly half of their data consists of negative values 

• Convert timestamps (the original dataset’s time column contains specific timestamps, while timeseries processing 

models require epoch time). 

• Merge labels (i.e., categorize similar attacks into broader categories, as shown in Table 1). 

With the completion of data preprocessing, the overall distribution of categories in the dataset is illustrated in Figure 3, 

containing 69 columns (including label columns) with a total of 155,722,254 records. 

Table 1 Examples of attack type categorization in the CIC-IDS 2018 dataset 

Generalized Attack Category  Specific Attack Types 

Brute-force SSH-Brute force 

FTP-Brute Force 

Web attack Brute Force -XSS 

Brute Force -XSS 

SQL Injection 

DoS attack DoS attacks-Hulk 

DoS attacks-Slow HTTP Test 

DoS attacks-Slow loris 

DoS attacks-Golden Eye 

DDoS attack DDOS attack-HOIC 
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DDOS attack-LOIC-UDP 

DoS attacks-Slow loris 

DDoS attacks-LOIC-HTTP 

Botnet  Bot 

Infiltration  Infiltration 

 

In addition to these common data preprocessing steps, it is noteworthy that due to the large size of the CIC-IDS 2018 

dataset (approximately 6.41GB), importing it via Pandas may not choose appropriate data types for each column (for instance, 

if a column’s maximum value is less than 255 and its minimum value exceeds 0, Pandas may default to the int type, although 

uint8 precision would suffice). This can consume substantial memory and slow down subsequent data processing, which can 

be mitigated through data type compression. The algorithm steps for this process are outlined in Figure 3, after which memory 

usage can be reduced by approximately 60%. 

Figure 3 Reduce memory usage for DataFrame 

  

 Feature selection 

Feature selection involves selecting a subset of features from the original dataset as model inputs, which can avoid the curse 

of dimensionality and enhance generalization ability [25], while also reducing model training and inference time [26]. 

Studies have reported that feature selection methods significantly reduce training and testing times and improve intrusion 

detection rates. To avoid information loss, feature selection requires data to contain redundant or irrelevant features. Here, a 

multi-method feature selection algorithm (Figure 4) is adopted. This method integrates multiple approaches (e.g., statistical 

test-based and model-based feature selection), determining the final feature subset by scoring the importance of each feature 

across different methods and weighting the cumulative scores. Specifically, this study utilizes common feature selection 

methods such as information gain, chi-squared test, random forests, and CatBoost, as seen in  

 

Table 2.  

Figure 4 Weighted feature selection through multiple methods 
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Table 2 The involved feature selection algorithm 

Algorithm Parameter setting API Weight 

Information 

Gain 
default value 

sklearn.feature selection.mutual info 

classif 
1 

Chi Squared default value sklearn.feature selection.chi2 1 

RandomForest 
n_estimators=5, random state=42, 

max depth=5, n_jobs=-1 
sklearn.ensemble.RandomForestClassifier 1.2 

CatBoost 
Learning rate=0.01, iterations=200, 

depth=10, thread count=-1 
catboost.CatBoostClassifier 1 

LightGBM learning rate=0.01 lightgbm.LGBMClassifier 1 

 

Information Gain and the Chi-Squared Test are two commonly used statistical methods for evaluating how strongly a 

feature correlates with the target. Meanwhile, CatBoost, LightGBM, and Random Forest are tree-based ensemble algorithms, 

with the first two leveraging efficient base-learner training and the latter aggregating decisions via multiple decision trees. 

To enhance the effectiveness of different methods, the importance scores from each method are normalized and assigned 

varying weights based on their reliability in the context (e.g., model-based feature selection may yield better results than 

statistical test-based methods and thus be given a higher weight). Ultimately, by aggregating the weighted scores, the top k 

critical features are selected. This multi-method ensemble and weighted scoring strategy for feature selection not only 

effectively addresses the high dimensionality issue but also ensures the selected features’ generalization performance in the 

model. Table 3 shows the top 20 important features and their descriptions, ranked by Algorithm 2. 

Table 3 CIC-IDS 2018 dataset: Top 20 features and their descriptions 

Feature Description 

Dst Port  The destination port number of the packet. 

Timestamp  The timestamp when the packet is captured. 

Fwd IAT Tot  The total forward inter-arrival time (IAT) between packets. 

Fwd IAT Max  The maximum forward IAT between packets. 

ACK Flag Cnt  The count of ACK flags in the packet headers. 

Init Bwd Win Byts  The initial backward window size in bytes. 

Fwd IAT Mean  The average forward inter-arrival time (IAT) between packets. 

Fwd Pkt Len Max  The maximum length of the forward packets. 

TotLen Fwd Pkts  The total length of forward packets. 

Fwd Header Len  The length of the forward packet header. 

Fwd Seg Size Avg  The average segment size of forward packets. 

Fwd Pkt Len Mean  The average length of forward packets. 

Flow Pkts/s  The number of packets per second in the flow. 

Fwd Seg Size Min  The minimum segment size of forward packets. 

Flow IAT Mean  The mean inter-arrival time (IAT) of the flow. 

Flow IAT Max  The maximum inter-arrival time (IAT) of the flow. 

Fwd IAT Min  The minimum forward inter-arrival time (IAT) between packets. 
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Subflow Fwd Byts  The number of bytes in the forward subflow. 

Bwd Seg Size Avg  The average segment size of backward packets. 

Fwd Pkts/s  The number of forward packets per second. 

 Data normalization 

Data normalization plays a crucial role in model performance and training efficiency. It helps align the distributions of 

different features within similar ranges, preventing issues such as numerical instability and gradient vanishing caused by large 

discrepancies in feature values. This, in turn, enhances the model’s convergence speed and prediction accuracy. Furthermore, 

normalization improves the model’s generalization ability, reduces the risk of overfitting, and boosts detection effectiveness 

for unknown attacks. The calculation process can be referenced using Equation 1, where the normalized value is denoted as 

x′, and the maximum and minimum values of the dataset are represented as xmax and xmin, respectively. 

𝑥′ =
𝑥 − 𝑥min

𝑥max − 𝑥min

(1) 

 Data split 

The dataset is divided into a training set comprising 80% of the data and a test set consisting of the remaining 20% using 

the train test split method from sklearn. 

 Data imbalance 

Following the above processing, the overall distribution of the dataset is depicted in Figure 5, revealing that the Benign 

class accounts for 84.9%, indicating a highly imbalanced state. This imbalance typically leads to models becoming overly 

adapted to the majority class while neglecting the minority class, which may result in a tendency to classify most samples as 

the majority class [24]. For this dataset, if the model consistently classifies all input data as Benign, it would achieve an 

accuracy of 84.9% on the test set. In fields like network intrusion detection, this can cause high false positive rates and low 

detection rates, especially for rare attack types. By applying appropriate balancing techniques, the model’s ability to recognize 

minority classes can be significantly improved. This not only reduces false positives and negatives but also enhances the 

model’s generalization ability, making it more reliable in practical detection scenarios. In this study, a hybrid sampling 

approach is employed, which first reduces the number of majority samples through random undersampling(RUS), followed 

by oversampling the minority samples using SMOTE, ultimately achieving a balanced distribution across categories. The 

hybrid sampling method is applied only to the training set, while the test set remains unchanged. 

Figure 5 Distribution of the whole CIC-IDS 2018 dataset 

 Label transformation 

After the sampling process, labels are categorized into two classes: Benign and Malicious. 

 Proposed model 

Figure 6 illustrates the architecture of the proposed intrusion detection model, referred to as the TCNSE network. It 

primarily comprises two key components: a TCN module and a SE module. 

• TCN module: Utilizes causal and dilated convolutions to capture long-range dependencies in time series data, enabling 

efficient temporal feature extraction. 

• SE module: Adapts the importance of each feature channel through a channel attention mechanism, enhancing the 

model’s ability to express and improve accuracy on features. 
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Figure 6 Architecture of proposed intrusion detection model 

 Temporal convolutional network 

When processing time series data, traditional algorithms like RNNs and LSTMs sequentially handle time points, 

integrating information from previous time points into subsequent computations. This sequential dependency can hinder model 

responsiveness and efficiency, particularly in resource-constrained environments like IoT devices. The complexity and 

memory consumption of these models are critical; an overly complex model can lead to extended inference times, affecting 

responsiveness. Unlike RNNs, convolutional operations allow for parallel computation, greatly increasing processing speed. 

Additionally, these traditional algorithms consume substantial memory to store unit gate outputs over long sequences, which 

is why the TCN module is employed instead of RNNs in this model. 

The main characteristics of the TCN module include causal convolutions, dilated convolutions, and residual connections. 

Causal convolutions are designed to ensure that the output at time t only relies on the current and past inputs, thereby preventing 

future information leakage. In standard convolution, padding is typically applied to both ends of the input sequence to maintain 

equal output and input sequence lengths. However, causal convolutions only apply padding to the left side (i.e., in the “past” 

direction), as shown in Equation 2, ensuring that each output does not involve future input data. Given an ordered input 

sequence x = [x1, x2, … , xT], with kernel size k and weights w = [w1, w2, … , wk], the output at position t in standard one-

dimensional convolution is defined by Equation 3: 

𝑝𝑙 = (𝑘 − 1) × 𝑑 (2) 

𝑦𝑡 = ∑ 𝑤𝑖

𝑘

𝑖=1

⋅ 𝑥
𝑡+𝑖−

𝑘+1
2

(3) 

In causal convolutions, the index is adjusted as follows 4: 

𝑦𝑡 = ∑ 𝑤𝑖

𝑘

𝑖=1

⋅ 𝑥𝑡−𝑖+1 (4) 

This adjustment ensures that the output yt depends solely on xt, xt−1, … , xt−k+1, which encompasses the current and prior 

inputs. 
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Dilated convolutions introduce gaps between kernel elements, allowing convolution operations to span a broader input 

range, thus enlarging the receptive field without increasing kernel size or computation, depicted in 

 

Figure 7. This enables the model to capture distant relationships among features more effectively. For an input sequence 

x with kernel size k and dilation factor d, the output at position t is computed as follows 5: 

𝑦𝑡 = ∑ 𝑤𝑖

𝑘

𝑖=1

⋅ 𝑥𝑡+𝑖⋅𝑑−𝑑 (5) 

where: 

• 𝑤 represents the convolution kernel weights. 

• 𝑑 is the dilation factor, which determines the spacing between kernel elements and typically grows exponentially (e.g., 

[1, 2, 4, ...]). 

When 𝑑 = 1, the dilated convolution reverts to standard convolution. 

 

Figure 7 Architecture of proposed intrusion detection model 

 In deep learning models, as the number of layers increases, the gradients during backpropagation may diminish or 

explode, complicating network training. Residual connections introduce a direct path bypassing several layers, allowing 

information to flow to deeper layers. This structure fundamentally alters the transformation function from H(x) to H(x) =

F(x) + x, where: 

• F(x) represents the learnable residual component. 

• x is the input, directly added to the output through the residual connection. 

This design allows the network to focus on learning the residual function F(x) rather than the direct mapping H(x). 

Consequently, even if some layers in a deep network fail to learn effective features (i.e., if F(x) approaches 0), the residual 
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connection ensures that information x can still propagate through the model, thus maintaining performance as the model depth 

increases. 

 Squeeze-and-excitation block 

Traditional convolutional operations mainly capture spatial features, often overlooking the relationships between 

different channels. To address this shortcoming, the SE (Squeeze-and-Excitation) module introduces an attention mechanism 

that dynamically reassigns weights to feature channels, enabling the network to focus on the most informative ones. As 

illustrated in Figure 8, the SE module operates in three stages: Squeeze, Excitation, and Scale. In the Squeeze step, global 

average pooling is applied to each channel to generate a compact vector summarizing the global channel statistics. Next, during 

the Excitation step, fully connected layers along with non-linear activations are used to learn channel-specific weights—this 

effectively acts as an attention mechanism by emphasizing the channels that are most relevant. Finally, the Scale step involves 

reweighting the original feature maps with these learned weights, thus enhancing critical channels while suppressing less 

significant ones and ultimately improving the network’s representational capacity. 

 

Figure 8 Detailed Interaction between the TCN Block and the SE Block 

 Loss function and optimizer 

Given the extreme class imbalance in the CICIDS 2018 dataset, the Binary Focal Loss [27] is utilized to enhance the 

model’s focus on difficult to- classify samples during training. In scenarios with class imbalance or a preponderance of easily 

classified samples, standard cross-entropy loss often leads models to concentrate excessively on the majority class, overlooking 

the minority class or challenging samples. Focal Loss dynamically adjusts sample weights, effectively enhancing the model’s 

learning capabilities for minority classes and difficult samples, thereby improving overall performance. The calculation for 

Focal Loss is provided in Equation 6: 

𝐹𝐿(𝑝𝑡) = −α𝑡(1 − 𝑝𝑡)γlo g(𝑝𝑡) (6) 

where: 

• 𝑝𝑡 denotes the predicted probability for the true class. 

• αt is the weight applied to the true class, aiming to address class imbalance. 

• γ is a focusing parameter, determining the level of focus on hard-to-classify samples. A larger γ value places greater 

emphasis on these samples. 

 Experimental analysis and results 

 Performance metrics 

In addition to the model's accuracy on the test set, there are many metrics used to assess the performance of an intrusion 

detection model. Here, we use the 10 most commonly used metrics in the field of intrusion detection[28], which are: Accuracy, 

Recall (True Positive Rate), Precision, F1-Score, False Positive Rate (FPR), ROC Curve and AUC, True Negative Rate (TNR), 

False Negative Rate (FNR), Confusion Matrix, Training Time 

 Model training and performance analysis 

This section details the training process of the intrusion detection model, as well as the evaluation and comparison of model  

metrics. Table 4 shows the hardware configurations and software versions of the training platform, and  

Table 5 lists the optimal hyperparameters obtained through experimental comparisons. 

Table 4 Platform specifications for model training 

Component  Specification 

CPU  Intel(R) Xeon(R) Platinum 8255C CPU @ 2.50GHz 

Graphics card  3080 10GB 
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Memory  40G 

Python version  3.8 

Pytorch version  2 

Cuda version  11.8 

 

Table 5 Hyperparameters for the model training 

Hyperparameter Value 

Batch size  2048 

Loss function  BinaryFocalLoss 

Number of epochs  50 

Optimizer  AdamW 

Weight decay  1.00E-05 

Learning rate  0.001 

Learning rate decay  CosineAnnealingLR, T max=50 

Temporal convolutional network structure [128, 64, 32] 

 

In this study, all features in the CIC-IDS 2018 dataset were ranked according to importance using an integrated feature 

selection algorithm, and the model’s performance was evaluated with different numbers of features, as shown in Table 6. 

Experimental results indicate that when the number of features is set to 20, the model performs best across all performance 

metrics, achieving an accuracy of 98.4%, a recall of 98.9%, precision and F1-score both at 99.1%, the lowest false positive 

rate of 3.3%, the highest true negative rate of 96.7%, and a training time per epoch of only 74.4 seconds. This result clearly 

demonstrates that appropriately reducing the number of features not only maintains the model’s classification ability but also 

enhances the overall performance in multiple aspects. 

Table 6 Performance metrics across different numbers of features 

Number of 

Features 

Accuracy 

(%) 

Recall 

(%) 

Precision 

(%) 

F1-score 

(%) 

False 

Positive 

Rate 

(%) 

True 

Negative 

Rate 

(%) 

Training 

Time(s) 

15 97.8 97.5 98.2 97.8 4.5 95.5 60.1 

20 98.4 98.9 99.2 99.1 3.3 96.7 74.4 

30 98.2 98.6 99.1 99.0 3.6 96.4 111.6 

40 98.3 98.7 99.1 98.2 3.7 96.3 131.4 

50 98.3 98.7 98.8 98.7 3.7 96.3 153.4 

60 98.1 98.6 99.4 98.6 4.7 95.3 162.5 

68(all features) 98.1 98.7 98.9 98.9 4.8 95.2 184.9 

 

As the number of features increases, although the model’s precision and F1-score remain high, other metrics like the 

false positive rate increase, the true negative rate slightly decreases, and the training time extends significantly. For example, 

when the number of features increases to 68, the training time nearly doubles to 184.9 seconds, while the false positive rate 

rises to 4.8%, and the true negative rate drops to 95.2%. This phenomenon can be explained by the curse of dimensionality 

[29]. High-dimensional feature spaces cause data to become sparse, making it difficult for the model to effectively capture the 

intrinsic structure of the data, leading to decreased generalization ability. Moreover, more features mean more parameters to 
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learn, increasing computational complexity and extending training time. Especially in resource-constrained IoT device 

environments, such computational overhead negatively impacts system response time and user experience. 

Feature selection played a critical role in this process. By comprehensively utilizing multiple feature selection algorithms 

to select the 20 most discriminative features, the model maintains high classification accuracy while significantly reducing 

computational overhead and training time. This not only enhances the model’s real-time responsiveness but also reduces data 

storage and transmission costs, improving the system’s feasibility and efficiency in practical applications. Additionally, an 

appropriate number of features helps reduce interference from redundant and noisy features, enhancing the model’s robustness 

and stability, thereby improving its generalization performance on unseen data. 

Figure 9 shows the changes in various metrics during model training with learning rates of 0.01 and 0.001, respectively. 

It can be seen that when the learning rate is 0.001, the model’s Precision, FPR, and TNR are better than those with a learning 

rate of 0.01. This may be attributed to the lower learning rate making parameter updates more stable during training, allowing 

the model to more closely approach the optimal solution of the loss function [30], and reducing parameter oscillations or 

overfitting caused by an excessive learning rate. In contrast, a learning rate of 0.01 may cause the model to skip over optimal 

regions during training, failing to fully learn the deep features of the data, thereby affecting the model’s classification 

performance. 

 

Figure 9 Comparison of metrics across different learning rates 

From the trend curves of various performance metrics over training iterations, depicted in Figure 10, it is evident that 

although different batch sizes exhibit slightly different convergence speeds during the early stages, the final performance is 

optimal when the batch size is set to 2048, achieving higher accuracy, precision and TNR, and a lower FPR. However, when 

the batch size is further increased to 4096, all metrics noticeably deteriorate. This phenomenon may be attributed to the 

tendency of large-batch training to converge to sharp minima that weaken generalization ability, as noted by Zhang et al. [31], 

where excessively large batch sizes lead the model to converge to inferior minima, ultimately degrading the final detection 

performance. 

Figure 10 Comparison of metrics across different batch sizes 
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Table 7 clearly demonstrates that while both random under-sampling and SMOTE individually enhance model 

performance, the hybrid approach (RUS+SMOTE) outperforms both. It achieves the highest accuracy, recall, precision, and 

F1-score, along with the lowest false positive rate, confirming the effectiveness of combining both methods to address class 

imbalance. 

Table 7 Comparison of performance metrics for different imbalance handling techniques 

Method Accuracy (%) Recall (%) Precision (%) F1-score (%) FPR (%) TNR (%) 

Random Undersampling 97.8 97.5 98.3 97.7 4.5 95.5 

SMOTE Alone 97.9 98.0 98.1 98.0 4.2 95.8 

Hybrid Sampling(RUS+SMOTE) 98.4 98.9 99.0 99.1 3.3 96.7 

 

Figure 11 compares the training error, test error, and various performance metrics under different temporal convolutional 

block structures of the TCNSE model, with a learning rate of 0.001 and using 20 selected features. Table 8 summarizes the 

key performance metrics and training times for these structures. As model complexity increases, Accuracy, Precision, Recall, 

F1 Score, and TNR all improve. Notably, the [256, 128, 64, 32] structure achieves the best performance, with 98.6% accuracy, 

99.4% precision, 98.9% recall, 99.2% F1 score, and 96.9% TNR. This enhancement is mainly due to its deeper architecture 

and greater parameter capacity, enabling the capture of more complex features and temporal dependencies. The introduction 

of residual connections also mitigates gradient vanishing, ensuring effective information flow. However, this performance 

gain comes at the cost of increased training time: one epoch for [256, 128, 64, 32] takes 89.6 seconds, nearly twice that of the 

[128, 64, 32] structure at 46.1 seconds. This trade-off, driven by the higher number of layers and parameters, may affect 

deployment on IoT devices with limited computational resources. 

 

Figure 11 Comparison of metrics across different model structures 

Table 8 Summary of different model structure comparison 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

FPR 

(%) 

TNR 

(%) 
Training Time (s) 

[128 64 32] 98.4 99.3 98.7 99.1 3.3 96.7 46.1 
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[256 128 64] 98.5 99.4 98.9 99.1 3.2 96.8 83.1 

[128 64 32 16] 98.5 99.4 98.8 99.1 3.3 96.7 51.6 

[256 128 64 32] 98.6 99.4 98.9 99.2 3.1 96.9 89.6 

 

Therefore, in model design, a balance needs to be struck between performance improvement and computational overhead. 

Although more complex models can provide better performance metrics, training time and inference efficiency are equally 

critical in practical applications. For scenarios requiring real-time response, appropriately reducing model complexity and 

choosing a lighter structure like [128, 64, 32] may be a more practical choice. 

Figure 12 shows the confusion matrix on the test set under the conditions of using the model structure [128, 64, 32], the 

optimal learning rate, and the selected number of features. Figure 13 presents the ROC curves for detecting various types of 

attacks. Table 9 illustrate the detection performance of our model across various attack types. Notably, the Infiltration attack 

type constitutes only about 1% of the overall dataset; nevertheless, the model achieves a classification accuracy of 98.2% and 

a corresponding true positive rate of 96% for these scarce samples. This attack category is, however, the most prone to false 

positives, an issue that appears to be currently unavoidable. In contrast, for more prevalent attack types such as DDoS, the 

model attains a true positive rate of 100% and an accuracy of 98.8%, indicating that false positives and false negatives are 

virtually eliminated 

Table 9 Performance metrics for different attack types 

Attack Type Accuracy TPR 

DDoS Attack 98.8% 100.0% 

DoS Attack 98.8% 100.0% 

Botnet 98.7% 100.0% 

Infiltration 98.2% 96.0% 

Brute-force 98.7% 100.0% 

Web Attack 98.7% 99.0% 

 

Figure 12 Confusion matrix 
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Figure 13 ROC curves for different attack types 

 Performance comparison with existing IDS models 

In this section, we compare the proposed TCNSE model with traditional machine learning methods and several advanced 

deep learning intrusion detection models. Table 10 presents the performance of different research models on key metrics such 

as Accuracy, Precision, Recall, AUC, and F1 Score. 

From the table, it is evident that the TCNSE model performs excellently on all evaluation metrics. Specifically, the 

TCNSE model achieves an accuracy of 98.4%, a recall of 98.9%, an AUC of 97.8%, and an F1 score of 99.1%. These results 

are significantly better than traditional machine learning models, such as the Random Forest model proposed by Leevy et al 

[37], which has an AUC of 95.5% and an F1 score of 93.2%, and the Naive Bayes model with an AUC of only 55.4% and an 

F1 score of 31.4%. 

Compared with other deep learning models, the TCNSE model shows remarkable advantages. For example, Ferrag et al. 

[32] used RNN and deep autoencoder models, achieving an accuracy of 97.4% and an AUC of 98.2%; Gamage et al. [33] 

implemented a deep feed-forward neural network that achieved an accuracy of 98.4%, a recall of 98.0%, and an AUC of 

98.3%; Lin et al. [34] obtained an accuracy of 96.2% and a recall of 96.0% with their LSTM model. In contrast, the TCNSE 

model improves on all key metrics, particularly excelling in recall and F1 score, reaching 99.4% and 99.1% respectively, 

demonstrating significant advantages in identifying actual intrusion events and maintaining a balance between precision and 

recall. 

Table 10 Comparison of proposed model with existing models 

Research Model Metrics 

[32] RNN, Deep Autoencoder Accuracy=97.4%, AUC=98.2% 

[33] 
Deep Feed-forward Neural 

Network 
Accuracy=98.4%, Recall=98.0%, AUC=98.3% 

[34] LSTM Accuracy=96.2%, Recall=96.0% 

[35] Deep Autoencoder Accuracy=97.9%, Recall=98.0% 

[8] CNN Accuracy=91.5%, AUC=97.1% 

[36] CNN + RNN Accuracy=97.7%, Recall=96.3% 

[37] CatBoost AUC=95.6%, F1=93.6% 

[37] Decision Tree AUC=91.2%, F1=88.7% 

[37] LightGBM AUC=95.2%, F1=93.0% 

[37] Naive Bayes AUC=55.4%, F1=31.4% 

[37] Random Forest AUC=95.5%, F1=93.2% 

Proposed 

Model 
TCNSE 

Accuracy=98.4%, Precision=99.2%, 

Recall=98.9%, 
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  AUC=97.8%, F1 Score=99.1% 

 

 Edge deployment evaluation: resource consumption and Real-Time performance analysis 

To evaluate the resource consumption of our model on edge devices, we deployed it on two representative platforms—

Raspberry Pi 5 and Jetson Xavier NX and provided detailed hardware specifications for both. Table 11 presents the hardware 

specifications of the two devices. The reason for selecting these two devices is that the Jetson Xavier NX supports GPU-

accelerated inference, whereas the Raspberry Pi 5 does not.In our experiments, these devices served as target machines while 

an independent host simulated network attacks to recreate realistic security threat scenarios. 

Table 11 Platform specifications 

Attribute Raspberry Pi 5 Jetson Xavier NX 

CPU 
Quad-core Cortex-A76 (ARM v8) 64-bit 

SoC @ 2.4GHz 

Six-core (2x Carmel ARM v8 64-

bit CPU) 

GPU – 
384 NVIDIA CUDA Cores + 48 

Tensor Cores 

Memory 4GB LPDDR4X @ 4267MHz 6GB LPDDR4 @ 1600MHz 

Operating 

System 
Debian Ubuntu 

 

Unlike the training and testing phases where preprocessed data is directly used, the deployment environment requires 

additional steps, including realtime network traffic capture, feature extraction, and data normalization, to convert raw network 

data into the format required by the model. The overall workflow is illustrated in Figure 14. First, network packets are captured 

using Scapy, a Python-based tool capable of sending, sniffing, analyzing, and forging packets. Subsequently, traffic features 

are extracted via the Python version of CICFlowMeter—the same tool originally employed in generating the CIC-IDS 2018 

dataset. After feature extraction, the data is further processed to remove invalid values and normalized before being fed into 

the model for real-time inference. Upon detecting malicious traffic, the system employs iptables to both block the attack and 

issue alerts to the user. 

In our experiment, a host machine simulated DDoS attack against edge devices running our detection program. Figure 

15 and Figure 16 illustrate the resource consumption on the Raspberry Pi 5 and Jetson Xavier NX, respectively, while Table 

12 compares our model with other lightweight IDS models. The reported CPU, memory, and CUDA metrics represent average 

values sampled once per second, and the detection latency denotes the total delay from raw data capture through the entire 

processing pipeline (as shown on the right side of the Figure 14), rather than just the inference delay. 
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Figure 14 Workflow for Real-Time intrusion detection on edge devices 

 

Figure 15 Raspberry Pi 5 Resource Usage 

Figure 16 Jetson Xavier NX Resource Usage 

Regarding CPU and memory usage, the TCNSE model achieves an average CPU utilization of only 14% and a memory 

usage of about 44% on Raspberry Pi 5—substantially lower than some models that report up to 73.3% CPU usage on Raspberry 

Pi 4B, demonstrating its lightweight advantage in resource constrained environments. On the Jetson Xavier NX, GPU 

acceleration causes the CPU usage to rise slightly to 18%, with memory usage reaching approximately 48%. 

The detection program accumulates a certain amount of network flow data to compute statistical features—such as the 

maximum inter-arrival time of forward packets, the mean inter-arrival time of the flow, and the packet rate—which are 

essential for accurately reflecting traffic dynamics and improving intrusion detection performance. Although these data are 

temporarily stored in memory (resulting in a somewhat higher memory footprint compared to, for example, [41]), the program 

incorporates timeout and data-volume thresholds to process and clear the data once they reach a predetermined limit, ensuring 

that memory does not accumulate indefinitely. 

Table 12 Comparison of proposed model with existing models on edge devices 

Research Dataset Metrics on Model Training 
Edge 

Device 

Energy Consumption on Edge 

Device 

[38] CICIoT2023 - 
Raspberry 

Pi 3 

Energy consumption: 6.04W, 

Latency: 6.76s 

[39] 
UNSW-

NB15 

Training time: 720s, GPU 

Memory Usage: 9.8GB, CPU 

Usage: 80% 

- - 

[40] CICIDS2017 - 
Raspberry 

Pi 4B 

CPU Usage: 73.3%, Memory 

Usage: 51.9% 

[41] CICIDS2017 Model size: 14.14MB 
Raspberry 

Pi 2B 

CPU Usage: 16%, Memory 

Usage: 14% 

[42] CICIDS2017 - 
Raspberry 

Pi 4B 

CPU Usage: 36%, Memory 

Usage: 10% 

Proposed 

Model 
CICIDS2018 

Training time: 46s, GPU 

Memory Usage: 1041MB, 

CPU Usage: 45%, Model size: 

79KB 

Raspberry 

Pi 5 

CPU Usage: 14%, Memory: 

44%, Latency: 45ms 

Jetson 

Xavier NX 

CPU Usage: 18%, Memory: 

64%, Latency: 21ms, Energy 

Consumption: 4.4W 
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In terms of real-time detection, inference latency is a critical performance metric. The TCNSE model achieves an average 

detection latency of 45 milliseconds on Raspberry Pi 5, compared to the CNN-LSTM model in [38], which exhibits a latency 

of up to 6.76 seconds on Raspberry Pi 3. On the Jetson Xavier NX, GPU acceleration further reduces the TCNSE inference 

latency to 21 milliseconds. 

Finally, energy efficiency is particularly important for IoT and edge devices. On the Jetson Xavier NX, the TCNSE 

model consumes approximately 4.4W, whereas some competing models on Raspberry Pi 3 consume up to 6.04W. The compact 

model size of only 79KB and the carefully designed feature selection strategy contribute to reduced computational and memory 

overhead, leading to significant overall energy savings. 

 CONCLUSION AND FUTURE WORK 

We propose TCNSE, a lightweight intrusion detection model that integrates Temporal Convolutional Networks (TCN) 

with Squeeze-and-Excitation (SE) modules, utilizing only 20 key features from the CIC-IDS 2018 dataset. Our approach—

featuring comprehensive data cleaning, an integrated weighted ensemble feature selection method, and effective imbalance 

handling—reduces the feature space and computational complexity, thereby shortening both training and inference times 

without compromising performance. By fully leveraging temporal dependencies and inter-channel relationships, TCNSE 

robustly detects complex intrusion behaviors. Experimental results show that the model achieves 98.4% accuracy, 99.40% 

precision, 98.70% recall, and a 99.10% F1 score, underscoring the critical balance between performance and efficiency. 

Looking ahead, we plan to enhance TCNSE’s resilience against adversarial attacks by incorporating techniques such as 

FGSM, PGD, and robust loss functions, as well as exploring GAN-generated adversarial examples to counter sophisticated 

evasion strategies. Future work will also involve applying advanced optimization algorithms (e.g., Particle Swarm 

Optimization) to further refine feature selection, validating the model on additional intrusion detection datasets, and exploring 

transfer and ensemble learning methods to address data imbalance and improve detection of minority attacks. Finally, we aim 

to optimize real-world deployment using containerization technologies like Docker to develop an efficient, stable, and real-

time intrusion detection system. 
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