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Abstract: Insulators are an important part of transmission lines, insulator deterioration, failure 

and other problems are one of the main causes of transmission line failure, and insulator 

deterioration, failure is often accompanied by insulators appear abnormal temperature rise, so 

there is a need to carry out a rapid assessment of the insulator heating condition, and can be 

monitored in real time at the edge end of the algorithmic approach. In this paper, to address the 

above problems, the improved YOLOv8 algorithm is used to improve the YOLOv8 algorithm for 

the insulator infrared image of the overheating region of the target recognition approach. Firstly, 

the YOLOv8 target detection algorithm is improved by introducing the CBAM attention 

mechanism, i.e., by introducing the channel and spatial attention module in the CNN 

(Convolutional Neural Network) to improve the perceptual ability of the overall model and 

improve the performance without increasing the network complexity. Then the deformable 

convolution DCNv3 is introduced to generate learnable offsets to improve the traditional fixed 

convolution operation, which realizes nonlinear sampling of the input feature maps during the 

convolution process and improves the robustness and accuracy of the algorithm. Finally, the 

WioU loss function is introduced to optimize the network, which is experimentally verified to 

achieve an inference accuracy of 87.5% mAP at the edge end of the device to meet the 

identification of abnormal temperature rise of insulators at the edge end, and the comparative test 

proves the effectiveness and superiority of the algorithm proposed in this paper through ablation. 
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1. Introduction 

 

In China's high-voltage AC transmission lines, insulators serve the critical function of providing electrical 

insulation and structural support, making their operational safety paramount to power grid reliability. However, 

during routine grid operations, porcelain insulators are prone to develop microscopic air bubbles and hairline 

cracks. These defects progressively expand with prolonged service, adversely impacting the insulation 

performance by reducing resistance values. Furthermore, the electromagnetic fields in high-voltage lines and the 

mechanical stress sustained by insulators collectively contribute to the degradation of insulation performance, 

resulting in continuous resistance reduction. Ultimately, when an insulator's resistance diminishes to critical 

thresholds—manifesting as low-resistance or zero-resistance insulators—it poses substantial risks to 

transmission line safety [1-5]. 

In current practice for detecting insulator degradation and failures, manual tower-climbing inspection 

remains a widely adopted approach. This method primarily employs the following techniques: voltage 

distribution measurement, impulse current detection, spark gap testing, electric field evaluation, and leakage 

current monitoring to identify low-resistance or zero-resistance insulators. However, these conventional 

methods present significant operational limitations, including poor temporal resolution, high labor costs, 

inherent safety hazards that are difficult to mitigate, and suboptimal efficiency. To address these challenges 

while enhancing worker safety, reducing operational expenses, and achieving rapid detection, infrared 

thermographic analysis of insulators has emerged as a viable technical solution. 

Low-resistance and zero-resistance insulators exhibit distinct thermal characteristics due to their reduced 

resistance and compromised insulation performance, while insulator faults also induce abnormal temperature 

rises. Leveraging this thermal behavior for detection—specifically through monitoring anomalous temperature 
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elevations—enables efficient early warning and assessment of insulator anomalies, thereby enhancing grid 

operational safety. This inherent advantage has driven increasing adoption of infrared thermography [6-11]. 

Recent years have witnessed progressive advancements in infrared thermal image recognition research. 

Duan Zhongxing et al. [12] addressed critical challenges in power equipment infrared imaging, including data 

imbalance and variability, by implementing multi-scale convolutional modules within the YOLOv4 backbone 

network and employing Focal Loss to enhance initial feature representation, effectively resolving classification 

difficulties caused by imbalanced infrared datasets. Gu Xing et al. [13] improved feature extraction through 

attention mechanisms and optimized iterative feature pyramid structures, achieving superior multi-scale target 

recognition. Their integration of CIoU loss functions with Gradient Harmonized Mechanisms significantly 

enhanced detection accuracy and processing speed. Zhou Yangyang et al. [14] incorporated dilated convolution 

kernels into depthwise separable convolutions, developing a D-MobileNet architecture to replace the ELANCSP 

backbone in YOLOv7, resulting in improved robustness, generalization capability, and model lightweighting. 

Liu Guote et al. [15] proposed an AI-driven recognition method using enhanced cascaded Gentle Adaboost 

classifiers for post insulator infrared images, establishing an efficient framework for multi-target fault diagnosis 

and identification. Wang Yuanbin et al. [16] implemented a YOLOv5-based infrared recognition system 

featuring Ghost convolutions in the backbone network, channel interaction-enhanced attention modules, and 

self-attention-optimized C3 modules. Their integration of Cluster NMS and EIoU loss functions accelerated 

network convergence while maintaining precision. 

Current infrared detection methods for insulator overheating caused by degradation or faults rely primarily 

on thermal signature analysis. However, practical challenges persist due to the variable geometries, inconsistent 

scales, and complex backgrounds of overheated insulators in infrared images, which impair effective feature 

extraction and consequently limit detection accuracy. To enhance recognition performance for overheated 

porcelain insulators under degradation/fault conditions, this study proposes an improved YOLOv8-based 

infrared target detection method, with potential for expansion into insulator fault warning platforms. 

Our modifications to the baseline YOLOv8 architecture include: 1) Integration of the CBAM attention 

mechanism [17] to enhance feature discrimination without increasing computational complexity; 2) 

Implementation of deformable convolution DCNv3 [18], which introduces learnable offset parameters to replace 

conventional fixed convolution kernels, enabling nonlinear sampling of input features and improved detection 

accuracy for irregularly shaped insulators; 3) Adoption of WIoU loss [19] to optimize bounding box regression, 

particularly enhancing precision when detecting multiple insulator components. These innovations collectively 

improve adaptation to actual transmission line conditions while maintaining detection efficiency. 

 

2. Insulator Target Detection Method Based on Improved YOLOv8 Algorithm 

 

2.1 Insulator Heating Mechanism 
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Figure. 1 Degraded insulator equivalent circuit diagram 

 

Over time, contaminant deposition, surface degradation, and declining mechanical properties on insulator 

surfaces collectively impair insulation performance through resistance reduction. Both surface leakage currents 

and internal penetrating leakage currents significantly influence insulator heating characteristics [20]. 

The equivalent circuit of degraded insulators is illustrated in Figure 1, where 0C  represents inter-electrode 

capacitance, while Rj , LR , and WR  denote equivalent resistances for polarization loss heating, primary 
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insulation degradation pathways, and leakage loss respectively. The thermal power generation is expressed in 

Equation (1): 
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In Equation (1), ZD corresponds to the equivalent impedance across the insulator string, and Zs represents 

the inter-electrode equivalent impedance, calculated through Equation (2): 
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Infrared-based insulator detection fundamentally exploits these thermal generation mechanisms. 

Progressive operational aging induces microscopic air bubbles and hairline cracks within insulators, initiating 

material degradation that reduces insulation capacity and resistance. As deterioration intensifies, this process 

ultimately culminates in insulator overheating conditions. 

 

2.2 Improved YOLOv8 Algorithm 

 

Our methodology initiates with dataset construction using open-source and web-acquired infrared insulator 

images. Through multi-strategy data augmentation and meticulous annotation, we establish a comprehensive 

dataset containing insulators with thermal anomalies. Given YOLOv8's [21] demonstrated balance between 

detection accuracy and computational efficiency, we select it as the baseline model. 

To address the complex background interference prevalent in transmission line environments, we integrate 

the CBAM (Convolutional Block Attention Module) [17], which synergistically combines channel attention and 

spatial attention mechanisms. Channel attention optimizes feature representation across different spectral bands, 

while spatial attention prioritizes critical positional information, collectively enhancing feature discriminability 

without increasing network complexity. 

Furthermore, we implement deformable convolution DCNv3 [18] to replace conventional convolution 

operations. This innovation introduces learnable offset parameters that enable adaptive sampling of input feature 

maps, significantly improving detection precision for irregularly shaped insulators and enhancing model 

adaptability to real-world grid conditions. 

Finally, we adopt the WIoU (Wise Intersection over Union) loss function [19] to refine bounding box 

regression. This advanced metric provides more accurate similarity evaluation between predicted and ground-

truth boxes, particularly improving multi-component detection accuracy when analyzing complex insulator 

assemblies. 

  

Figure. 2 YOLOv8 architecture diagram 
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2.2 CBAM Attention-Based Mechanisms 

 

In 2018, Sanghyun Woo et al. proposed CBAM (Convolutional Block Attention Module) [17], an attention 

mechanism designed to enhance convolutional neural network (CNN) performance. CBAM improves model 

perceptiveness by sequentially integrating channel and spatial attention modules into CNNs without increasing 

computational complexity. Channel attention optimizes inter-channel feature representation, while spatial 

attention prioritizes critical spatial information. 

Channel Attention 
Module

Spatial Attention 
Module

feature map Reconstructed 
feature map  

Figure. 3 CBAM architecture diagram 

 

The CBAM mechanism generates attention-enhanced features through element-wise multiplication of 

channel and spatial attention outputs. These refined features propagate through subsequent network layers, 

preserving critical information while suppressing irrelevant features. 

 

Figure. 4 Channel Attention Module 

 

As shown in Figure 4, the channel attention mechanism processes input feature map F through parallel 

global max-pooling and global average-pooling operations along spatial dimensions (width × height). The 

resulting pooled features are fed into a shared two-layer MLP: the first layer contains C/r neurons with ReLU 

activation (where r denotes the reduction ratio), and the second layer contains C neurons. The MLP outputs are 

summed element-wise and activated via sigmoid to produce channel attention weights Mc. These weights are 

multiplied with input F to generate input features for the spatial attention module. 

 

Figure. 5 Spatial Attention Module 

 

Figure 5 illustrates the spatial attention workflow. The channel-refined feature F' undergoes concurrent 

global max-pooling and average-pooling across channel dimensions. The concatenated results are compressed to 
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single-channel features via 7×7 convolution, followed by sigmoid activation to produce spatial attention map 

Ms. Final output features are obtained through element-wise multiplication between Ms and F'. 

 

Figure. 6 C2fC module 

 

Integrating CBAM into YOLOv8's Neck layer enhances the network's capacity to autonomously prioritize 

salient features while suppressing redundancy. Specifically, we embed CBAM within the original C2f module 

of YOLOv8's Neck layer, forming an enhanced C2fC module (Figure 6). This adaptation strengthens feature 

extraction capabilities for insulator infrared images, which often suffer from complex background interference. 

By enabling selective focus on discriminative thermal patterns, the modified architecture improves recognition 

accuracy under cluttered transmission line conditions while maintaining computational efficiency. 

 

2.3 Deformable Convolution DCNv3 

 

Deformable Convolution (DCN) introduces learnable spatial transformations into convolutional neural 

networks by augmenting traditional fixed convolution operations with trainable offset parameters, enabling 

adaptive nonlinear sampling of input feature maps. DCNv3 [18], an enhanced iteration building upon DCNv1 

and DCNv2, optimizes computational efficiency and feature adaptability, particularly enhancing model 

performance under constrained training data and limited training durations. Figure 7 illustrates the operational 

principle of deformable convolution. 
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Figure. 7 Deformable Convolution Schematic Diagram 

 

For a standard 3×3 convolution kernel with 9 sampling points (Fig.7a), deformable convolution learns 

spatial offsets ( ) for each sampling position, dynamically adjusting kernel geometry to match target object 

morphologies. 

In conventional 2D convolution, the output feature map y at position  is computed as: 

  (3) 

where R = {(-1, -1), (-1, 0), ..., (1, 1)} defines the regular sampling grid, and  denotes convolution 

weights. 

For DCNv3, the output is reformulated as: 

  (4) 

where G represents the total aggregation groups. Each group maintains independent sampling offsets ( ) 

and modulation scalars ( ), enabling diverse spatial aggregation patterns. The convolution weights  are 

decomposed into depth-wise (spatial filtering) and point-wise (channel projection) components. Modulation 

scalars , normalized via softmax along the k-dimension, regulate feature contributions. Input features  are 

sliced per group, with  denoting learned offsets for group g. 
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Figure. 8 The overall process of deformable convolution 

Figure 8 details the implementation workflow: 1) A standard convolution generates offset fields (2N 

channels for x/y directional offsets); 2) Bilinear interpolation propagates offsets through differentiable sampling: 

  (5) 

  (6) 

  (7) 

Here, q indexes input feature map positions, p denotes deformed sampling coordinates, and G(q,p) 

represents the bilinear interpolation kernel decomposed into 1D components. 

Conventional convolution struggles with irregular insulator geometries, variable imaging perspectives, and 

cluttered backgrounds in infrared images, often causing feature loss. To address this, we replace standard 

convolutions in YOLOv8's SPPF module with DCNv3, creating an enhanced SPPFD module (Figure 9). This 

adaptation improves feature adaptability to complex infrared scenes while maintaining detection precision. 

 

Figure. 9 SPPFD module structure 
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2.4 Wise-IoU Loss Function 

 

The baseline YOLOv8 architecture employs DFL (Distribution Focal Loss) with CIoU (Complete 

Intersection over Union) as its loss function. While CIoU effectively measures bounding box overlap in most 

scenarios, it inadequately addresses training sets containing low-quality annotations by indiscriminately 

emphasizing regression accuracy for such samples, ultimately compromising detection robustness. 

This study implements Wise-IoU (WIoU) to address these limitations. WIoU first calculates the 

fundamental IoU metric to quantify bounding box overlap, then applies minimum weighting coefficients to 

individual components of predicted and ground-truth boxes for precise contribution characterization. Finally, it 

normalizes the weighted IoU using maximum component weights. This weighting mechanism enables more 

accurate similarity assessment between detection outputs and targets, particularly enhancing multi-component 

object recognition accuracy. The WIoU formulation is defined as: 

  (8) 

  (9) 

Where (x, y, w, h) denote the center coordinates, width, and height of predicted boxes; (xgt , ygt, wgt, 

hgt)represent corresponding ground-truth parameters;  and  specify the minimum enclosing box 

dimensions; and define intersection region measurements. The * operator indicates computational graph 

decoupling. 

WIoU innovatively resolves CIoU's irrational aspect ratio integration through dual-layer distance-aware 

attention mechanisms. By establishing geometric-aware attention via distance metrics, it properly weights the 

impact of bounding box aspect ratios on loss computation. Furthermore, the decoupled treatment of minimum 

enclosing box dimensions mitigates excessive geometric penalties on low-quality samples, enabling better 

adaptation to annotation variability. 

Implementation advantages include: 

1.Reduced Training Intervention: Simplified hyperparameter tuning through self-adaptive weighting 

2.Enhanced Generalization: Optimized loss formulation improves cross-scene adaptability 

3.Geometric Robustness: Balanced consideration of distance and aspect ratio influences 

4.Computational Efficiency: Maintained computational complexity comparable to CIoU 

These improvements collectively enhance detection stability across diverse infrared insulator datasets while 

preserving real-time processing capabilities essential for grid monitoring applications. 

 

3 Experiments and Analysis of Results 

 

3.1 Insulator Infrared Image Dataset 

Our dataset comprises infrared insulator images collected from open-source repositories, web resources, 

and real-world case libraries. Using LabelImg annotation tools, we meticulously labeled 2,668 images 

containing insulators with thermal anomalies, encompassing normal operational states, fault conditions, and 

challenging environmental scenarios including adverse weather and complex backgrounds to ensure 

comprehensive data diversity. 

We implemented multi-modal data augmentation through geometric transformations: random rotation 

(±30°), horizontal/vertical flipping, scaling (0.5-1.5×), translation (±15% offset), and adaptive cropping. These 

operations expanded sample variability while preserving thermal signature integrity. 

The processed dataset was partitioned into training and validation subsets at an 8:2 ratio, maintaining 

proportional representation of all anomaly categories. Both the baseline YOLOv8 implementation and our 

enhanced YOLOv8 architecture were trained on this standardized dataset under identical hardware 

configurations (NVIDIA RTX 3090 GPU, PyTorch 1.12 framework) to ensure comparative validity. 
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3.2 Comparative Experiments of Attentional Mechanisms 

To compare and evaluate the effects and performance of different attention mechanisms in our proposed 

model, we utilize heat maps to reflect information about the network's focus locations, and conduct visual 

analysis through feature map visualization methods. In the generated heat maps, the varying color intensities 

across different regions indicate differences in regional weights, which represent each area's responsiveness to 

the overall network. Since this study primarily applies attention mechanisms to the feature enhancement module 

Neck layer to form C2fC modules, we specifically investigate the network's Neck layer. Figure 10 displays heat 

maps generated by the Neck layer under four configurations: original YOLOv8, Transformer attention 

mechanism, CA (Coordinate Attention) mechanism, and our adopted CBAM attention mechanism. 

 

       

                 (a)YOLOv8            (b) Transformer Attention Mechanism 

       

    (c) CA attention mechanisms     (d) CBAM Attention Mechanism 

Figure. 10 Heatmaps of outputs from different network necks 

 

Figure 10a shows the heat map from the original YOLOv8 Neck layer without any attention mechanisms, 

where the focus around overheated insulators is significantly insufficient, with dispersed attention distribution 

not concentrated on the insulators. Figures 10b and 10c present heat maps after implementing Transformer and 

CA attention mechanisms respectively, showing clearer attention concentration around overheated insulators, 

particularly more pronounced with CA mechanism. Figure 10d demonstrates the heat map using CBAM 

attention mechanism, displaying more focused attention precisely on the overheated insulator bodies compared 

to Figure 10c. 

 

 

Figure. 10 Detection performance in real environments 
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To verify the practical applicability of our improved YOLOv8 algorithm under real-world conditions where 

infrared images often suffer from fog, strong winds, and imaging blur, we tested the algorithm with low-quality 

images from actual scenarios. Figure 11 shows partial detection results of overheated insulator infrared images, 

where "fault" labels indicate annotated defects. The detection outcomes demonstrate that our improved 

YOLOv8 algorithm maintains excellent detection performance under practical challenges like fog and wind 

interference, effectively identifying insulator overheating and confirming its real-world applicability. 

 

3.3 Comparative Experiment 

To evaluate the performance advantages of our improved YOLOv8 algorithm in inference accuracy and 

speed compared to other methods, we conducted comparative experiments using six algorithms: YOLO series 

variants (YOLOv5, YOLOv6, YOLOv7), Faster-RCNN, baseline YOLOv8, and our enhanced YOLOv8. All 

tests utilized identical thermal anomaly insulator infrared datasets and training hyperparameters. The 

comparative results are summarized in Table 1. 

 

Table 1 Comparative experiment on improving YOLOv8 algorithm 

Model mAP@0.5/% mAP@0.95/% FPS GFLOPs 

YOLOv5 78.3 46.6 25 47.5 

YOLOv6 80.7 47.5 17 84.3 

YOLOv7 86.2 50.1 11 97.4 

YOLOv8 86.0 49.8 23 27.2 

Faster-RCNN 68.4 10.6 6 78.9 

Improved Yolov8 87.5 51.8 22 27.4 

 

As clearly demonstrated in Table 1, YOLOv5 achieves the highest inference speed at 25 fps while 

maintaining 78.3% accuracy, yet still shows significant accuracy gaps compared to our improved YOLOv8. 

Subsequent YOLO series iterations (YOLOv6 and YOLOv7) exhibit accuracy improvements over YOLOv5 at 

the cost of reduced inference speeds. Although YOLOv8 delivers comparable accuracy to YOLOv7, it achieves 

substantially faster inference speeds, justifying its selection as our baseline architecture. Faster-RCNN 

underperforms in both accuracy and speed metrics compared to YOLO-family algorithms. 

Our enhanced YOLOv8 demonstrates superior performance—maintaining inference speeds equivalent to 

baseline YOLOv8 while achieving significant accuracy improvements. This optimized implementation 

outperforms all comparative methods in overall detection capability. 

 

4. Conclusions 

To address the requirement of target recognition in overheated insulator infrared images, this study 

proposes an enhanced network based on YOLOv8. Building upon the baseline YOLOv8 architecture, we 

integrate the CBAM attention mechanism , deformable convolution DCNv3 , and WIoU loss function to 

improve detection capabilities for thermally anomalous insulators. Experimental validation yields the following 

conclusions: 

The proposed improved YOLOv8 algorithm achieves critical accuracy enhancements while maintaining 

comparable inference speed to the original implementation. Quantitative results demonstrate an increase in 

mAP@0.5 from 86.0% (baseline YOLOv8) to 87.5%, representing a 1.74% accuracy improvement, with 

inference speed decreasing marginally from 23 fps to 22 fps. Comparative experiments confirm our algorithm's 

superior overall performance against five alternative detection frameworks. This advancement enables high-

precision edge-computing recognition of insulator thermal anomalies, providing technical foundations for 

developing insulator fault warning systems. The methodology demonstrates practical applicability in power grid 

condition monitoring applications. 
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