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Abstract:  

Leaf image segmentation is of great significance in automatically segmenting foreground leaves from noisy 

background, and the accuracy of image segmentation requires high. Through the improvement of the 

algorithm, the accuracy of leaf extraction and crop analysis can be greatly improved. The Sparrow Search 

Algorithm (SSA) is a commonly used image segmentation method. However, the traditional SSA suffers from 

issues such as a tendency to fall into local optima and insufficient search capability during the optimization 

process. To address these shortcomings, we propose an improved SSA model, the SGDF-SSA algorithm. First, 

we use the chaotic phenomenon generated by the SPM chaotic map to initialize the particle population, 

enhancing the randomness and traversal ability of particles and thereby improving global search capability. 

Second, we introduce an adaptive Gaussian cloud mutation strategy in the discoverer position update process 

to further enhance global search ability during iterations. Additionally, we design a sinecosine optimization 

and inertia weight-based discoverer update mechanism to improve the discoverers’ global search capability. 

Moreover, we propose a follower update mechanism based on Cauchy chaotic mutation, which combines 

chaotic mapping and Cauchy mutation to prevent the algorithm from falling into local optima. The improved 

algorithm outperforms various comparative algorithms in terms of average performance on the CEC2017 

benchmark test set, achieving superior results in 11 test functions. It demonstrates better performance in 

different fidelity parameters and computational time, showing promising potential for plant leaf image 

segmentation. This advancement is expected to contribute to the progress of leaf pathology analysis and 

precision agriculture mechanized batch processing technology. 

Keywords: leaf segmentation, sparrow search algorithm, swarm intelligence optimization, SPM chaotic map, 

adaptive gaussian cloud, sine cosine optimization, cauchy chaotic mutation 

INTRODUCTION 

With the continuous advancements in computer technology, solving various problems using image processing and 

computer vision techniques has become feasible. Increasing attention has been given to applying digital image 

processing techniques to plant segmentation and classification studies. Plants are one of the essential resources 

for human production and daily life, representing the most widely distributed life forms on Earth. Analyzing, 

classifying, and identifying plants can facilitate better plant conservation, maintain species diversity, aid in 

disaster prevention and mitigation, and provide convenience for various industries such as urban environmental 

planning, tourism, and photography education. Although there are numerous methods for plant research, 

traditional botanical research techniques are primarily mastered by a small group of professionals, making it 

extremely difficult for nonexperts to acquire these skills. 

Plants are generally composed of organs such as roots, stems, leaves, and fruits, all of which serve as taxonomic 

criteria in botany. During plant growth, roots and stems undergo changes based on environmental conditions, and 

even within the same species, the shape, size, and other characteristics of roots and stems can vary significantly 

[1]. Consequently, identifying plants based on root or stem images is challenging. In contrast, leaves, as crucial 

plant organs composed of the leaf blade, petiole, and stipules, provide important morphological, textural, and 

color information that can be directly observed. Unlike other plant features, leaf shape and color characteristics 

remain relatively stable throughout the seasons, making them reliable criteria for plant classification and 

identification [2]. For a given leaf image, effectively segmenting the complete target leaf region is critical for 

providing reliable data for subsequent research [3]. 

In plant leaf segmentation using computer vision, existing segmentation approaches primarily fall into two 

categories: one involves extracting leaves after they are plucked and photographed against a uniform background, 

while the other focuses on segmenting leaves from images captured in natural scenes [4]. The latter approach is 

more versatile but presents challenges such as complex backgrounds, monochromatic tones, and leaf occlusion. 
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To accurately identify and analyze target leaves in plant leaf images, it is necessary to segment them from these 

complex backgrounds. Existing methods, such as single-threshold-based segmentation, edge-based segmentation, 

and clustering-based segmentation, often suffer from inefficiencies or excessive computational time when dealing 

with such complex images [5]. Since subsequent plant classification and identification rely on the accuracy of 

segmentation, there is a pressing need for a more suitable and efficient segmentation method to enhance the 

accuracy of leaf extraction in images [6]. This will provide more objective and precise experimental materials for 

subsequent classification and identification tasks. 

Image segmentation is a crucial step in image processing, and thresholding segmentation is one of the most 

commonly used techniques, particularly in plant leaf-related research [7]. However, existing thresholding 

segmentation methods for plant leaves are predominantly based on single-threshold segmentation [8]. When 

applied to leaf image segmentation, single-threshold methods can only divide the image into two grayscale 

regions. Due to the complexity of leaf images in natural scenes, even after preprocessing, single-threshold 

segmentation often fails to completely distinguish between the foreground and background. This not only affects 

the accuracy of leaf region segmentation but also increases overall processing time, reducing efficiency [9]. 

Compared to single-threshold segmentation, multi-threshold segmentation achieves better results. To enhance the 

accuracy of plant leaf segmentation, this study explores the use of multi-threshold segmentation to refine 

segmentation results for leaf images in natural scenes, effectively distinguishing between foreground and 

background regions [10]. However, multi-threshold segmentation involves several challenges, such as prolonged 

computational time and difficulty in determining the optimal number of segmentation thresholds for different 

images [11]. 

LITERATURE REVIEWS 

Image segmentation is a crucial step in image processing and, fundamentally, a classification problem. It involves 

partitioning an image into several nonoverlapping regions based on characteristics such as grayscale intensity, 

color, shape, and texture [12]. Regions within the same segment exhibit similarity or consistency, while different 

regions display significant differences. Research on image segmentation has long been a focal point in the field 

of digital image processing, as the quality of segmentation directly impacts subsequent image processing tasks 

[13]. Due to the wide range of segmentation methods available, selecting an appropriate method largely depends 

on the specific characteristics of the target image [14]. As a key stage in image processing, image segmentation 

also remains one of the most challenging problems in computer vision, making it difficult to develop a universal 

segmentation technique applicable across all domains [15]. Existing image segmentation methods can be broadly 

classified into supervised and unsupervised approaches [16]. Supervised segmentation methods typically rely on 

neural networks, requiring extensive labled datasets and significant training time to classify pixels or entire images 

[17]. These methods generally achieve high segmentation accuracy in specific scenarios. In contrast, unsupervised 

segmentation methods operate on individual images, leveraging pixel-level at-tributes such as colour, texture, and 

spatial position to segment meaningful regions based on various strategies. These methods generally offer better 

real-time performance. Among unsupervised methods, clustering-based segmentation is particularly notable for 

its speed, broad applicability, and independence from prior knowledge [18]. As a representative unsupervised 

approach, clustering-based segmentation has been widely applied in the field of image segmentation and holds 

significant research value [19]. 

When applying clustering algorithms to image segmentation, the meaningful subregions in the segmentation 

results are considered natural groupings discovered within the image [20]. Clustering-based image segmentation 

methods divide an image into several meaningful regions based on each pixel’s colour and spatial information 

[21]. In this context, image segmentation is treated as an optimization problem, where the objective is to ensure 

that pixels representing the same object belong to the same cluster, while pixels representing different objects are 

assigned to different clusters [22]. At the same time, the similarity among pixels within the same cluster should 

be maximized, while the differences between pixels in different clusters should be clearly distinguished. 

Traditional clustering algorithms iteratively update cluster centers during segmentation. Once the stopping criteria 

are met, pixels are assigned to clusters based on their distance to the cluster centers. For example, Das et al. 

proposed the kernel fuzzy c-means (KFCM) clustering method for image segmentation, which integrates adaptive 
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thresholding, morphological processing, and kernel functions to enhance segmentation quality [23]. K-means 

clustering algorithm combined with morphological processing was used to solve the problem that the target 

contour of psoriasis could not be accurately delineated in colour skin images [24]. Wang Qinqin applied a median 

filter for image preprocessing before using the fuzzy c-means (FCM) clustering algorithm to segment target 

objects from the background, followed by a random walk algorithm to further refine tumour segmentation [25]. 

When using density-based clustering algorithms for image segmentation, the process begins by selecting the pixel 

with the highest density—i.e., the one surrounded by the most densely distributed neighbouring pixels. The 

algorithm then iteratively merges nearby high-density pixels until all pixels are assigned to a cluster [26]. 

Supervised image segmentation methods are typically implemented using neural networks. A neural network is a 

mathematical model inspired by the functioning of biological neural systems, utilizing a distributed and parallel 

approach for information processing [27]. By continuously adjusting its hierarchical structure and the connections 

between numerous nodes, a neural network effectively processes information [28]. Although supervised image 

segmentation methods can achieve high segmentation accuracy in specific scenarios, they require extensive 

labeled datasets and significant computational time for model training [29]. Additionally, model accuracy must 

be validated on test datasets, followed by parameter finetuning based on the application context before 

deployment. This lengthy preparation process limits the real-time performance and generalizability of supervised 

segmentation methods [30]. 

In recent years, researchers have conducted extensive studies on clustering-based unsupervised image 

segmentation methods, achieving significant progress. However, commonly used clustering-based segmentation 

algorithms still have several limitations: One major issue is the presence of noise in images obtained through 

various sources [31]. In image segmentation tasks, noise can severely impact segmentation results, making noise 

reduction a crucial consideration in all segmentation methods [32]. A popular approach to mitigating noise effects 

is incorporating neighbourhood information of each pixel into the objective function [33]. By considering a pixel's 

surrounding context, the impact of noise can be reduced. Several representative methods have been proposed in 

this regard [34]. For example, Ahmed et al. incorporated pixel neighbourhood information into the clustering 

objective function, ensuring that each pixel’s label is influenced by the labels of its surrounding pixels, thereby 

reducing noise interference [35]. Chen and Zhang introduced two improved FCM-based methods, FCM_S1 and 

FCM_S2, which define local information terms based on mean-filtered and median-filtered images in the 

objective function to minimize noise effects [36]. However, these methods often come with increased 

computational costs due to the additional complexity in the objective function [37]. Another effective strategy is 

using superpixels for image preprocessing. By grouping adjacent pixels with similar properties into superpixels, 

the segmentation algorithm can reduce noise influence while also decreasing data complexity [38]. For instance, 

Lei et al. proposed an Automatic Fuzzy Clustering Framework (AFCF) based on superpixels and density peak 

clustering [39]. Their method first applies superpixel segmentation to reduce the size of the distance matrix in 

subsequent density peak clustering while simultaneously minimizing noise interference. Then, it utilizes a density-

balancing algorithm and prior entropy knowledge to complete the image segmentation process. 

Plant leaf image segmentation plays a crucial role in precision agriculture, disease detection, and growth 

monitoring. However, due to complex environmental backgrounds, noise interference, and the diverse 

morphology of leaves, traditional segmentation methods often struggle to balance high accuracy and robustness 

[40]. In recent years, image segmentation methods based on intelligent optimization algorithms have gained 

significant attention, with the Sparrow Search Algorithm (SSA) being particularly notable for its strong global 

optimization capability and adaptability [41]. However, conventional SSA tends to fall into local optima during 

the optimization process, leading to low search efficiency and limiting further improvements in segmentation 

accuracy [42]. Therefore, enhancing SSA’s global search ability and optimization stability is essential for 

improving the precision and reliability of leaf image segmentation [43]. 

To address these challenges, this study proposes an improved SSA, the SGDF-SSA algorithm, designed to 

enhance search performance and improve leaf extraction under complex backgrounds. The significance of this 

research is reflected in several key aspects. First, the SGDF-SSA algorithm utilizes chaotic phenomena derived 

from a novel one-dimensional chaotic system (SPM) for initialization, significantly enhancing particle diversity 

and randomness while improving large-scale search capability. Second, an adaptive Gaussian cloud mutation 
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strategy is incorporated to refine the position update mechanism of discoverers, allowing the algorithm to 

dynamically adjust search step sizes during iterations, accelerating convergence while maintaining diversity to 

prevent premature convergence. Additionally, Cauchy chaotic mutation is introduced to strengthen the search 

capability of followers, ensuring superior performance across different datasets and demonstrating strong 

generalization ability. This study not only optimizes the theoretical performance of the algorithm but also achieves 

promising results in plant leaf segmentation applications. The proposed approach provides a more efficient 

computational tool for disease analysis and precision crop monitoring, contributing to the advancement of 

agricultural mechanization and fostering further development in agricultural intelligence. 

METHODOLOGY 

Basic Sparrow Search algorithm 

The Sparrow Search Algorithm (SSA) is a swarm intelligence optimization algorithm inspired by the foraging 

behaviour and predator-avoidance strategies of sparrows [44]. It simulates the foraging process of a sparrow 

population by establishing a discoverer-joiner model and incorporating a SGDF-SSA warning mechanism [45]. 

Discoverers guide the population by identifying optimal foraging areas and directions, possessing higher fitness 

values [46]. Joiners, with relatively lower fitness, improve their fitness by following discoverers in the foraging 

process [47]. During the simulation, the proportion of discoverers and joiners within the population remains 

constant [48]. To enhance their foraging efficiency and compete for food resources, some joiners continuously 

monitor discoverers. If a sparrow perceives danger or encounters a predator threat, it immediately takes safety 

measures [49]. In a 𝑑-dimensional search space with 𝑁 sparrows, the position of the 𝑖-th sparrow is represented 

as: 

1[ ,..., ]i i idX x x=                                                                               (1) 

where 𝑥𝑖𝑑  denotes the position of the 𝑖-th sparrow in the 𝑑-th dimension, with 𝑖 = 1,2, … , 𝑁. The fitness values 

of all sparrows are given by: 
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where 𝑓 represents the fitness function. Within the sparrow population, high-fitness discoverers are responsible 

for locating food for the entire group and have priority access to it. They also guide the joiners in the foraging 

direction while maintaining a broad search range [47]. In each iteration, discoverers typically constitute 10% to 

20% of the population. The position update equation for discoverers is as follows: 
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𝑥𝑖𝑑
𝑡  represents the position of the 𝑖-th sparrow in the 𝑑-th dimension at iteration 𝑡 . 𝑇  is the total number of 

iterations. 𝐿 = 1 × 𝑑, where each element in this matrix is 1. 𝛼 is a random number in the range (0,1). 𝑄 follows 

a normal distribution 𝑁(0,1). The warning value 𝑅2 is randomly selected from [0,1]. The safety threshold 𝑆𝑇 is 

within the range [0.5,1]. When 𝑅2 < 𝑆𝑇, the search environment is safe, allowing discoverers to conduct a wide-

range search and improve the population's fitness. However, when 𝑅2 ≥ 𝑆𝑇, the search environment becomes 

dangerous. Sparrows performing SGDF-SSA functions promptly emit danger signals to the group, prompting 

them to adopt antipredation behaviours, adjust their search routes, and swiftly move to safer locations for foraging. 

The position update equation for joiners is given by: 
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𝑥𝑤𝑑
𝑡  represents the worst position in the 𝑑-th dimension at iteration 𝑡. 𝑥𝑏𝑑

(𝑡+1)
 denotes the best position in the 𝑑-th 

dimension at iteration 𝑡 + 1 . 𝐴  is a 1 × 𝑑  matrix with each element taking values of 1 or -1, and 𝐴+ =

𝐴𝑇(𝐴𝐴𝑇)−1, allowing for slight position perturbations. To further refine the model, we introduce a random factor 

to modify the update equation as follows: 
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When 𝑖 > 𝑛/2, the joiner has a low fitness value, indicating it has failed to obtain food and is in a state of hunger. 

In this case, it needs to change its path and fly elsewhere to forage. When 𝑖 ≤ 𝑛/2, the joiner is near the current 

optimal position 𝑥𝑏 and can search for food in an arbitrary nearby location. Position Update for Sparrows with 

SGDF-SSA and Warning Functions. Sparrows with SGDF-SSA and warning abilities typically make up 10%-

20% of the population. Their position updates are governed by the following equation: 
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                                                        (6) 

𝐾 is a random number in the range [−1,1], controlling the step size and movement direction. 𝛽 is a step size 

control parameter following a normal distribution with a mean of 0 and variance of 1. 𝜖 is a very small constant 

to prevent division by zero. 𝑓𝑖 represents the fitness value of the 𝑖-th sparrow. 𝑓𝑔 and 𝑓𝑤 denote the best and worst 

fitness values in the current sparrow population, respectively. 

SFM Chaotic Map 

A chaotic state refers to a condition in which, given an initial value, a special function iteratively updates the value 

to form a set of multiple elements. Within this finite set space, a one-dimensional particle exhibits asymmetric, 

aperiodic, and unstable motion, known as chaotic motion. Bucolo et al. proposed that the randomness of chaotic 

motion is superior to that of traditional uniform distribution random number generators [50]. This advantage is 

particularly significant in population-based search spaces with multiple local solutions, where finding the global 

optimum becomes increasingly difficult [51]. However, by incorporating chaotic sequences into the algorithm 

during population initialization, position, and velocity updates, the entire iterative process can be positively 

influenced. Generally, using chaotic sequences is more effective than using pseudo-random number generators, 

as it enhances the algorithm’s performance and facilitates the discovery of the global optimal solution [52].  

Chaotic mapping is a method used to generate chaotic sequences, which can be either one dimensional or multi-

dimensional [53]. Common chaotic mappings include the Chebyshev chaotic map, Henon chaotic map, and 

Logistic chaotic map, Among them, the SPM (Stochastic Perturbation Map) chaotic mapping exhibits excellent 

variable random distribution and strong ergodicity. Therefore, in this study, the chaotic state characteristics 

derived from SPM chaotic mapping are utilized to enhance the randomness of the initial particle position 

distribution. The SPM chaotic mapping expression is defined as: 
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where 𝜂 ∈ (0,1), 𝜇 ∈ (0,1), and under these conditions, the chaotic system transitions into a chaotic state. 𝑔tur 

represents Gaussian perturbation following a standard normal distribution, while the initial sequence value 𝑥1 is 

a randomly selected number within the range [0,1). The function mod denotes the modulus operation (i.e., the 

remainder after division). 

SPM Chaotic Mapping-Based Particle Swarm Initialization Steps 

Step 1: Generate an initial random number 𝑥1 less than 1. According to reference [47], the parameters influencing 

the chaotic state are set as 𝜂 = 0.4 and 𝜇 = 0.3. The number of sequence elements, 𝑛, is determined, and Gaussian 

perturbation 𝑔ur ∼ 𝑁(0,1) is introduced. 

Step 2: Set the loop count to 𝑛 − 1. Using the initial value 𝑥1, update each subsequent value 𝑥𝑖 iteratively based 

on the SPM chaotic mapping equation (7), generating a complete chaotic sequence 𝑥𝑖 = [𝑥1, 𝑥2, … , 𝑥𝑛]. 

Step 3: Construct the actual grayscale chaotic sequence using 𝑋𝑖 = 255 ⋅ 𝑥𝑖, ensuring that the boundary condition 

0 ≤ 𝑋𝑖 ≤ 255 is satisfied. This guarantees that the population size is within the grayscale range of 0 − 255, 

completing the particle swarm initialization. 

When the sequence length is set to 500, a comparison between the SPM chaotic mapping and the Logistic chaotic 

mapping is shown in Figure 1. 

 

Figure 1. Histogram comparison of SPM and logistic chaotic map values 

From the chaotic grayscale values and histograms of both mappings, it can be observed that within the entire range 

of chaotic mapping values, the Logistic chaotic mapping exhibits a biased distribution tendency. In contrast, the 

trajectory of the SPM chaotic mapping is more evenly distributed across the full grayscale range of 0 to 255. This 

indicates that the values derived from the SPM chaotic mapping possess superior randomness, which enhances 

the traversal capability during the particle swarm initialization stage. 

Adaptive Gaussian Cloud Mutation Strategy 

In the original SSA, the discoverer updates its position when 𝑅2 < 𝑆𝑇  based on its current position. The 

movement range is given by 𝑦 = exp⁡(
−𝑥

𝛼𝑇
), 𝑥 is the iteration number and 𝑦 is the position change value. As shown 

in Figure 2, as 𝑥 increases, 𝑦 gradually decreases from the range (0,1) to (0,0.4), meaning the sparrow's position 

in each dimension gets smaller. In SSA, the discoverer, as the dominant individual, guides the population in the 

search process, and its search range determines the optimization accuracy of the SSA. However, in the original 

algorithm, the discoverer's search range shrinks as the iteration progresses, which can lead to a decrease in 

population diversity during the later stages of the algorithm, causing it to easily get stuck in local optima. 
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Figure 2. Location variable distribution and gaussian cloud distribution 

The Gaussian cloud consists of numerous cloud droplets. The model can be characterized by three parameters: 

expectation 𝐸𝑥 , entropy 𝐸𝑛 , and hyperentropy 𝐻𝑒 . Among them, the expectation 𝐸𝑥  reflects the distribution 

expectation of the cloud droplets in space, entropy 𝐸𝑛 reflects the uncertainty of the droplets, and hyperentropy 

𝐻𝑒  reflects the uncertainty of the entropy 𝐸𝑛. The function is defined by 𝜇 = exp⁡(−
(𝑥−𝐸𝑥)

2

2(𝐸𝑛
′ )

2 ), Figure 2 shows the 

Gaussian cloud models generated under three different parameter conditions, it can be observed that, when the 

expectation 𝐸𝑥  is constant, as 𝐻𝑒  increases, the Gaussian cloud distribution becomes more dispersed; as 𝐸𝑛 

increases, the value range of the Gaussian cloud becomes wider. 

By leveraging the randomness and fuzziness characteristics of the Gaussian cloud model, an adaptive Gaussian 

cloud mutation strategy is proposed to improve SSA. This strategy generates a mutation position that allows SSA 

to perform local searches within a small range, while with a certain probability, a new position far from the current 

one is generated, enabling SSA to search in a larger area. This improves population diversity, enhances the 

algorithm's ability to escape from local optima, and allows better global search. Consequently, the search speed 

is increased, and the algorithm's convergence rate is accelerated. The position update formula is given as: 
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where Gauss⁡(0, 𝛿2, 0.1𝛿2)  represents the Gaussian cloud random number with parameters (𝐸𝑥 , 𝐸𝑛 , 𝐻𝑒) =

(0, 𝛿2, 0.1𝛿2), and 𝛿2 is defined as follows: 
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where 𝑓𝑖  is the fitness of the 𝑖 -th sparrow, 𝑓𝑠  is the fitness of a randomly selected discoverer, and 𝑒  is an 

infinitesimally small constant. From the above equation, when the fitness of the 𝑖-th discoverer is better than that 

of the 𝑠-th discoverer (𝑓𝑖 ≤ 𝑓𝑠), the sparrow will explore a broader area to avoid getting trapped in local extrema. 

Otherwise, it will narrow the search area to focus on refining the search in the local region. The hyperentropy term 

0.1𝛿2 ensures the fuzziness of the mutation solutions, further enhancing the search capability of the algorithm. 

Finder Update Mechanism Based on Sine Cosine and Inertia Weight 

When 𝑅2 < 𝑆𝑇, discoverers can perform extensive searches within the safe zone. However, as iterations progress, 

the dimensional values of discoverer sparrows decrease, leading to a gradual reduction in search space. This 

insufficient search space, along with decreased population diversity, results in reduced search accuracy and an 

increased likelihood of falling into local optima. 

To improve the position update mechanism of discoverers and enhance their global search capability, SGDF-SSA 

introduces the sine cosine optimization algorithm (SCA) and an inertia weight mechanism for position updates. 

SCA is a novel heuristic search algorithm that updates individuals and optimizes targets based on the mathematical 

properties and variations of sine and cosine functions. It has strong global optimization capabilities, and its particle 

position update formula is given by: 
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where 𝑥best,𝑗 represents the 𝑗-th dimension of the current global optimal solution, 𝑟1 is the amplitude adjustment 

factor, 𝑟2 ∈ [0,2𝜋], 𝑟3 ∈ [−2,2], and 𝑟4 ∈ [0,1] are uniformly distributed random variables. This position update 

process moves particles towards the current global best position, which enhances local exploitation. However, it 

may lead to premature convergence and local optima. To address this issue, SGDF-SSA incorporates an inertia 

weight mechanism to strengthen global search capability. In the early stages of iteration, a larger inertia weight is 

used to improve global exploration, while in later iterations, a smaller inertia weight is applied to enhance local 

exploitation and accelerate convergence. The inertia weight is defined 𝑤(𝑡) = 𝑤min + (𝑤max − 𝑤min) ⋅ 𝑒
−𝑡/𝑇max, 

where 𝑤max and 𝑤min are the maximum and minimum inertia weights, respectively. Thus, the updated position 

formula for SGDF-SSA discoverers is given by: 
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  +    − 
+ = 

 +    − 

                    (11) 

By integrating the inertia weight mechanism, SGDF-SSA enhances global exploration in early iterations and 

improves local exploitation in later stages, ultimately increasing search efficiency and segmentation accuracy. 

Follower Update Mechanism Based on Cauchy Chaotic Mutation 

In SSA, followers will move closer around the current global optimal solution. Although this method can 

accelerate the algorithm's convergence by using elite individuals as guides, it leads to a loss of population 

diversity. This is particularly problematic in the case of multimodal optimization, where the algorithm is prone to 

getting stuck in local optima. To ensure that followers move effectively toward the discoverer and guarantee 

global convergence while enhancing population diversity, SGDF-SSA introduces an individual perturbation 

mechanism with a certain probability using the Cauchy chaotic mutation. The Cauchy mutation perturbs the 

current global optimum, preventing local optima, and the chaotic mapping enhances population diversity, thereby 

expanding the search space. 

Chaos possesses characteristics of randomness, regularity, and ergodicity, which help improve population 

diversity. Among the commonly used chaotic mapping systems, the Tent chaotic map demonstrates better 

uniformity than the Logistic chaos. Therefore, the Tent chaotic system is utilized for the mutation operation. The 

Tent chaotic value can be defined as: 

( )
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                                                  (12) 

where 𝜇 is the Tent chaos parameter. Based on the Tent chaotic value, the individual mutation operation is as 

follows 𝑥new = 𝑈𝐿min + 𝜓 × (𝑈𝑃max − 𝑈𝐿min), Where [𝑈𝐿min, 𝑈𝑃max] are the lower and upper bounds of the 

individual's position, and 𝜓 is the Tent chaotic value. Cauchy mutation originates from the Cauchy distribution, a 

continuous probability distribution. The probability density function of the one-dimensional Cauchy distribution 

is expressed as 𝑓(𝑥) =
1

𝜋(𝑥2+1)
. From the curve of the probability density function of the Cauchy distribution, it 

is evident that the Cauchy distribution has longer tails at both ends, which gives individuals a higher probability 

of jumping to better positions and escaping from local optima. Furthermore, the peak at the center (0) of the 

Cauchy distribution is smaller, and the descent from the peak to zero is smooth, resulting in a more uniform 

mutation range. In this regard, the Cauchy mutation has a stronger perturbation ability on individuals compared 

to the standard Gaussian mutation. SGDF-SSA introduces the Cauchy mutation operator into the position mutation 

of the current optimal solution, using the adjustment function of the Cauchy operator to help the algorithm escape 

from local optima. 𝑥new = 𝑥best + Cauchy⁡(0,1) ⋅ 𝑥best, Where Cauchy (0,1) is the Cauchy operator that follows 
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the Cauchy distribution. SGDF-SSA performs the choice between chaotic Tent mutation or Cauchy mutation with 

equal probability, as shown by: 

( )
min max min 1

new

best best 1

( ), rand 0.5

Cauchy 0,1 , rand 0.5

UL UP UL
x

x x

+  − 
= 

+ 
                                             (13) 

where rand1  is a random variable uniformly distributed in the range [0,1]. Since SGDF-SSA also needs to 

maintain a state of rapid convergence while moving toward global optimality, a certain probability of preserving 

the original state is required. This means that the original position update method of the followers may be kept 

without perturbing the current global optimal individual. The mutation probability (MP) is defined as: 

2

1
max

t

T
MP e

 
−  

 = −                                                                  (14) 

The specific mutation process is as follows: Define a random variable rand2 . If rand2 < 𝑀𝑃, the algorithm 

selects not to perform mutation; if rand2 ≥ 𝑀𝑃, the mutation operation described is performed. 

SGDF-SSA Algorithm Path 

The pseudocode of SGDF-SSA based on the improved sparrow algorithm is as follows in Table 1. 

Table 1. SGDF-SSA pseudocode 

No. Step Description 

1 
Initialize parameters: Set population size 𝑛, the ratio of protectors (PD) to scouts (SD), vigilance threshold, maximum 

iterations Max𝑇, and other parameters such as 𝜇, 𝜂, 𝑐1, 𝑐2, 𝑅2, ST, etc. 

2 

Generate initial population: Use SPM chaotic mapping to initialize the particle swarm, ensuring strong randomness 

and good traversal properties. Initialize the position and velocity of each particle, and set boundary conditions and 

velocity constraints. 

3 
Compute initial fitness values: Determine the positions of the sparrow population with the best and worst fitness 

values. 

4 for 𝑖 = 1 to Max𝑇 : 

5 for 𝑗 = 1 to 𝑃𝐷 × 𝑁 : 

6 Compute the position of discoverers. 

7 end for 

8 for 𝑗 = 𝑃𝐷 × 𝑁 to 𝑁 : 

9 Apply the Cauchy chaotic mutation mechanism to mutate elite individuals and update the position of followers. 

10 end for 

11 Randomly select 𝑆𝐷 × 𝑁 sparrows as scouts. 

12 for 𝑗 = 1 to 𝑆𝐷 × 𝑁: 
13 Compute the position of protectors. 

14 end for 

15 Compute the fitness values of each individual and sort them to identify the current best and worst individuals. 

16 Compute the mutation position of the current best individual. 

17 Perform greedy selection. 

18 end for 

 

Convergence Analysis of the SGDF-SSA Algorithm 

By combining the position information of all sparrows in the SGDF-SSA population, a sparrow state can be 

defined as 𝑠 = (𝑥1, 𝑥2, … , 𝑥𝑁), where 𝑥𝑖 represents the position information of the 𝑖-th sparrow, and 𝑁 denotes 

the total number of sparrows in the population. The state space of the sparrow population, consisting of all possible 

states, is given by 𝑆 = {𝑠 = (𝑥1, 𝑥2, … , 𝑥𝑁) ∣ 𝑥𝑖 ∈ 𝐴, 1 ≤ 𝑖 ≤ 𝑁}, where 𝐴 represents the feasible solution space. 

In SGDF-SSA, the probability of a sparrow moving from position 𝑥𝑖  to position 𝑥𝑗  can be expressed as 

𝑃(𝑇(𝑥𝑖) = 𝑥𝑗). Consequently, the probability of a sparrow state transitioning from 𝑠𝑖 to 𝑠𝑗 is given by: 

( ) ( )
1

( ) ( )
N

i j ik jk

k

P T s s P T x x
=

= = =                                                         (15) 
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From the position update formula in SGDF-SSA, the transition probability of an individual sparrow's position 

state, 𝑃(𝑇(𝑥(𝑡)) = 𝑥(𝑡 + 1)), depends only on the sparrow's position at time 𝑡, the number of sparrows 𝑖, the 

maximum number of iterations iter ⁡max, the current best sparrow position 𝑥𝑝, the current worst sparrow position 

𝑥worst, and a random number 𝑄. It does not depend on the specific time step 𝑡. 

Therefore, we can conclude that the sequence of sparrow states 𝑠(𝑡) generated by SGDF-SSA exhibits Markovian 

properties and homogeneity. Furthermore, since the state space 𝑆 is finite, the sequence of sparrow population 

states 𝑠(𝑡), 𝑡 ≥ 0 forms a finite homogeneous Markov chain. 

In SGDF-SSA, after each iteration, the fitness value of each sparrow is recalculated. If a sparrow's updated 

position yields a fitness value superior to the current best sparrow in the population, it replaces the best solution 

and becomes the new optimal position. As a result, the optimal solution in SGDF-SSA continuously evolves and 

improves over the course of iterations. This iterative improvement process ensures that SGDF-SSA satisfies 

Condition of the convergence criteria for stochastic search algorithms, confirming that SGDF-SSA is capable of 

converging towards an optimal solution. 

If we assume that the optimal solution in the population is 𝑥∗, then the optimal position state set of the entire 

sparrow population can be defined as: 

*{ ( ) ( ), }G s x f x f x s S= = = ∣                                                             (16) 

where 𝐺 ⊆ 𝑆 . For any optimal position state set 𝑠𝑖  and non-optimal position state set 𝑠𝑗 , the probability of 

transitioning from 𝑠𝑖 to 𝑠𝑗 can be expressed as: 

( ) ( )
1

( ) ( )
N

i j ik jk

k

P T s s P T x x
=

= = =                                                  (17) 

Within the optimal position state set 𝐺, if at least one position state has reached the optimal solution 𝑥∗, then there 

exists a transition probability 𝑃(𝑇(𝑥∗) = 𝑥𝑗𝑘) = 0 . Substituting this into the above equation yields 

𝑃(𝑇(𝑠𝑖) = 𝑠𝑗) = 0. From this result, we can conclude that the optimal position state set 𝐺 is a closed set in the 

state space 𝑆. Irreducibility of the SGDF-SSA State Space. Now, suppose there exists a nonempty closed set 𝑀 

in the state space 𝑆 such that 𝑀 ∩ 𝐺 = ∅. That is, the states in 𝑀 do not overlap with the optimal position state 

set 𝐺. For a state 𝑠𝑖 = (𝑥∗) in 𝐺 and a state 𝑠𝑗 = (𝑥𝑗𝑘) in the nonempty closed set 𝑀, we have 𝑓(𝑥∗) < 𝑓(𝑥𝑗𝑘), 

Since the transition probability from state 𝑠𝑗 to state 𝑠𝑖 is greater than zero, it follows that 𝑀 is not actually a 

closed set, which contradicts the initial assumption. Therefore, the assumption does not hold, meaning that the 

only closed set in the SGDF-SSA state space 𝑆 is the optimal position state set 𝐺. This result indicates that the 

Markov chain of the sparrow population state in SGDF-SSA is irreducible, as every state can eventually reach 𝐺. 

Furthermore, if there exists a nonempty closed set 𝐸 and no other nonempty closed set 𝑂 such that 𝐸 ∩ 𝑂 = ∅, 

then for any 𝑗 ∈ 𝐸, lim
𝑘→∞

 𝑃(𝑥𝑘 = 𝑗) = 𝜋𝑗 ⁡and for any 𝑗 ∉ 𝐸, lim
𝑘→∞

 𝑃(𝑥𝑘 = 𝑗) = 0,This leads to the conclusion that 

as the number of SGDF-SSA iterations approaches infinity, the sparrow population state will inevitably enter the 

optimal state set 𝐺. Consequently, the probability that SGDF-SSA fails to find the global optimal solution is zero. 

Thus, SGDF-SSA satisfies Condition 2 of the convergence criteria for stochastic search algorithms. Since SGDF-

SSA has already been shown to satisfy Condition 1, it meets both necessary conditions for global convergence. 

According to the definition of the convergence theorem, we can conclude that SGDF-SSA is a globally convergent 

algorithm. 
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RESULTS AND DISCUSSION 

Experimental design 

Table 2. Comparative experimental results of SGDF-SSA and SSA 

Function Categories 
Dimension 50 Dimension 100 

SGDF-SSA SSA SGDF-SSA SSA 

F1 
Average value 6.89E+03 2.08E+04 1.24E+04 1.36E+04 

Standard deviation 6.08E+03 2.01E+04 1.61E+04 1.71E+04 

F2 
Average value 4.36E+61 3.45E+32 4.19E+58 1.72E+15 

Standard deviation 2.39E+62 1.89E+33 2.29E+59 8.07E+15 

F3 
Average value 2.26E+03 7.81E+02 3.39E+02 3.13E+02 

Standard deviation 1.08E+03 2.18E+02 2.22E+01 9.87E+00 

F4 
Average value 5.51E+02 6.68E+02 5.49E+02 6.46E+02 

Standard deviation 5.15E+01 4.41E+01 4.34E+01 3.27E+01 

F5 
Average value 1.02E+03 1.08E+03 1.02E+03 1.02E+03 

Standard deviation 5.81E+01 1.01E+02 5.69E+01 8.64E+01 

F6 
Average value 6.10E+02 6.28E+02 6.07E+02 6.23E+02 

Standard deviation 3.33E+00 6.32E+00 3.91E+00 5.76E+00 

F7 
Average value 1.60E+03 1.56E+03 1.55E+03 1.51E+03 

Standard deviation 1.09E+02 1.18E+02 9.17E+01 1.17E+02 

F8 
Average value 1.30E+03 1.34E+03 1.29E+03 1.30E+03 

Standard deviation 3.80E+01 9.08E+01 5.22E+01 8.28E+01 

F9 
Average value 1.77E+04 2.50E+04 1.77E+04 2.26E+04 

Standard deviation 7.20E+03 3.56E+03 7.53E+03 4.89E+03 

F10 
Average value 1.34E+04 1.47E+04 1.37E+04 1.50E+04 

Standard deviation 1.11E+03 1.16E+03 1.67E+03 1.55E+03 

F11 
Average value 1.85E+03 2.41E+03 1.84E+03 2.54E+03 

Standard deviation 1.18E+02 1.80E+02 1.68E+02 2.29E+02 

F12 
Average value 1.90E+07 2.31E+07 1.87E+07 1.24E+07 

Standard deviation 1.48E+07 9.67E+06 1.80E+07 6.46E+06 

F13 
Average value 1.37E+04 3.91E+04 2.83E+04 3.27E+04 

Standard deviation 9.77E+03 1.17E+04 6.77E+04 1.24E+04 

F14 
Average value 2.21E+05 4.86E+05 1.03E+05 3.27E+05 

Standard deviation 1.09E+05 2.44E+05 4.66E+04 1.56E+05 

F15 
Average value 6.03E+03 2.03E+04 6.59E+03 1.65E+04 

Standard deviation 7.03E+03 1.31E+04 7.02E+03 1.10E+04 

F16 
Average value 4.91E+03 5.26E+03 4.95E+03 4.88E+03 

Standard deviation 7.04E+02 6.58E+02 6.34E+02 5.72E+02 

F17 
Average value 4.68E+03 5.26E+03 4.71E+03 5.12E+03 

Standard deviation 4.87E+02 6.12E+02 5.20E+02 5.77E+02 

F18 
Average value 5.82E+05 1.44E+06 5.66E+05 9.12E+05 

Standard deviation 2.83E+05 6.19E+05 9.63E+05 4.59E+05 

F19 
Average value 7.63E+03 2.75E+04 7.64E+03 2.46E+04 

Standard deviation 5.87E+03 1.43E+04 6.46E+03 1.38E+04 

F20 
Average value 4.33E+03 4.91E+03 4.28E+03 4.66E+03 

Standard deviation 4.95E+02 5.05E+02 5.27E+02 5.53E+02 

F21 
Average value 2.82E+03 2.87E+03 2.77E+03 2.83E+03 

Standard deviation 4.29E+01 9.02E+01 5.35E+01 7.96E+01 

F22 
Average value 2.30E+03 1.75E+04 2.30E+03 1.67E+04 

Standard deviation 1.24E+00 1.20E+03 1.42E+01 1.34E+03 

F23 
Average value 3.25E+03 3.25E+03 3.23E+03 3.21E+03 

Standard deviation 5.56E+01 5.76E+01 9.85E+01 6.49E+01 

F24 
Average value 3.86E+03 3.81E+03 3.84E+03 3.79E+03 

Standard deviation 1.12E+02 7.71E+01 8.87E+01 6.29E+01 

F25 
Average value 3.27E+03 3.29E+03 3.27E+03 3.28E+03 

Standard deviation 3.72E+01 6.86E+01 3.04E+01 6.93E+01 

F26 
Average value 1.20E+04 1.14E+04 1.19E+04 1.11E+04 

Standard deviation 1.10E+03 6.93E+02 1.19E+03 1.01E+03 

F27 
Average value 3.20E+03 3.49E+03 3.20E+03 3.48E+03 

Standard deviation 2.05E-04 4.88E+01 2.38E-04 5.69E+01 

F28 
Average value 3.30E+03 3.38E+03 3.30E+03 3.38E+03 

Standard deviation 1.88E-04 3.81E+01 2.43E-04 3.24E+01 

F29 
Average value 6.13E+03 6.96E+03 6.08E+03 6.58E+03 

Standard deviation 4.81E+02 6.33E+02 4.67E+02 4.39E+02 

F30 
Average value 1.11E+04 7.19E+04 9.17E+03 3.57E+04 

Standard deviation 8.13E+03 2.19E+04 8.35E+03 9.97E+03 

Average value 1.25 1.85 1.36 1.74 

+/-/ = ∼ 23/3/4 ∼ 18/3/9 
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To verify the performance of SGDF-SSA, this study conducts simulation experiments using 29 benchmark 

functions from the CEC2017 test set, covering four types of functions: unimodal functions (F1, F3), multimodal 

functions (F4-F10), hybrid functions (F11-F19), and composite functions (F20~F29). To investigate the 

performance improvement of SGDF-SSA over SSA, this section presents scalability testing experiments 

comparing SGDF-SSA and SSA. In the experiment, the primary goal is to set the dimensions of the benchmark 

functions to 50 and 100, create problems with different complexities, and compare SGDF-SSA and SSA on these 

functions. Table 2 presents the mean, standard deviation, and results of the Wilcoxon signed-rank test for SGDF-

SSA and SSA across 30 independent comparison experiments. "AVG" represents the average value of the function 

results after 30 independent runs, "STD" denotes the corresponding standard deviation, "+" indicates that SGDF-

SSA outperforms SSA, "-" indicates that SGDF-SSA performs worse than SSA, and "=" means SGDF-SSA and 

SSA have equivalent performance. When the dimension of the benchmark functions is 50, SGDF-SSA achieved 

the lowest mean in 24 functions and the lowest standard deviation in 22 functions. Based on the analysis of the 

mean and standard deviation, SGDF-SSA achieved the smallest mean and standard deviation in 21 and 17 

functions, respectively. When the dimension of the benchmark functions is 100, SGDF-SSA significantly 

outperforms SSA in discovering the ideal solution, as evidenced by its performance in obtaining the smallest mean 

and standard deviation under different complexities. Additionally, SGDF-SSA outperformed SSA in all three 

functions tested with the Wilcoxon signedank test, demonstrating that SGDF-SSA is significantly superior to SSA 

in finding the ideal solution. 

Due to the different search strategies, the optimization performance of various algorithms is different. To show 

that the proposed improved algorithm is superior to other algorithms, four metaheuristics are selected for 

comparison. These algorithms include particle Swarm optimization (PSO), Grey Wolf Optimizer (GWO), 

Dragonfly Algorithm (DBO), and Salp Swarm Algorithm (SSA). The following are the evaluation index graphs 

of the test functions of different algorithms, as shown in Figure 3, Figure 4 and the table of the algorithm result 

index in Table 3. 

 

Figure 3. Box plots of F1-F16 test function metrics 
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Figure 4. Box plots of F17-F30 test function metric 

Table 3. Test function evaluation index plots for different algorithms 

Function Evaluation method DBO GWO PSO SSA SGDF-SSA 

F1 Minimum value 1.37E+03 4.18E+05 1.13E+05 1.10E+02 1.45E+08 

F1 Standard deviation 5.26E+04 2.79E+08 9.96E+08 6.34E+03 1.96E+09 

F1 Average value 4.34E+04 2.67E+08 5.77E+08 5.58E+03 3.13E+09 

F1 median 2.71E+04 1.94E+08 7.84E+05 3.27E+03 2.93E+09 

F1 Worst value 2.64E+05 1.39E+09 4.69E+09 2.10E+04 7.73E+09 

F3 Minimum value 3.95E+04 5.84E+04 3.68E+04 3.45E+04 4.37E+04 

F3 Standard deviation 5.98E+03 1.55E+04 2.44E+04 7.98E+03 1.02E+04 

F3 Average value 5.13E+04 9.22E+04 7.12E+04 4.86E+04 6.23E+04 

F3 median 5.03E+04 9.13E+04 7.13E+04 4.81E+04 6.25E+04 

F3 Worst value 6.30E+04 1.45E+05 1.39E+05 6.68E+04 9.35E+04 

F4 Minimum value 4.70E+02 5.26E+02 4.93E+02 4.70E+02 5.31E+02 

F4 Standard deviation 4.07E+01 1.60E+02 2.57E+02 2.35E+01 1.24E+02 

F4 Average value 5.17E+02 6.78E+02 6.58E+02 5.04E+02 6.48E+02 

F4 median 5.15E+02 6.41E+02 5.43E+02 5.10E+02 6.21E+02 

F4 Worst value 6.97E+02 1.32E+03 1.61E+03 5.80E+02 1.22E+03 

F5 Minimum value 6.08E+02 6.64E+02 5.63E+02 6.08E+02 5.88E+02 

F5 Standard deviation 5.05E+01 5.20E+01 3.37E+01 5.25E+01 4.46E+01 

F5 Average value 7.23E+02 7.46E+02 6.16E+02 7.55E+02 6.35E+02 

F5 median 7.32E+02 7.31E+02 6.09E+02 7.60E+02 6.27E+02 

F5 Worst value 7.94E+02 8.48E+02 7.08E+02 8.22E+02 7.73E+02 

F6 Minimum value 6.20E+02 6.23E+02 6.02E+02 6.18E+02 6.05E+02 

F6 Standard deviation 1.44E+01 1.37E+01 1.19E+01 9.78E+00 5.31E+00 

F6 Average value 6.42E+02 6.50E+02 6.16E+02 6.49E+02 6.14E+02 

F6 median 6.46E+02 6.49E+02 6.14E+02 6.49E+02 6.13E+02 

F6 Worst value 6.65E+02 6.77E+02 6.56E+02 6.66E+02 6.27E+02 

F7 Minimum value 8.85E+02 8.65E+02 8.12E+02 9.60E+02 8.28E+02 

F7 Standard deviation 1.11E+02 7.05E+01 4.74E+01 1.06E+02 5.89E+01 

F7 Average value 1.07E+03 1.01E+03 8.88E+02 1.23E+03 9.12E+02 

F7 median 1.06E+03 1.00E+03 8.85E+02 1.25E+03 9.05E+02 

F7 Worst value 1.34E+03 1.17E+03 9.77E+02 1.35E+03 1.07E+03 

F8 Minimum value 8.98E+02 9.56E+02 8.68E+02 9.22E+02 8.55E+02 

F8 Standard deviation 3.08E+01 4.59E+01 2.71E+01 2.85E+01 4.04E+01 

F8 Average value 9.63E+02 1.02E+03 9.15E+02 9.71E+02 9.14E+02 
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F8 median 9.69E+02 1.01E+03 9.15E+02 9.71E+02 9.02E+02 

F8 Worst value 1.01E+03 1.11E+03 9.58E+02 1.03E+03 1.04E+03 

F9 Minimum value 3.84E+03 2.63E+03 9.68E+02 4.56E+03 1.60E+03 

F9 Standard deviation 6.86E+02 2.21E+03 2.74E+03 2.13E+02 1.02E+03 

F9 Average value 5.25E+03 6.09E+03 3.22E+03 5.31E+03 2.70E+03 

F9 median 5.26E+03 5.74E+03 1.81E+03 5.37E+03 2.45E+03 

F9 Worst value 6.92E+03 1.19E+04 1.07E+04 5.56E+03 6.76E+03 

F10 Minimum value 4.11E+03 4.32E+03 3.51E+03 4.49E+03 3.41E+03 

F10 Standard deviation 6.80E+02 1.21E+03 8.94E+02 4.60E+02 1.73E+03 

F10 Average value 5.38E+03 6.63E+03 4.87E+03 5.42E+03 5.41E+03 

F10 median 5.27E+03 6.38E+03 4.54E+03 5.36E+03 4.77E+03 

F10 Worst value 7.10E+03 9.29E+03 7.56E+03 6.21E+03 9.24E+03 

F11 Minimum value 1.17E+03 1.36E+03 1.17E+03 1.17E+03 1.30E+03 

F11 Standard deviation 1.04E+02 1.44E+03 2.86E+02 6.82E+01 9.72E+02 

F11 Average value 1.37E+03 2.22E+03 1.35E+03 1.30E+03 2.31E+03 

F11 median 1.34E+03 1.74E+03 1.29E+03 1.30E+03 1.97E+03 

F11 Worst value 1.60E+03 8.32E+03 2.71E+03 1.49E+03 4.66E+03 

F12 Minimum value 4.06E+05 3.37E+06 5.57E+05 1.08E+05 6.94E+06 

F12 Standard deviation 2.08E+06 4.55E+07 4.45E+08 8.80E+05 9.59E+07 

F12 Average value 2.69E+06 4.18E+07 1.26E+08 8.88E+05 8.69E+07 

F12 median 2.23E+06 2.25E+07 8.85E+06 5.83E+05 5.47E+07 

F12 Worst value 8.88E+06 1.88E+08 2.40E+09 3.85E+06 4.30E+08 

F13 Minimum value 1.14E+04 6.30E+04 3.09E+03 3.22E+03 6.88E+04 

F13 Standard deviation 4.29E+04 7.61E+07 1.35E+06 8.15E+05 3.28E+07 

F13 Average value 5.67E+04 3.42E+07 4.80E+05 1.70E+05 1.16E+07 

F13 median 3.68E+04 4.58E+06 3.05E+04 1.32E+04 2.14E+05 

F13 Worst value 1.74E+05 3.65E+08 4.51E+06 4.48E+06 1.46E+08 

F14 Minimum value 5.05E+03 7.98E+03 4.67E+03 2.70E+03 7.62E+03 

F14 Standard deviation 4.80E+04 8.57E+05 6.45E+04 4.81E+04 6.06E+05 

F14 Average value 5.41E+04 3.95E+05 8.10E+04 6.45E+04 4.97E+05 

F14 median 3.93E+04 1.40E+05 6.43E+04 6.06E+04 2.03E+05 

F14 Worst value 2.03E+05 4.65E+06 1.99E+05 1.92E+05 2.37E+06 

F15 Minimum value 2.12E+03 4.89E+03 2.14E+03 2.36E+03 2.15E+04 

F15 Standard deviation 3.85E+04 9.31E+05 1.77E+04 1.46E+04 1.53E+06 

F15 Average value 2.43E+04 2.75E+05 1.97E+04 1.50E+04 9.46E+05 

F15 median 1.05E+04 5.66E+04 1.27E+04 8.74E+03 1.29E+05 

F15 Worst value 1.71E+05 5.17E+06 6.13E+04 4.70E+04 5.48E+06 

F16 Minimum value 2.25E+03 2.52E+03 2.26E+03 2.17E+03 2.06E+03 

F16 Standard deviation 3.72E+02 4.08E+02 2.76E+02 3.89E+02 3.64E+02 

F16 Average value 2.96E+03 3.48E+03 2.72E+03 2.96E+03 2.71E+03 

F16 median 2.98E+03 3.49E+03 2.74E+03 3.05E+03 2.63E+03 

F16 Worst value 3.81E+03 4.26E+03 3.15E+03 3.60E+03 3.50E+03 

F17 Minimum value 2.04E+03 1.95E+03 1.79E+03 1.89E+03 1.81E+03 

F17 Standard deviation 2.93E+02 3.09E+02 2.12E+02 3.06E+02 1.89E+02 

F17 Average value 2.49E+03 2.67E+03 2.17E+03 2.47E+03 2.17E+03 

F17 median 2.47E+03 2.69E+03 2.18E+03 2.42E+03 2.18E+03 

F17 Worst value 3.15E+03 3.24E+03 2.56E+03 3.21E+03 2.69E+03 

F18 Minimum value 5.75E+04 6.80E+04 7.05E+04 8.18E+04 6.13E+04 

F18 Standard deviation 1.29E+06 5.56E+06 1.27E+06 1.07E+06 7.12E+06 

F18 Average value 1.04E+06 3.67E+06 1.27E+06 7.83E+05 4.62E+06 

F18 median 6.31E+05 1.14E+06 6.65E+05 4.37E+05 2.34E+06 

F18 Worst value 5.58E+06 2.40E+07 4.48E+06 5.17E+06 2.84E+07 

F19 Minimum value 2.22E+03 1.10E+04 2.18E+03 2.19E+03 9.35E+03 

F19 Standard deviation 1.15E+04 1.12E+07 5.34E+04 1.35E+04 5.90E+06 

F19 Average value 1.08E+04 5.99E+06 3.11E+04 9.00E+03 2.20E+06 

F19 median 5.53E+03 2.63E+06 8.09E+03 4.31E+03 5.05E+05 

F19 Worst value 5.67E+04 5.81E+07 2.01E+05 5.59E+04 3.23E+07 
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F20 Minimum value 2.34E+03 2.23E+03 2.17E+03 2.42E+03 2.29E+03 

F20 Standard deviation 2.00E+02 2.20E+02 1.82E+02 2.36E+02 1.39E+02 

F20 Average value 2.73E+03 2.81E+03 2.46E+03 2.73E+03 2.51E+03 

F20 median 2.70E+03 2.82E+03 2.43E+03 2.66E+03 2.48E+03 

F20 Worst value 3.20E+03 3.26E+03 2.90E+03 3.36E+03 2.80E+03 

F21 Minimum value 2.41E+03 2.46E+03 2.35E+03 2.38E+03 2.35E+03 

F21 Standard deviation 5.07E+01 5.20E+01 3.63E+01 6.14E+01 3.43E+01 

F21 Average value 2.48E+03 2.55E+03 2.42E+03 2.53E+03 2.42E+03 

F21 median 2.48E+03 2.55E+03 2.41E+03 2.53E+03 2.41E+03 

F21 Worst value 2.63E+03 2.65E+03 2.52E+03 2.64E+03 2.49E+03 

F22 Minimum value 2.30E+03 2.40E+03 2.30E+03 2.30E+03 2.52E+03 

F22 Standard deviation 2.18E+03 2.57E+03 1.79E+03 1.82E+03 1.81E+03 

F22 Average value 3.69E+03 5.57E+03 3.94E+03 6.07E+03 5.19E+03 

F22 median 2.30E+03 6.65E+03 2.91E+03 6.63E+03 5.66E+03 

F22 Worst value 7.64E+03 9.46E+03 6.79E+03 8.56E+03 9.05E+03 

F23 Minimum value 2.78E+03 2.87E+03 2.76E+03 2.78E+03 2.70E+03 

F23 Standard deviation 6.31E+01 9.23E+01 1.02E+02 9.39E+01 4.42E+01 

F23 Average value 2.87E+03 2.98E+03 2.95E+03 2.93E+03 2.78E+03 

F23 median 2.87E+03 2.97E+03 2.93E+03 2.94E+03 2.79E+03 

F23 Worst value 3.02E+03 3.27E+03 3.20E+03 3.10E+03 2.94E+03 

F24 Minimum value 2.94E+03 3.02E+03 2.96E+03 2.92E+03 2.89E+03 

F24 Standard deviation 8.87E+01 8.02E+01 7.23E+01 8.51E+01 6.53E+01 

F24 Average value 3.05E+03 3.16E+03 3.10E+03 3.06E+03 2.97E+03 

F24 median 3.02E+03 3.14E+03 3.09E+03 3.05E+03 2.93E+03 

F24 Worst value 3.26E+03 3.33E+03 3.25E+03 3.24E+03 3.11E+03 

F25 Minimum value 2.88E+03 2.89E+03 2.89E+03 2.88E+03 2.93E+03 

F25 Standard deviation 9.51E+00 6.94E+01 5.09E+01 1.46E+01 5.20E+01 

F25 Average value 2.89E+03 3.00E+03 2.93E+03 2.89E+03 3.01E+03 

F25 median 2.89E+03 2.99E+03 2.92E+03 2.89E+03 3.01E+03 

F25 Worst value 2.93E+03 3.17E+03 3.10E+03 2.94E+03 3.13E+03 

F26 Minimum value 2.80E+03 3.81E+03 2.82E+03 2.90E+03 3.77E+03 

F26 Standard deviation 1.59E+03 8.81E+02 9.80E+02 9.12E+02 3.63E+02 

F26 Average value 4.51E+03 6.99E+03 4.93E+03 6.55E+03 4.96E+03 

F26 median 4.29E+03 6.99E+03 4.95E+03 6.66E+03 4.95E+03 

F26 Worst value 7.44E+03 8.75E+03 6.85E+03 7.99E+03 5.56E+03 

F27 Minimum value 3.21E+03 3.26E+03 3.22E+03 3.20E+03 3.24E+03 

F27 Standard deviation 3.09E+01 7.69E+01 6.23E+01 3.94E+01 3.44E+01 

F27 Average value 3.25E+03 3.34E+03 3.28E+03 3.26E+03 3.28E+03 

F27 median 3.25E+03 3.33E+03 3.27E+03 3.26E+03 3.27E+03 

F27 Worst value 3.33E+03 3.64E+03 3.50E+03 3.38E+03 3.36E+03 

F28 Minimum value 3.21E+03 3.26E+03 3.22E+03 3.20E+03 3.31E+03 

F28 Standard deviation 3.16E+01 6.48E+02 2.24E+02 2.26E+01 1.49E+02 

F28 Average value 3.26E+03 3.58E+03 3.35E+03 3.23E+03 3.49E+03 

F28 median 3.26E+03 3.43E+03 3.28E+03 3.22E+03 3.45E+03 

F28 Worst value 3.36E+03 6.72E+03 4.44E+03 3.27E+03 3.94E+03 

F29 Minimum value 3.70E+03 3.61E+03 3.50E+03 3.75E+03 3.61E+03 

F29 Standard deviation 2.71E+02 4.27E+02 2.61E+02 2.70E+02 1.66E+02 

F29 Average value 3.11E+03 4.42E+03 3.88E+03 4.19E+03 3.98E+03 

F29 median 4.04E+03 4.39E+03 3.82E+03 4.12E+03 3.97E+03 

F29 Worst value 3.80E+03 5.34E+03 4.50E+03 4.86E+03 4.28E+03 

F30 Minimum value 6.95E+03 2.15E+04 7.44E+03 6.80E+03 8.94E+05 

F30 Standard deviation 7.54E+04 8.23E+06 1.80E+06 9.36E+03 8.36E+06 

F30 Average value 3.81E+04 4.39E+06 4.18E+05 1.74E+04 1.04E+07 

F30 median 2.18E+04 1.55E+06 2.40E+04 1.59E+04 7.66E+06 

F30 Worst value 4.31E+05 4.17E+07 9.91E+06 5.19E+04 3.17E+07 
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The improved algorithm has smaller difference value, more stable optimization ability, less special values in the 

data set, and stronger convergence compared with other algorithms. We calculated all the functions by running 

the optimization program and obtained the iterative line chart, as shown in Figure 5 and Figure 6. 

 

Figure 5. Line chart of function iteration data for F1-F15 

 

Figure 6. Line chart of function iteration data for F16-F30 

For the above images, the effect ranking of the final convergence state, as shown in Table 4, and the average 

ranking statistics, as shown in Table 5, can be used to determine the ranking of the convergence ability of the 

algorithm. 
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Table 4. Ranking of different algorithms on the 29 benchmark functions 

Functions GWO DBO PSO SSA SGDF-SSA 

F1 4 5 3 1 2 

F3 5 5 4 1 3 

F4 5 4 1 3 2 

F5 4 5 3 1 2 

F6 5 4 2 3 1 

F7 4 3 1 5 2 

F8 3 5 4 2 1 

F9 5 4 3 2 1 

F10 1 3 5 4 2 

F11 5 4 2 3 1 

F12 5 4 1 2 3 

F13 5 2 4 1 3 

F14 3 5 2 4 1 

F15 1 2 4 3 5 

F16 4 5 3 1 2 

F17 2 3 1 4 5 

F18 2 5 4 1 3 

F19 4 3 5 1 2 

F20 1 5 2 4 3 

F21 4 5 3 2 1 

F22 3 1 5 4 2 

F23 2 5 4 3 1 

F24 4 5 3 2 1 

F25 5 4 3 2 1 

F26 1 5 3 4 2 

F27 4 5 3 1 2 

F28 4 5 2 3 1 

F29 5 4 2 3 1 

F30 3 2 4 1 5 

 

Table 5. Ranking statistics and average ranking of different algorithms on benchmark functions 

Algorithm average ranking 1 ranking 2 ranking 3 ranking 4 ranking 5 rank average 

GWO 3.55 4 3 4 9 9 4 

DBO 4.03 1 3 4 7 14 5 

PSO 2.97 4 6 9 7 3 3 

SSA 2.45 9 6 7 6 1 2 

SGDF-SSA 2.10 11 10 5 0 3 1 

 

Table 4 shows the test results of different algorithms, and Table 5 shows the ranking results of each algorithm. 

SGDF-SSA ranks in the top three of the 26 benchmark functions, among which the first rank accounts for 11 

times and the second rank accounts for 10 times, which indicates that the optimization ability of SGDF-SSA is 

significantly better than that of these basic algorithms. the Wilcoxon signedrank test analysis results are presented, 

and SGDF-SSA ranks first with 2.10, which again shows that the optimization ability of SGDF-SSA is much 

better than these base algorithms. 

Application of Image Leaf Segmentation 

In the leaf image processing, data set is relatively common data set of Plant Doc 

(https://github.com/pratikkayal/PlantDoc-Object-Detection-Dataset), This is a dataset of 2,598 images of 13 plant 

species used for image classification and object detection. We select 8 representative images from them for testing. 

The size of the test image is 512×512 and the histogram is shown in Figure 7. To evaluate the performance of the 

algorithm, the main parameters considered in Table 6: 
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Table 6. Parameter Settings for different algorithms 

PSO 

Group size 20 

Number of iterations 300 

Cognitive, social, and Neighbourhood acceleration 3,2,1 

Lower and upper bounds 1 and 256 

Error targets and maximum trial limits 1e-7 and 500 

Initial velocity weight value 0.95 

Velocity weight value at the end of PSO iteration 0.4 

Proportion of the maximum number of iterations for which W varies linearly 0.7 

Maximum speed step, shrinkage factor, and neighbourhood size 1 

Global minimum 0 

GWO 
Number of population 60 

Maximum number of iterations 200 

DBO 

The strength of the local search 0.1 

Balancing the weights of different search strategies 0.1 

Diversity of solutions 0.3 

Step size control parameter 0.3 

Population size 0.5 

SSA 

The number of sparrow populations 50 

Number of discoverers 10 

Number of followers 40 

Number of warning 10 

Initialize the upper and lower bounds of the population position [-3,3] 

Dimension of the fitness function 337 

Maximum number of iterations 30 

Warning value random 

Safety threshold 0.8 

SSA/SGDF-SSA 

Number of fireflies 20 

Maximum number of iterations 300 

Initial firefly size 20 

Randomization parameter 0.5 

Optical absorption coefficient at the source 1 

Inertial attraction 0.2 

Since optimization algorithms exhibit stochastic behavior, all experiments are repeated 20 times for each image 

and threshold level to ensure high-fidelity evaluation. Figure 8 provides a visual assessment of the overall 

segmentation results. As confirmed by the experiments in Table 7, the proposed algorithm achieves the highest 

PSNR and the lowest MSE values. SGDF-SSA delivers reasonable, reliable, and the fastest output while 

maintaining the best segmentation quality. SSA also exhibits the shortest computation time at higher threshold 

levels (m = 5 and 8). SGDF-SSA performs accurately across both lower and higher threshold levels, offering 

superior segmentation results. This indicates that as the threshold level increases, the quantitative segmentation 

results improve. Therefore, SGDF-SSA is suitable for applications requiring rapid segmentation of leaf images or 

other natural images. The results demonstrate that, compared to other competing algorithms, SGDF-SSA achieves 

higher precision and accuracy. Segmented images based on SGDF-SSA exhibit detailed and accurate image 

information across all threshold levels. 
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Figure 7. Image selection and multi-channel histogram 

 

Figure 8. Test image segmentation results 
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Table 7. Comparison of PSNR and MSE of different algorithms 

Image Threshold 
DBO PSO GWO SSA SGDF-SSA 

PSNR MSE PSNR MSE PSNR MSE PSNR MSE PSNR MSE 

1 

2 8.59 8711.89 9.66 5952.26 12.26 5872.07 12.06 5521.99 13.68 3364.73 

5 15.80 2089.47 16.51 1275.35 16.38 1853.10 16.78 1407.31 18.19 1203.02 

8 22.21 409.03 22.54 383.20 20.92 666.43 22.80 359.37 23.36 347.18 

12 25.84 279.95 24.42 203.08 25.33 133.32 27.02 157.20 27.81 125.04 

2 

2 13.18 3114.72 12.64 3716.66 12.42 4324.27 11.17 4937.06 13.81 3081.39 

5 20.21 709.62 19.66 640.73 18.32 906.65 19.54 694.31 20.35 672.46 

8 23.92 295.94 23.80 276.09 23.30 270.39 23.06 288.32 23.10 266.44 

12 27.54 158.61 25.99 158.02 25.51 214.29 27.45 128.86 26.16 118.77 

3 

2 12.44 3747.35 12.00 3760.56 13.18 3398.79 11.89 4419.79 14.13 3874.80 

5 19.00 936.93 19.41 667.32 19.08 746.92 20.45 682.37 19.09 604.00 

8 21.77 348.12 23.00 362.15 23.08 385.30 21.94 362.26 22.89 232.74 

12 27.53 153.49 27.44 190.74 25.27 156.36 27.07 151.28 25.88 132.34 

4 

2 14.12 2755.49 15.79 2206.54 13.74 3036.00 12.94 2998.45 14.80 2424.55 

5 20.06 664.58 22.36 483.20 18.75 773.13 18.74 1237.54 21.68 431.50 

8 20.30 573.76 21.56 401.76 19.64 646.89 20.44 510.80 21.79 383.94 

12 24.44 259.76 25.69 141.39 25.35 209.19 24.20 337.56 27.79 110.19 

5 

2 12.39 555.62 13.81 3130.08 12.42 3581.29 12.05 4033.74 14.75 2691.46 

5 21.14 324.74 18.43 778.92 19.70 716.73 20.72 683.91 19.80 583.83 

8 22.92 321.89 23.49 339.67 21.92 364.86 23.92 290.52 25.30 248.90 

12 26.27 133.41 25.47 143.96 25.94 174.92 24.66 183.45 26.83 122.79 

6 

2 12.94 3914.54 12.42 3517.01 13.61 3644.66 13.56 3233.37 14.12 3024.32 

5 19.88 846.49 20.26 3503.42 18.83 697.14 18.98 764.54 20.07 697.28 

8 22.29 397.64 23.86 321.54 22.97 345.39 23.67 290.14 23.79 252.77 

12 26.40 108.57 27.32 140.45 24.96 199.73 26.13 149.84 27.29 100.35 

7 

2 12.88 3078.89 13.48 2816.68 14.60 2070.78 13.86 2469.81 15.93 1186.63 

5 20.07 759.62 20.48 726.27 19.43 774.27 19.40 744.90 19.02 635.14 

8 22.60 347.69 23.85 333.65 22.52 443.43 21.98 318.20 22.67 333.03 

12 26.02 203.42 26.14 153.38 23.81 212.31 27.69 135.22 27.56 99.92 

8 

2 10.96 4976.56 12.85 3917.21 13.02 2968.50 10.97 5017.98 12.80 3865.93 

5 19.00 767.80 17.14 1420.86 19.80 809.56 19.71 716.50 21.60 748.00 

8 21.84 651.38 23.79 290.70 23.68 331.89 25.78 229.56 25.70 215.38 

12 27.32 162.81 27.03 113.85 25.66 178.29 27.41 152.34 29.24 108.96 

 

Table 8 SSIM and FSIM comparison of different algorithms 

Image Threshold 
DBO PSO GWO SSA SGDF-SSA 

SSIM FSIM SSIM FSIM SSIM FSIM SSIM FSIM SSIM FSIM 

1 

2 0.795 0.567 0.891 0.627 0.871 0.568 0.740 0.566 0.900 0.666 

5 0.945 0.773 0.967 0.749 0.955 0.791 0.926 0.813 0.980 0.775 

8 0.995 0.908 0.952 0.909 0.961 0.868 0.985 0.893 0.994 0.895 

12 0.961 0.929 0.967 0.938 0.977 0.941 0.964 0.947 0.971 0.974 

2 

2 0.914 0.761 0.890 0.742 0.884 0.710 0.866 0.703 0.901 0.760 

5 0.977 0.903 0.963 0.910 0.941 0.860 0.973 0.927 0.974 0.897 

8 0.994 0.940 0.982 0.970 0.953 0.961 0.960 0.938 0.976 0.938 

12 0.964 0.961 0.962 0.987 0.981 0.929 0.978 0.980 0.967 0.954 

3 

2 0.880 0.712 0.873 0.707 0.894 0.762 0.832 0.714 0.852 0.772 

5 0.961 0.921 0.941 0.925 0.985 0.928 0.978 0.917 0.950 0.945 

8 0.984 0.930 0.979 0.978 0.970 0.936 0.953 0.961 0.963 0.951 

12 0.965 0.938 0.968 0.975 0.996 0.963 0.975 0.980 0.971 0.974 

4 

2 0.912 0.673 0.913 0.701 0.851 0.614 0.871 0.616 0.921 0.676 

5 0.960 0.783 0.953 0.862 0.960 0.790 0.925 0.805 0.955 0.876 

8 0.957 0.831 0.951 0.895 0.979 0.920 0.943 0.845 0.987 0.906 

12 0.958 0.923 0.986 0.908 0.994 0.949 0.956 0.921 0.973 0.942 

5 

2 0.914 0.768 0.884 0.771 0.913 0.753 0.873 0.738 0.922 0.780 

5 0.984 0.911 0.989 0.917 0.960 0.887 0.992 0.880 0.963 0.901 

8 0.980 0.923 0.992 0.937 0.985 0.917 0.995 0.952 0.970 0.925 

12 0.994 0.943 0.999 0.964 0.981 0.931 0.974 0.946 0.959 0.977 

6 

2 0.893 0.672 0.906 0.724 0.897 0.692 0.916 0.730 0.887 0.724 

5 0.953 0.854 0.954 0.837 0.960 0.838 0.944 0.861 0.973 0.856 

8 0.980 0.906 0.952 0.912 0.972 0.872 0.972 0.912 0.996 0.927 

12 0.978 0.959 0.990 0.939 0.967 0.914 0.969 0.952 0.967 0.926 

7 

2 0.911 0.714 0.924 0.719 0.921 0.753 0.920 0.737 0.943 0.745 

5 0.967 0.849 0.982 0.843 0.954 0.851 0.962 0.876 0.975 0.878 

8 0.954 0.884 0.970 0.912 0.970 0.887 0.960 0.922 0.978 0.887 

12 0.974 0.957 0.979 0.945 0.955 0.910 0.980 0.943 0.978 0.918 

8 

2 0.903 0.724 0.951 0.728 0.928 0.780 0.923 0.710 0.956 0.716 

5 0.978 0.868 0.965 0.819 0.956 0.867 0.983 0.891 0.986 0.864 

8 0.979 0.887 0.987 0.925 0.968 0.900 0.966 0.922 0.986 0.915 

12 0.991 0.921 0.986 0.936 0.957 0.938 0.971 0.966 0.993 0.949 



Computer Fraud and Security  

ISSN (online): 1873-7056 

 

__________________________________________________________________________________ 
1228 

 Vol: 2025 | Iss: 01 | 2025 
 

 

Table 9. Objective function values and CPU time calculated by different algorithms 

Image Threshold 

DBO PSO GWO SSA SGDF-SSA 

Objective 

function 

value 

CPU time 
Objective 

function value 
CPU time 

Objective 

function value 
CPU time 

Objective 

function value 
CPU time 

Objective 

function value 

CPU 

time 

1 

2 0.0393 14.1745 0.0209 17.2574 0.1752 28.8856 0.0004 23.0754 0.0001 1.7068 

5 0.2422 27.2921 0.3377 20.7623 0.8819 76.7834 0.0045 29.0776 0.0147 2.5809 

8 0.9562 42.0414 0.7362 26.0491 1.8523 128.0183 0.0390 38.6054 0.2942 3.2666 

12 1.5069 58.8896 1.3035 34.1580 3.4614 188.5272 0.2708 45.7377 0.9169 4.0004 

2 

2 0.0214 13.8689 0.0558 15.9397 0.2449 28.8731 0.0001 22.6096 0.0009 2.0462 

5 0.1543 28.1693 0.2735 20.8500 1.6496 77.1105 0.0046 29.9755 0.0121 2.5775 

8 1.0339 45.9908 0.7374 26.0171 1.0300 125.9424 0.0286 37.2130 0.1598 3.5537 

12 1.9922 57.4400 1.4915 34.2776 3.6498 195.7756 0.2691 47.5249 2.2577 4.5133 

3 

2 0.1904 14.4707 0.0371 15.8143 0.3988 26.4868 0.0004 22.5349 0.0010 1.9700 

5 0.4948 31.9433 0.7353 20.4357 1.2818 73.9145 0.0055 28.5648 0.0089 2.7257 

8 1.0548 42.3640 0.9791 27.4164 2.0456 116.8846 0.0216 35.4639 0.2178 3.5798 

12 1.3549 61.9317 1.4724 34.5811 3.2175 183.8036 0.0872 48.3412 1.1703 4.3069 

4 

2 0.2105 13.7243 0.3451 16.1178 0.3719 27.8334 0.0001 22.8843 0.0048 1.8984 

5 1.0445 27.9589 1.3173 21.3846 1.5335 75.3848 0.0043 30.3266 0.0478 2.6471 

8 0.7356 42.2527 1.0174 27.2204 1.6922 127.1122 0.0195 36.4064 0.8392 3.5079 

12 1.8735 61.2065 2.3110 35.9459 3.3645 194.0219 0.1294 49.0957 2.1549 4.4571 

5 

2 0.0373 17.3237 1.1961 15.7379 1.1474 28.5103 0.0005 22.4818 0.0017 1.8687 

5 1.0222 27.5461 1.2028 20.8926 1.4977 76.5545 0.0059 30.6331 0.0292 2.5366 

8 0.8272 43.5906 1.2781 27.2096 2.1244 121.9852 0.0514 37.4528 0.7443 3.3580 

12 1.7124 59.6043 1.7649 35.6705 3.3348 187.2812 0.3651 47.4351 1.5844 4.0141 

6 

2 0.8950 14.9548 0.7615 16.0374 0.5252 27.2297 0.0002 22.3901 0.0001 2.0152 

5 0.4681 30.2520 0.7526 21.6847 1.0712 75.0255 0.0126 30.9207 0.0153 2.6092 

8 0.8674 42.8311 1.1033 26.9904 2.2753 125.1377 0.0483 38.8357 0.5291 3.2313 

12 1.3207 63.5016 2.0961 34.2300 3.3999 162.3074 0.1917 49.8654 1.7290 4.4521 

7 

2 0.0653 14.7203 0.2571 16.3932 0.3163 26.8256 0.0004 22.3597 0.0017 1.9736 

5 0.3945 30.2330 1.0401 21.3951 0.8089 72.7517 0.0067 29.9735 0.2935 2.5860 

8 0.9312 44.2493 1.2075 26.6713 2.1316 124.4328 0.1686 39.7547 0.9106 3.3896 

12 1.7480 65.7801 1.8398 34.2869 3.7055 186.7188 0.2037 47.1962 3.3303 4.4503 

8 

2 0.5700 16.2514 0.8934 16.1897 0.9059 26.5006 0.0003 22.6704 0.0035 1.9881 

5 0.2840 30.7694 1.2898 21.6984 1.4387 75.0573 0.0051 29.5241 0.6865 2.5419 

8 1.1337 41.3836 1.2963 27.3652 1.9527 115.1261 0.1729 36.3562 0.8153 3.3694 

12 2.5334 59.1064 2.2002 35.2254 3.5908 188.9020 0.1735 47.1825 2.9410 4.4827 

 

It can be seen from Table 8 and Table 9, In experiments using MFE functions to deal with uncertainty and 

complexity in color images, in order to achieve effective and efficient multi-level threshing-based image 

segmentation, the best combination of all blurring parameters and thresholds must be selected to minimize the 

MFE function. Therefore, SSA has been assisted with the proposed entropy function to find the optimal vector of 

intensity levels, and SGDF-SSA algorithm based multi-threshold seg-mentation of color images at different 

segmentation levels (m= 2,5,8, and 12) has been performed in this work. SGDF-SSA outperforms all other 

algorithms in terms of PSNR, MSE, SSIM and FSIM, and is computationally fast. Compared to Kapur's entropy-

based segmentation technique, which is the most widely used, MFE achieves better performance. 

CONCLUSIONS 

Contributions of this Paper 

Focusing on the problem of high-precision image segmentation of plant leaves, this study proposes an improved 

SGDF-SSA algorithm to solve the problems of local optimum traps and insufficient search ability in the 

optimization process of traditional Sparrow Search algorithm (SSA). In order to enhance the diversity and 

ergodicity of the population, SPM chaotic mapping mechanism is introduced to perform global uniform sampling 

of the initial population, so as to improve the quality of the initial solution and the global search ability. In the 

finder location update strategy, the adaptive Gaussian cloud mutation mechanism is combined to further optimize 

the search path of the population to reduce the possibility of premature convergence and improve the global search 

ability of the algorithm. In addition, the finder update strategy based on sine cosine optimization function and 

dynamic inertia weight enables the finder to explore the search space more efficiently, thereby enhancing the 

ability to locate the optimal solution. In the follower update stage, this paper innovativly introduces the Cauchy 

chaotic mutation strategy, which combines the ergodicity of chaotic map and the long tail characteristics of 
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Cauchy mutation to further improve the local search ability of the algorithm and effectively avoid the interference 

of local optimal solutions. 

In terms of experimental evaluation, this paper uses the CEC2017 standard test function set to systematically 

verify the optimization performance of SGDF-SSA algorithm. The experimental results show that the optimization 

accuracy and convergence speed of the SGDF-SSA algorithm are better than those of the existing comparison 

algorithms on multiple test functions, and the best performance is achieved especially on 11 test functions, 

showing excellent global optimization ability and robust optimization characteristics. At the same time, in terms 

of computational efficiency, the SGDF-SSA algorithm shows better optimization efficiency under different 

fidelity parameter Settings, which effectively reduces the computational cost while ensuring the segmentation 

accuracy. Furthermore, in the application of plant leaf image segmentation, the SGDF-SSA algorithm shows high 

segmentation accuracy and robustness in tasks such as complex background interference and pathological leaf 

detection, which significantly improves the accuracy and robustness of leaf extraction and provides strong support 

for leaf pathological analysis, crop health monitoring and automatic processing of precision agriculture. 

Research Prospects 

According to the summary and analysis of the research content in this paper, further research work can be done 

on this basis in the future: 

It tries to reduce the time complexity of SGDF-SSA algorithm. Because the initial strategy updates its population 

and disturbs the optimal sparrow, the complexity of the algorithm is improved and the optimization time is 

increased to a certain extent. Therefore, the subsequent research will try to further update and improve the initial 

population in the SGDF-SSA algorithm to reduce the actual complexity of the algorithm, so as to reduce the 

running time of the algorithm to optimize the image threshold segmentation. 

The image segmentation task completed by the algorithm will make the segmentation results weak on the semantic 

level. In the future, the idea of selfsupervised learning can be combined on this basis, and the nature of the 

segmentation results unchanged after the image space and color transformation can be used to improve the 

understanding of the semantic level in the whole segmentation process. 

Broaden the application field of SGDF-SSA algorithm. In this paper, standard images are used to test the 

performance of the algorithm to apply to medicine, agriculture and other fields, and the algorithm is applied to 

other fields to further test its segmentation performance. 
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FCM Fuzzy c-means 
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