
Computer Fraud and Security  

ISSN (online): 1873-7056 

 

__________________________________________________________________________________ 

285 

  Vol: 2025 | Iss: 02 | 2025 

 

Enhancing Landslide Prediction: Mobile Edge Computing in Rainfall-

Triggered Remote Sensing 
 

 

Xiaoxiao Qiu1,a,*, Yueguan He1,b 

1.school of Traffic and Transportation Engineering, Changsha University of Science and 

Technology,Changsha 410004,Hunan,China; 
a Email:qxxiao826@163.com 

b Email:18165351887@sohu.com 

*Corresponding Author: Xiaoxiao Qiu，qxxiao826@163.com 

 

Abstract: Landslides pose significant risks to infrastructure, human lives, and ecosystems, particularly 

in regions prone to heavy rainfall. Traditional prediction models rely on centralized cloud-based 

processing, which often suffers from latency and inefficiencies in real-time hazard assessment. This 

study explores the integration of Mobile Edge Computing (MEC) with remote sensing technologies to 

enhance the accuracy and timeliness of rainfall-triggered landslide prediction. By leveraging MEC’s 

localized processing capabilities, real-time sensor data—such as satellite imagery, ground-based 

precipitation measurements, and soil moisture indices—can be analyzed closer to the source, reducing 

transmission delays and improving predictive performance. We propose an adaptive framework that 

utilizes machine learning algorithms at the edge to assess landslide susceptibility dynamically. 

Comparative analysis with conventional cloud-based models demonstrates improved response times 

and predictive accuracy. The findings highlight MEC's potential in transforming landslide early warning 

systems, offering a scalable and efficient solution for disaster risk mitigation in vulnerable regions. 
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Introduction 

Landslides are a major natural hazard that can lead to severe socio-economic and environmental 

consequences, including loss of life, destruction of infrastructure, and displacement of communities. 

They are particularly prevalent in regions characterized by steep slopes, unstable soil conditions, and 

high rainfall intensity. Among the various factors triggering landslides, prolonged or intense rainfall is 

one of the most common and influential, as it increases pore-water pressure, reduces soil cohesion, and 

weakens slope stability. Given the increasing frequency and intensity of extreme weather events due to 

climate change, there is a growing demand for more effective and real-time landslide prediction systems 

to mitigate potential disasters and improve risk management strategies. 

Traditional approaches to landslide prediction often rely on empirical models, geotechnical field 

surveys, and centralized remote sensing data analysis conducted in cloud environments. While these 

methods have contributed significantly to understanding landslide susceptibility, they present several 

limitations. Cloud-based models, for instance, suffer from high latency and dependence on stable 

network connectivity, making them less effective in time-sensitive scenarios. Similarly, conventional 

remote sensing techniques require substantial computational resources and expert analysis, which can 

slow down the delivery of crucial insights. These challenges highlight the need for more decentralized, 

efficient, and real-time processing frameworks that can enhance landslide prediction and early warning 

systems. 

To address these limitations, Mobile Edge Computing (MEC) has emerged as a transformative solution 
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that enables faster data processing by bringing computational power closer to data sources. MEC 

integrates edge devices such as IoT sensors, unmanned aerial vehicles (UAVs), and local processing 

units with real-time remote sensing data to conduct on-the-fly analysis. This approach significantly 

reduces the reliance on cloud infrastructure, minimizing latency, improving bandwidth efficiency, and 

enabling rapid decision-making in landslide-prone areas. By deploying machine learning algorithms 

and artificial intelligence (AI) models at the edge, MEC enhances the accuracy of rainfall-triggered 

landslide predictions by dynamically analyzing geospatial data, soil moisture content, and precipitation 

patterns. 

The integration of MEC and remote sensing technologies has the potential to revolutionize landslide 

early warning systems by providing near-instantaneous risk assessments and improving the resilience 

of vulnerable communities. This study explores the application of MEC-driven frameworks in rainfall-

triggered landslide prediction, assessing their performance compared to conventional cloud-based 

models. By leveraging real-time geospatial analysis, sensor fusion techniques, and AI-driven predictive 

modeling, this research aims to demonstrate how MEC can enhance the efficiency, scalability, and 

responsiveness of landslide monitoring systems. 

The findings from this study will contribute to the ongoing efforts to develop more robust disaster risk 

mitigation strategies by offering a scalable, real-time, and cost-effective solution for landslide 

prediction. In addition, the insights gained can be instrumental in informing policymakers, disaster 

response teams, and urban planners about the benefits of deploying edge computing in geohazard 

monitoring. Ultimately, this research seeks to bridge the gap between advanced computational 

technologies and practical disaster management applications, paving the way for a safer and more 

resilient future. 

 

 
Fig.1 Landslides Early Warning System based on the IoT[10] 
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Literature Review  

Landslide prediction has traditionally relied on remote sensing, geospatial analysis, and machine 

learning-based models to assess susceptibility and provide early warnings. While these methods have 

demonstrated significant progress, their dependence on centralized cloud computing and satellite-based 

remote sensing often results in latency issues, delayed data processing, and network dependency. 

Mobile Edge Computing (MEC) presents a transformative approach by bringing computation closer to 

the data source, improving real-time decision-making for rainfall-triggered landslides. 

 

1. Remote Sensing-Based Landslide Prediction 

Remote sensing-based landslide prediction has gained significant attention due to its ability to analyze 

large-scale terrain changes and detect early warning signs of instability. Various remote sensing 

technologies, including Synthetic Aperture Radar (SAR), LiDAR, optical imagery, and hyperspectral 

imaging, have been employed to enhance landslide detection and forecasting. For instance, SAR 

Interferometry (InSAR) has proven effective in monitoring ground displacement and slope instability, 

providing early indicators of potential landslides [1]. Similarly, LiDAR-based terrain mapping has 

enabled high-resolution topographical analysis, allowing researchers to identify and assess landslide-

prone areas with great precision [2]. Additionally, multi-temporal satellite imagery has been widely 

utilized to track changes in land cover and detect rainfall-triggered landslides by analyzing variations 

over time[3]. Despite these advancements, satellite-based remote sensing systems face certain 

limitations, including temporal gaps due to satellite revisit intervals and the high computational costs 

associated with processing vast amounts of remote sensing data. These challenges reduce the feasibility 

of real-time landslide monitoring, necessitating the integration of more efficient computational methods 

such as Mobile Edge Computing (MEC) to enhance responsiveness and predictive accuracy. 

 

2. Machine Learning and AI for Landslide Prediction 

Machine Learning (ML) and Artificial Intelligence (AI) have significantly enhanced landslide 

prediction accuracy by enabling automated analysis of complex geological, hydrological, and 

meteorological factors. Various ML models, including Random Forest (RF), Support Vector Machines 

(SVM), Artificial Neural Networks (ANNs), and Deep Learning (DL), have been widely applied for 

landslide susceptibility mapping. Deep Learning models such as Convolutional Neural Networks 

(CNNs), Long Short-Term Memory (LSTMs), and U-Net architectures have demonstrated strong 

performance in analyzing spatiotemporal rainfall patterns and geological features to predict landslides 

with higher precision [4]. Additionally, attention-based AI models have improved the interpretability 

of landslide susceptibility assessments by identifying critical contributing factors in prediction models 

[5]. Furthermore, the integration of IoT and AI-driven edge computing frameworks has enhanced 

sensor-based landslide monitoring by enabling real-time data processing and reducing reliance on 

cloud-based computations [6]. Despite these advancements, traditional ML and AI approaches 

predominantly rely on centralized cloud computing, which introduces latency and requires stable 

network connectivity. These limitations make conventional AI models less effective for real-time 

landslide prediction, particularly in remote or disaster-prone regions with limited internet infrastructure. 

The shift toward Mobile Edge Computing (MEC) offers a promising solution by decentralizing 

computations and enabling rapid, on-site data analysis, thus improving real-time disaster response 

capabilities. 
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3. Mobile Edge Computing (MEC) in Geohazard Monitoring 

 

Mobile Edge Computing (MEC) has revolutionized geohazard monitoring by enabling real-time 

landslide prediction through decentralized, high-speed data processing. Unlike traditional cloud-based 

systems that suffer from latency and network dependency, MEC processes data locally at the sensor 

nodes, improving response time and accuracy. By integrating AI-driven edge models, MEC eliminates 

the need for constant cloud connectivity, allowing faster decision-making and localized risk assessment 

[7]. Additionally, federated learning within MEC enables multiple edge devices to train AI models 

collaboratively while preserving data privacy and reducing bandwidth usage [8]. MEC-based sensor 

networks further enhance rainfall-triggered landslide prediction by integrating data from rainfall sensors, 

soil moisture detectors, seismic monitors, and UAV-based remote sensing, ensuring comprehensive 

real-time monitoring [9]. UAVs equipped with MEC nodes provide high-resolution terrain analysis in 

remote regions, strengthening early warning systems. However, challenges remain in optimizing energy 

efficiency, ensuring seamless data fusion, and deploying lightweight AI models for low-power edge 

devices. Future advancements should focus on improving federated learning techniques, enhancing 

resource allocation, and increasing interoperability between diverse sensor networks. As MEC 

continues to evolve, its integration with remote sensing, IoT, and AI will further improve landslide early 

warning systems, making disaster preparedness more efficient and reliable. 

 

Year Application Advantage Impact Contribution 

2022 SAR Interferometry 

(InSAR) for landslide 

monitoring (Zhu et al., 

2022) 

Detects ground 

displacement and 

slope instability 

Provides early 

warnings and 

enhances disaster 

preparedness 

Demonstrated the 

effectiveness of 

InSAR in landslide 

detection 

2023 LiDAR-based terrain 

mapping for landslide 

risk assessment (Wang 

et al., 2023) 

High-resolution 

topographical 

analysis 

Improves 

accuracy in 

landslide 

susceptibility 

mapping 

Showcased how 

LiDAR improves 

landslide-prone area 

identification 

2021 Multi-temporal 

satellite imagery for 

rainfall-triggered 

landslide detection 

(Zhang et al., 2021) 

Monitors changes 

in land cover over 

time 

Helps in 

understanding 

rainfall-induced 

landslide patterns 

Explored the role of 

satellite imagery in 

multi-temporal 

landslide analysis 

2022 Deep Learning models 

(CNNs, LSTMs, U-

Net) for landslide 

prediction (Huang et 

al., 2022) 

Improved pattern 

recognition in 

geospatial data 

Enhances 

predictive 

accuracy of 

landslide 

forecasting 

Implemented DL 

models for 

spatiotemporal 

analysis of landslides 

2023 Attention-based AI 

models for landslide 

susceptibility (Chen et 

al., 2023) 

Enhances 

interpretability of 

landslide 

prediction 

Identifies key 

contributing 

factors in landslide 

risk 

Improved feature 

selection and 

decision-making in 

AI-based landslide 

models 

2023 IoT and AI-driven Enables real-time Reduces reliance Integrated IoT and 
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edge computing 

frameworks (Gao et 

al., 2023) 

data processing on cloud 

computing for 

remote monitoring 

edge AI for faster 

landslide detection 

2023 Mobile Edge 

Computing (MEC) for 

geohazard monitoring 

(Lee et al., 2023) 

Reduces latency 

and enhances real-

time processing 

Strengthens 

landslide early 

warning systems 

Introduced MEC to 

landslide prediction 

for faster response 

2022 Federated Learning 

for landslide 

prediction (Xiao et al., 

2022) 

Preserves data 

privacy and 

reduces bandwidth 

usage 

Enhances AI 

training efficiency 

across edge 

devices 

Applied federated 

learning to 

decentralized 

landslide monitoring 

2023 MEC-based sensor 

networks integrating 

rainfall, soil moisture, 

and UAV data (Park et 

al., 2023) 

Improves accuracy 

by combining 

multiple data 

sources 

Enhances real-

time monitoring 

and decision-

making 

Demonstrated the 

efficiency of multi-

source sensor 

networks for 

landslide prediction 

 

Methodology 

Landslide recognition is a crucial aspect of disaster management and geospatial analysis, enabling 

scientists and authorities to detect, monitor, and assess landslide-prone regions effectively. The process 

involves various methodologies and remote sensing (RS) tools that help in identifying changes in the 

landscape that indicate potential or ongoing landslide activity. The diagram provided outlines a 

structured framework for landslide recognition, categorizing it into three primary methods: 

Interpretation and Geomorphic Features Extraction, Stereovision, and InSAR (Interferometric Synthetic 

Aperture Radar). Each method employs specific remote sensing tools that aid in data collection, analysis, 

and prediction of landslide occurrences. 

 

Interpretation and Geomorphic Features Extraction 

One of the widely used approaches for landslide recognition is interpretation and geomorphic features 

extraction, which focuses on analyzing the geomorphological characteristics of an area to assess its 

landslide susceptibility. This method is based on the recognition of terrain patterns, slope instability, 

land cover changes, and surface deformations. Interpretation and geomorphic features extraction can be 

carried out using two primary techniques: visual interpretation and automated interpretation. 

• Visual Interpretation (indicated in green in the diagram) is a manual process where experts 

analyze satellite or aerial imagery to identify landslide-prone regions. This method relies on 

human expertise and experience to detect slope failures based on terrain characteristics such as 

cracks, bulging, or displacement. Visual interpretation is effective in areas where historical data 

is available and when combined with other geological and hydrological information. However, 

this approach can be time-consuming and is often subject to human error or bias. 

• Automated Interpretation (represented in orange) involves the use of artificial intelligence 

(AI), machine learning, and image processing techniques to extract geomorphic features 

without manual intervention. AI algorithms can analyze satellite imagery, detect patterns, and 

classify areas based on landslide susceptibility. Automated interpretation improves the 

efficiency and accuracy of landslide detection, enabling large-scale monitoring without the 

need for continuous human supervision. 

To support both visual and automated interpretation, various remote sensing tools are utilized. 
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Photogrammetry plays a significant role by using multiple aerial or satellite images to create 3D maps 

of the terrain, allowing for a detailed understanding of the surface features. High-resolution (HR) and 

very high-resolution (VHR) satellite images provide detailed spatial data, making it possible to detect 

even minor changes in land surface conditions. Additionally, Terrestrial Laser Scanning (TLS) is 

employed as a ground-based remote sensing technique that captures fine details of surface deformations 

in three dimensions. Another essential tool is LiDAR (Light Detection and Ranging), which utilizes 

laser pulses to measure elevation changes with high precision, making it particularly useful for mapping 

landslide-prone regions and monitoring gradual terrain shifts over time. 

 

Stereovision in Landslide Recognition 

The second method, Stereovision, is a powerful technique for landslide detection that utilizes multiple 

images taken from different angles to create three-dimensional (3D) models of the terrain. By analyzing 

images from two or more perspectives, stereovision allows for depth perception and helps detect 

topographical changes, slope deformations, and surface movement. This method is particularly effective 

in detecting slope displacement that may not be immediately visible in a single aerial or satellite image. 

Stereovision relies on HR and VHR satellite images, which offer high-resolution details, making it 

possible to analyze surface changes over time. Additionally, TLS (Terrestrial Laser Scanning) is used 

to generate high-accuracy 3D surface models, which can be compared across different time intervals to 

track landslide progression. This approach is beneficial in hazard-prone regions, where precise 

topographic measurements are required to assess risks and plan mitigation strategies. Stereovision is 

widely applied in landslide monitoring, infrastructure stability analysis, and post-disaster damage 

assessment. 

 

InSAR (Interferometric Synthetic Aperture Radar) for Ground Displacement Monitoring 

The third method in the landslide recognition framework is InSAR (Interferometric Synthetic Aperture 

Radar), which is widely used for detecting ground displacement and surface deformation over time. 

InSAR leverages radar signals from satellites to measure land elevation changes with high precision. 

This technique is particularly useful for identifying slow-moving landslides that might not be detectable 

using optical imagery. 

InSAR operates by comparing radar images captured at different time intervals to detect changes in 

elevation or displacement of the ground surface. It is highly effective in monitoring landslides over 

large geographic areas, making it an essential tool for early warning systems and disaster risk 

assessment. The primary remote sensing tool used in this method is SAR (Synthetic Aperture Radar) 

satellite images, which offer the advantage of penetrating cloud cover and providing continuous 

monitoring regardless of weather conditions. Unlike optical satellite imagery, which is affected by 

clouds and lighting conditions, SAR-based methods can acquire data even in challenging environments, 

ensuring consistent monitoring of landslide-prone areas. 
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Fig.2 Overview of Remote Sensing techniques applied to landslide recognition[11] 

 

Integration of Landslide Recognition Methods 

Each of these three methods—Interpretation and Geomorphic Features Extraction, Stereovision, and 

InSAR—plays a critical role in landslide recognition. In many cases, these methods are integrated to 

enhance the accuracy and reliability of landslide detection. By combining visual interpretation, machine 

learning-based automated detection, 3D terrain modeling, and radar-based displacement analysis, 

scientists and disaster management authorities can develop comprehensive landslide monitoring and 

early warning systems. 

For instance, a typical landslide detection workflow might begin with automated AI-based feature 

extraction from high-resolution satellite images, followed by stereovision analysis to create 3D terrain 

models and detect surface deformations. InSAR-based radar monitoring can then be used to measure 

long-term ground displacement trends, allowing for the detection of slow-moving landslides before they 

become critical. This multi-method approach enables researchers to assess risk levels, improve 

forecasting models, and develop effective landslide mitigation strategies. 

 

Result 

The performance comparison between Mobile Edge Computing (MEC)-based landslide prediction and 

traditional cloud-based prediction across four key metrics. Accuracy improvement is notable, with 

MEC-based prediction achieving a 15% higher accuracy than cloud-based methods due to real-time 

data processing and multi-source integration. Latency reduction is another significant advantage, as 

MEC reduces processing delays by 60%, enabling faster disaster response compared to the inherent 

delays in cloud-based systems. Regarding time-to-alert, MEC allows for near-instant warnings with a 

response time of just 2 minutes, whereas cloud-based approaches take around 10 minutes due to network 

dependencies. Additionally, energy efficiency is a crucial factor, with MEC-based prediction 

consuming 50% less energy than cloud computing, which operates at only 20% efficiency due to higher 

computational and transmission costs. These improvements make MEC a highly effective and 
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sustainable approach for enhancing real-time landslide prediction and early warning systems. 

 

 
Fig.3 Performance Comparison of MEC vs Cloud-Based Landslide Prediction 

 

The reliability and robustness of landslide prediction systems depend on key metrics such as data 

integrity, redundancy & backup mechanisms, and error tolerance. MEC-based prediction excels in data 

integrity by providing real-time filtering and correction, ensuring that missing or noisy sensor data is 

effectively managed, whereas cloud-based prediction relies on delayed processing, making it more 

vulnerable to data inconsistencies. In terms of redundancy and backup mechanisms, MEC offers strong 

reliability through edge storage and distributed nodes, preventing data loss in case of sensor failures, 

whereas cloud-based systems have a centralized dependency, making them prone to single points of 

failure. Additionally, error tolerance is significantly higher in MEC-based prediction due to local 

failover mechanisms, ensuring continued operation even in uncertain conditions such as sudden sensor 

failures. In contrast, cloud-based prediction is highly dependent on network availability, which can 

compromise performance during disruptions. These advantages make MEC a more resilient and robust 

solution for real-time landslide monitoring and early warning systems. 
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Table 1: reliability and robustness of landslide prediction system 

Metric Description MEC-Based 

Prediction 

Cloud-Based 

Prediction 

Data Integrity Ability to handle missing 

or noisy sensor data 

High (Real-time 

filtering and 

correction) 

Moderate (Delayed 

processing) 

Redundancy & 

Backup 

Mechanisms to prevent 

data loss in case of sensor 

failure 

Strong (Edge 

storage & 

distributed nodes) 

Weak (Centralized 

dependency) 

Error 

Tolerance 

Performance under 

uncertain conditions (e.g., 

sudden sensor failure) 

High (Local failover 

mechanisms) 

Low (Dependent on 

network 

availability) 

 

Conclusion 

Enhancing landslide prediction through Mobile Edge Computing (MEC) in rainfall-triggered remote 

sensing presents a transformative approach to disaster forecasting and mitigation. By leveraging real-

time data processing, reduced latency, and decentralized computation, MEC overcomes the limitations 

of traditional cloud-based and remote sensing models, which often suffer from network delays and 

centralized processing inefficiencies. 

The integration of MEC with IoT-based sensor networks, AI-driven predictive models, and high-

resolution remote sensing technologies enables faster and more accurate landslide predictions, 

significantly improving early warning systems. With higher data integrity, redundancy, and error 

tolerance, MEC-based systems ensure continuous monitoring and resilience even under uncertain 

environmental conditions. 

Furthermore, MEC enhances energy efficiency, making it a sustainable and scalable solution for 

geospatial hazard monitoring, especially in remote or disaster-prone regions with limited connectivity. 

As future research explores edge AI, federated learning, and 5G-enabled geospatial analytics, the 

potential of MEC in landslide prediction will continue to expand, paving the way for smarter, real-time, 

and highly responsive disaster management systems. 
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