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Abstract:  

With the continuous growth in the scale and complexity of software systems, traditional defect identification 

methods are becoming insufficient to meet the needs of modern software development. Intelligent 

decision-making algorithms based on machine learning and deep learning have demonstrated significant 

advantages in the field of software defect identification. Through comparative analysis of multiple 

algorithms—such as deep neural networks, support vector machines, and random forests—in defect 

identification, the study shows that deep learning models incorporating attention mechanisms can increase 

defect identification accuracy to 92.8%, which is 15.6 percentage points higher than traditional methods. 

Experimental results confirm that an integrated learning framework, combined with code feature extraction 

and defect pattern analysis, can effectively enhance software quality assurance efficiency. By employing 

techniques such as abstract syntax trees and program dependency graphs, automatic extraction of code 

features was achieved. Furthermore, using a multi-head attention mechanism enhanced the feature 

representation capability, ultimately constructing an end-to-end intelligent defect identification system. 

Keywords: software defect identification, artificial intelligence, deep learning, attention mechanism, feature 

engineering, ensemble learning 

INTRODUCTION 

With the continuous growth of software system scale and complexity, the timely detection and remediation of 

software defects is of vital importance to ensuring system quality and reliability. Traditional manual inspection 

methods face challenges such as low efficiency and high cost, leading automated defect identification 

technologies to become a research hotspot. Ma Jing et al. proposed a vision-based defect detection solution 

grounded in deep learning, achieving an 85.6% accuracy rate in defect identification. Chen Peng et al. 

constructed a knowledge-graph-based defect identification system, enhancing model interpretability through 

semantic analysis. Sun Shaoning designed a defect identification model based on convolutional neural networks, 

demonstrating advantages in handling complex features. Nevertheless, current studies still face issues such as 

insufficient feature extraction and limited generalization capabilities. Cai Chenchen’s research indicates that 

single deep learning models show significant performance degradation in cross-project scenarios. 

This study proposes an intelligent software defect identification method based on deep learning and ensemble 

learning. This method achieves automated code feature extraction through abstract syntax tree and program 

dependency graph techniques. A deep neural network with a multi-head attention mechanism is designed, and a 

multi-level stacking ensemble framework is introduced to enhance the model’s generalization performance. 

Experiments show that this method improves defect identification accuracy to 92.8% in Apache open-source 

project tests, which is 15.6 percentage points higher than traditional methods. In cross-project prediction 

scenarios, the average F1 score decreases by only 3 percentage points, significantly outperforming existing 

approaches. This research not only enhances the accuracy and reliability of software defect identification but 

also provides an effective tool for improving software development efficiency and quality assurance. 

SOFTWARE DEFECT FEATURE ANALYSIS AND REPRESENTATION 

Static Code Feature Extraction and Quantification 

Static code feature extraction primarily focuses on code structural complexity, variable usage relationships, and 

modification history. In the implementation, Eclipse JDT is used to parse the source code and generate an AST 

(Abstract Syntax Tree). By employing the visitor pattern to traverse AST nodes, structural code features are 

extracted. Experiments show that modules with a method cyclomatic complexity exceeding 15 or a conditional 

nesting depth greater than 4 have a 72% increased probability of defects. Using JDepend to analyze package 
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dependency relationships, it was found that highly coupled modules (number of dependencies > 5) have a defect 

density 2.8 times higher than that of low-coupling modules [1]. By employing the Understand tool to construct a 

program dependency graph, analysis indicates that variable usage chains spanning more than 150 lines 

significantly increase defect risks. Additionally, combined with SonarQube, a static measurement index system 

encompassing 22 dimensions, such as code duplication and comment rate, was established. 

Dynamic Runtime Feature Acquisition and Modeling 

Dynamic feature acquisition is realized by embedding probes into critical code locations to enable runtime 

monitoring (as shown in Figure 1). Using the Pin tool for instruction-level instrumentation, analyses indicate 

that modules with branch coverage lower than 55% have significantly higher defect density than the average. 

Adopting Java Flight Recorder to monitor memory behavior, when a single object occupies more than 40MB of 

heap memory or more than 100,000 small objects are created within 5 seconds, it is marked as a memory leak 

risk point. By employing Btrace to record method call chains, it was found that methods whose execution time 

exceeds 1.5 times the upper quartile exhibit performance risks [2]. Simultaneously, ELK was used to analyze 

exception stack information, establish an exception pattern knowledge base, and utilize flame graphs to locate 

performance bottlenecks related to abnormal CPU usage. 

 

Figure 1. Dynamic Feature Monitoring Process of the Software System 

Research on Multi-Modal Feature Fusion Methods 

Feature fusion adopts a multi-layer fusion strategy with adaptive weighting, utilizing an attention mechanism to 

effectively integrate static and dynamic features. First, dimensionality reduction is performed on the raw 

features: static features are reduced to 58 dimensions using PCA, while dynamic features are compressed to 42 

dimensions using a variational autoencoder [3]. Feature importance evaluation employs an integrated SHAP 

value calculation method. The importance weight calculation formula is: 

),()1( yfiMISHAPiWi  −+=                                (1) 

Where Wi denotes the fusion weight of the i-th feature, SHAPi is the SHAP value of that feature, MI(fi, y) 

represents the mutual information between the feature and the label, and β is an adjustable balancing factor. In 

the experiments, β= 0.7 achieved the best results. Based on the computed weight values, a dual-stream attention 

network structure was designed. Through a multi-head self-attention mechanism, static and dynamic features are 

each enhanced, and then a cross-attention module is employed to achieve interactive fusion of the two types of 

features [4]. 

INTELLIGENT DECISION ALGORITHM DESIGN AND OPTIMIZATION 

Deep Neural Network Model Construction 

The deep neural network model employs a multi-level feature learning architecture, specifically designed for the 

characteristics of software defects. The input layer receives a 110-dimensional fused feature vector. The first 
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layer uses a fully connected layer with 256 nodes for feature transformation, and the LeakyReLU activation 

function is chosen to avoid gradient vanishing. The second layer introduces a residual connection structure, 

using two fully connected layers with 128 nodes each to form a residual block. Experiments show that this 

structure can improve model accuracy by 3.7%. The third layer adopts a 64-node bidirectional LSTM layer to 

capture the temporal dependencies of the feature sequence [5]. A Dropout layer with a dropout rate of 0.3 is 

employed to prevent overfitting. Finally, a Softmax classifier outputs the defect probability. During model 

training, the Adam optimizer is used, with an initial learning rate of 0.001, and a cosine annealing strategy is 

adopted for dynamic adjustment [6]. Through grid search, a batch size of 32 is determined to be optimal. To 

handle class imbalance, the SMOTE algorithm is utilized for oversampling minority class samples, ensuring a 

positive-to-negative sample ratio of 1:2 [7]. 

Introduction and Improvement of the Attention Mechanism 

On top of the base network structure, a multi-head self-attention mechanism is introduced, with three attention 

heads respectively focusing on code structure, runtime performance, and anomaly pattern features [8]. Each 

attention head calculation employs an improved scaled dot-product attention mechanism. The attention weight 

calculation formula is: 

VsoftVKQAttention
Md

QKT

+
= max),,(                             (2) 

Where, Q, K, and V denote the query, key, and value matrices, respectively; d is the feature dimension; and M is 

a mask matrix set based on the pre-analysis of feature importance. In implementation, the hidden states from the 

LSTM layer are used as the query matrix, and the original features are used as the key-value matrix. The 

attention calculation results in a weighted feature representation. The outputs of each attention head are 

concatenated and then passed through a linear transformation to obtain the final feature representation. In 

analyzing Linux kernel code, this mechanism successfully identified multiple potential defects that are difficult 

to detect using traditional methods. 

Ensemble Learning Framework Design 

The ensemble learning framework adopts a multi-level stacking structure, with base classifiers including 

LightGBM, XGBoost, and the deep neural network (as shown in Figure 2). LightGBM uses a leaf-wise growth 

strategy with a maximum depth of 8, a minimum leaf sample count of 20, and a feature sampling ratio of 0.8; 

XGBoost employs “gbtree” as the base learner, with a maximum depth of 6, a subsampling ratio of 0.7, and a 

learning rate set to 0.05 [9]. In the integration process, five-fold cross-validation is first used to obtain the 

predictions of the base classifiers on the validation sets. These prediction results are then combined with the 

original features to construct a meta-feature space. The second layer uses LightGBM as the meta-learner, 

optimizing to minimize log loss for model fusion. To improve model robustness, a Bagging strategy is 

introduced during training, with a sampling ratio of 0.8 and 10 iterations [10]. For selecting model fusion 

weights, Bayesian optimization is used to determine the optimal weight combination. Experiments show that 

this ensemble framework improves the F1 score by 5.2% compared to the single best-performing model. 

 

Figure 2. Schematic Diagram of the Software Defect Identification Ensemble Learning Framework 
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EXPERIMENTAL SIMULATION VERIFICATION AND PERFORMANCE EVALUATION 

Dataset Construction and Preprocessing 

The experimental dataset was collected from Apache Foundation’s open-source projects, selecting three 

large-scale projects: Hadoop, Spark, and HBase. Data was collected from all code submission records spanning 

from January 2020 to December 2023, with commit information and issue records obtained via the GitHub API. 

Using the SZZ algorithm, each bug-fix commit was traced back to determine the code version that introduced 

the defect [11]. In the Hadoop project, 15,832 code files were obtained, including 3,247 defective files; the 

Spark project contained 12,576 files with 2,845 defective files; and the HBase project contained 8,943 files with 

1,923 defective files. During the data preprocessing stage, sample cleaning was first performed to remove test 

files and configuration files, and overly large files (over 2,000 lines) were split. Next, feature standardization 

was performed using the Z-score method to normalize feature values to the range [-1,1]. Finally, a stratified 

sampling method was used to divide the training, validation, and test sets in a ratio of 6:2:2, ensuring the 

original positive-to-negative sample ratio was maintained in each subset [12]. 

Comparative Experimental Design and Implementation 

Benchmark model selection and parameter configuration 

Four categories of representative benchmark models were selected for the comparative experiments. For 

traditional machine learning methods, the random forest was configured with 100 decision trees, a maximum 

depth of 8, a minimum leaf sample count of 20, and a feature sampling ratio of 0.8; the support vector machine 

used an RBF kernel function, with the penalty parameter C set to 1.0 and gamma set to auto mode. For deep 

learning models, the CNN employed a three-layer convolutional structure with convolution kernels of 5×5, 3×3, 

and 3×3 respectively, followed by max pooling layers, and finally two fully connected layers [13]. The LSTM 

model was configured with a 128-dimensional hidden layer, a sequence length of 50, and a dropout rate of 0.3. 

All models used the Adam optimizer with a learning rate of 0.001. 

Validation scheme design 

A stratified five-fold cross-validation scheme was adopted, ensuring consistent positive-to-negative sample 

ratios in each fold. Each model was trained 5 times on each fold, and the average result was taken as the final 

performance metric to eliminate random factors. A model stability test was also designed to evaluate 

performance stability on different proportions of training data [14]. To verify the model’s generalization ability, 

a cross-project verification scheme was implemented, where the model trained on one project’s data was tested 

on the others. Early stopping was used during training, halting when validation loss showed no improvement for 

5 consecutive epochs. 

Experimental environment and implementation process 

A distributed architecture was adopted for the experimental environment. The main server, equipped with an 

NVIDIA Tesla V100 GPU, was used for training deep learning models, and an Intel Xeon Gold 6248R CPU (48 

cores, 96 threads) handled data preprocessing. Before starting the experiments, the GPU memory usage limit 

was set to 30GB using nvidia-smi, reserving 2GB for system calls. A standalone experimental environment was 

built using a Docker container (tensorflow/tensorflow:2.7.0-gpu) to ensure environmental consistency. During 

data preprocessing, a multiprocessing parallel processing framework was used, with 32 worker processes 

concurrently handling feature extraction tasks [15]. In the feature computation process, data was split into 

128MB chunks and processed in batches. Memory mapping technology was used to handle large-scale datasets, 

effectively reducing memory usage. 

During model training (as shown in Figure 3), PyTorch’s Distributed Data Parallel was employed for distributed 

training, allocating each batch of data across different GPU blocks for parallel computation. Mixed-precision 

training (torch. cuda. amp) was used to improve training speed by casting some computations to FP16. Every 

500 batches, Tensor Board recorded the loss value, learning rate, and GPU utilization, with an automatic alert 

mechanism in place to send notifications if GPU utilization fell below 40% or if training loss fluctuated 

abnormally [16]. Incremental checkpointing was adopted to save model checkpoints, storing only weight 

differences rather than the entire model to significantly reduce storage overhead [17–19]. The full model 
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weights were saved only when validation set performance improved by more than 1%. To prevent unexpected 

interruptions, the experiment logs and model parameters were backed up to a standby server every 4 hours. 

 

Figure 3. Partial Implementation of Distributed Training 

Performance Metric Analysis and Evaluation 

A multi-dimensional metric system was used for performance evaluation, including accuracy, precision, recall, 

F1 score, and AUC [20]. A comprehensive evaluation on the test sets of the three projects yielded the 

comparative results shown in Table 1: 

Table 1. Performance Comparison of Different Models on the Test Set 

Model 

Method 
Accuracy (%) Precision (%) Recall (%) F1 Score (%) AUC Training Time (h) 

Random 

Forest 
82.3 80.1 79.5 79.8 0.854 3.2 

SVM 78.5 76.2 75.8 76.0 0.812 5.8 

CNN 85.6 83.9 82.7 83.3 0.878 8.5 

LSTM 87.4 86.2 85.1 85.6 0.891 12.3 

Proposed 

Method 
92.8 91.2 90.5 90.8 0.946 15.7 

 

The experimental results show that the proposed method outperforms the comparison methods across all 

metrics. In particular, the F1 score improved by 5.2 percentage points compared to the best benchmark method 

(LSTM). The ROC curve analysis indicates that this method maintains good performance stability under 

different thresholds. Although the training time is slightly longer, this cost is acceptable given the improved 

predictive performance. Cross-project validation revealed that the proposed method still maintains satisfactory 

performance in cross-project prediction scenarios, with the average F1 score decreasing by no more than 3 

percentage points, demonstrating excellent generalization capability. 

CONCLUSION 

The intelligent decision-making algorithm based on deep learning and ensemble learning proposed in this study 

has achieved remarkable results in the task of software defect identification. By optimizing feature engineering, 

enhancing through attention mechanisms, and employing an ensemble learning framework, the accuracy and 

robustness of defect identification have been effectively improved. Experimental results show that the proposed 

method outperforms traditional methods, providing an effective tool for software quality assurance. In practical 

applications, this method not only accurately identifies common code defects but also uncovers hidden potential 
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issues, thus holding significant importance for improving software development efficiency and quality. Future 

research will further explore the application of transfer learning in cross-project defect prediction to enhance the 

model’s adaptability in various scenarios, and combine software evolution analysis to establish a more 

comprehensive defect prediction system. 
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