
Computer Fraud and Security 

ISSN (online): 1873-7056 

131 
Vol: 2025 | Iss: 2 | 2025 

 

 

Research on the Construction of Higher Education Ecosystem  

Model under the Empowerment Development Strategy of Higher  

Education 

 
Miaona Chen 

Zhanjiang University of Science and Technology, Zhanjiang 524000, Guangdong, China For inquiries, please 

contact Miaona Chen at chenmiaona@zjkju.edu.cn 

 

Abstract: The construction of a higher education ecosystem model is a crucial research direction for enhancing 

the quality and management efficiency of higher education. Based on the empowerment development strategy of 

higher education, this study adopts graph neural networks (GNNs) combined with genetic algorithms (GAs) for 

system modeling and optimization. A complex dynamic system model encompassing multiple elements such as 

teachers, students, courses, and teaching resources is constructed. Experimental results demonstrate that GA-GNN 

exhibits outstanding performance across multiple key indicators. In the robustness analysis, the performance score 

of GA-GNN gradually increases from an initial 0.509 to 0.891 after 800 iterations, showcasing a consistent and 

stable improvement trend. In terms of generalization ability, GA-GNN achieves a score of 0.895 on the university 

performance dataset and 0.942 in the direction of curriculum design improvement, indicating its broad adaptability 

across different datasets and application scenarios. Furthermore, GA-GNN also performs exceptionally well in 

convergence, with an initial convergence score of 0.440 and reaching 0.950 after 800 iterations, far surpassing the 

performance of other algorithms.In summary, GA-GNN demonstrates wide applicability and excellent 

performance in higher education management, possessing efficient modeling capabilities and application value 

within the complex and dynamic higher education ecosystem. 

Keywords: empowerment development in higher education; higher education ecosystem; genetic algorithm; 

dynamic system model; teaching quality optimization 

Introduction: 

With the continuous development of higher education, empowering the higher education ecosystem has 

emerged as a crucial strategic direction for enhancing educational quality and optimizing resource allocation. In 

recent years, fueled by rapid advancements in information technology, the modeling and optimization of 

educational ecosystems have become a hot topic in educational research. Traditional approaches to educational 

management have struggled to cope with the demands of multi-variable, multi-layered complex systems, 

necessitating the intelligent modeling and optimization of educational ecosystems [1-3]. Currently, modeling and 

optimization methods for higher education ecosystems primarily focus on data analysis and the application of 

machine learning techniques. However, traditional statistical methods and machine learning models exhibit 

significant limitations when dealing with complex systems characterized by nonlinearity and multi-variable 

interactions. While methods such as regression analysis, random forests, and support vector machines can capture 

individual characteristics and local relationships within the educational ecosystem to some extent, they struggle 

to effectively address the construction of multi-layered, complexly interacting system models. Furthermore, 

existing research often focuses on the analysis of single elements or local relationships, lacking a description of 
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the system's overall dynamic changes, particularly in capturing the complex relationships between nodes and the 

evolution of system states over time. These issues lead to a lack of globality and dynamics in modeling higher 

education ecosystems, which fails to fully meet the needs of empowerment development in higher education [4- 

6].Graph neural networks (GNNs), as a type of deep learning model suitable for non-Euclidean spatial data, have 

emerged as a significant method for modeling educational ecosystems due to their ability to effectively capture 

complex relationships between nodes. By iteratively updating node features on a graph structure, GNNs enable 

efficient information propagation and aggregation in unstructured data, making them well-suited to tackle the 

complexities of multi-layered, multi-variable interactions in higher education ecosystems [7-9]. However, the 

performance of GNNs is highly dependent on the model architecture and hyperparameter configuration, posing a 

critical challenge in optimizing these parameters to enhance model performance across diverse educational 

scenarios. Therefore, the integration of genetic algorithms with graph neural networks aims to deeply mine hidden 

patterns within the system, providing scientific decision support and improvement directions for the development 

of higher education. 

1. Construction of the Model for the Higher Education Ecosystem 

The higher education ecosystem is a sophisticated and dynamic system that encompasses various 

participating elements and intricate interrelationships. The pivotal variables within this system primarily consist 

of teachers ( T ), students ( S ), courses ( C ), teaching resources ( R ), and evaluation feedback ( F ). These 

variables intertwine through multiple interactive relationships to form a complex network, where, for example, 

students' learning performance is influenced by the quality of courses and the teaching proficiency of teachers, 

teachers' instructional content and methods are constrained by course syllabuses and teaching resources, and the 

overall evaluation feedback of the system, in turn, shapes future teaching improvements. To address this, a 

directed graph  G = (V , E)  is utilized to describe this ecosystem, where  V represents the node set, 

 

embodying all participating elements within the system, and E denotes the edge set, signifying the interactive 

relationships between these elements. Each node v V  possesses a corresponding feature vector Xv , while 

 

an edge ei, j  E signifies the interactive relationship from node i to node  j , accompanied by a weight wij 

that quantifies the strength of this interaction. Furthermore, the higher education ecosystem can be conceptualized 

as a state-space model, where the system state is defined as a vector  X (t) , with each component representing 

 

the state of a node (e.g., teacher, student) within the system at time t . The evolution of the system state over time 

is articulated by the following state equation. 

X (t +1) = f ( X (t),U (t)) + e(t) (1) 

 

Herein,  f  represents the state transition function of the system, U (t)  denotes the external input vector 

 

(e.g., policy changes or resource inputs), and  e(t)  signifies the noise term, which captures unpredictable 
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is the score of course quality, and 

is the comprehensive score of student performance, 

In Equation (2), X ` represents the updated node feature matrix, A denotes the adjacency matrix, which 

signifies the relationships between nodes, W is the weight matrix, indicating the degree of influence between 

nodes, and  is the activation function, introduced to incorporate nonlinearity. 

The optimization goal of the system is to enhance the overall health of the educational ecosystem, which can 

be achieved by maximizing or minimizing certain objective functions. An objective function L can be defined 

as the evaluation metric of the system, comprehensively considering factors such as student performance, teacher 

evaluations, and course quality, as shown in Equation (3). 

The constraints encompass data integrity, system stability, and resource limitations, among others. 

Graph Neural Networks (GNNs), as a deep learning model tailored for non-Euclidean spatial data, can 

effectively capture complex relationships between nodes. By iteratively updating node features over the graph 

structure, GNNs facilitate efficient information propagation and aggregation. They are well-suited for modeling 

the multi-layered and complex interactive structures within the higher education ecosystem, reflecting the 

dynamic relationships among various elements within the system through continuous updates of node states. The 

working principle of GNNs involves each node updating based on its own features and those of its neighboring 

nodes, with the core idea being the aggregation of information through graph convolutional operations. This 

approach captures local structural information while transmitting global information, making it an ideal choice 

for modeling educational ecosystems [10-11]. The GNN model architecture primarily comprises three parts: the 

input layer, the graph convolutional layer, and the output layer. The input layer is responsible for receiving the 

initial feature vectors Xv and edge features Wij  of each node in the system. These features can encompass 

factors such as teachers' teaching proficiency, course difficulty levels, and students' learning abilities. The 

adjacency matrix A defines the connectivity between nodes. 

 

disturbances within the system. The state transition function  f  relies on the interactive relationships between 

 

nodes and can be further modeled using graph convolutional operations, as demonstrated in Equation (2). 

X ̀ =  ( AXW) (2) 

 

L = 1  FS + 2  FT + 3  FC 
 

 

FS FT 

 

FC  

each factor. The optimization problem can be formalized as Equation (4). 

min L( X ,W ) (4) 
W , X 

 

H (0) = X (5) 

Where  H (0)  denotes the initial feature matrix. The graph convolutional layer serves as the heart of GNNs, 

updating node features layer by layer through information aggregation and update formulas. The aggregation 

process involves a weighted average of neighbor node features followed by a nonlinear activation, as exemplified 

represents the weighting coefficients, reflecting the importance of 

is the score of teacher evaluations, Where 



Computer Fraud and Security 

ISSN (online): 1873-7056 

134 
Vol: 2025 | Iss: 2 | 2025 

 

 

denotes the predicted output, and 

 i 

 

in Equation (6). 

H (l +1) =  (D−1/ 2 AD −1/ 2 H (l )W (l ) ) (6) 

 

Where  D  is the degree matrix,  H (l)  represents the node feature matrix at the  l -th layer, W (l)  is the 

weight matrix for that layer, and    is the activation function. This process iterates continuously, fusing 

information from neighboring nodes layer by layer. The output layer generates system state predictions or 

optimization decisions based on the final node feature vector  H (L) . The structure of the output layer depends on 

the specific task requirements, producing numerical outputs for regression tasks or probability distributions for 

classification problems. 

Genetic Algorithm (GA), as a global optimization algorithm that mimics the biological evolution process, is 

widely used in solving complex problems, particularly in optimization scenarios involving multiple variables, 

nonlinearity, and multimodalities. GA simulates the natural selection process through operations such as selection, 

crossover, and mutation, continuously optimizing individuals within the population to gradually approach the 

optimal solution to the problem. In the modeling and optimization of higher education ecosystems, research has 

explored the use of Graph Neural Networks (GNNs) to simulate the complex relational structures within the 

system. However, the performance of GNNs depends on the configuration of multiple critical hyperparameters, 

including the number of layers in the network, the number of nodes per layer, the learning rate, etc. The choice of 

these parameters significantly impacts the model's accuracy, convergence speed, and other aspects. Genetic 

Algorithm, through its evolutionary optimization strategy, automatically tunes these parameters to search for the 

optimal GNN structure, thereby enhancing the performance of the higher education ecosystem model. In 

optimizing GNNs, the objective of GA is to adjust the hyperparameters to minimize the system's loss function  L 

or maximize the system's fitness function  F . The optimization problem can be formulated as Equation (7). 

max F (g) = −L( (g))(7) 
g 

 

Where   (g)  represents the parameter configuration of the GNN, which is determined by the individual 

encoding  g . To optimize the architecture and hyperparameters of the GNN, they need to be encoded into a form 

that can be processed by the Genetic Algorithm. The fitness function is utilized to evaluate the quality of an 

individual, reflecting the performance of the GNN under the current configuration. The fitness function can be 

defined in terms of the model's accuracy, loss function value, or other metrics. For optimizing the higher education 

ecosystem model, the research selects a specific form of the fitness function as defined in Equation (8). 

F(g) = − 
 1 N 

N i=1 

 

yi 

( yi − ŷ  )2 
 

 

 

yˆi N 
 

Consequently, in the Genetic Algorithm-based optimization of the GNN model, an initial population is first 

generated, with each individual representing a configuration of the GNN architecture. The population size is set 

is the number of samples. represents the true output, Where 
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 

 

to  P , and individuals are generated through random initialization of parameters, as exemplified in Equation (9). 

Population = {g1 , g2 , g3 , , gP }(9) 

 

gi 

 

F (gi ) 
 

 

 

p = 
F (gi ) 

pi 

 

 
(10) 

i P 

j =1 
F (g j ) 

The selection operation ensures that superior individuals have a higher chance of reproducing offspring. The 

crossover operation performs genetic recombination on the selected parents to generate new offspring. Following 

this, minor adjustments are made to the parameters of the new individuals. The mutation operation further 

increases the diversity of the population by fine-tuning the parameters of individuals. However, the optimization 

effectiveness of the Genetic Algorithm is influenced by parameter settings, with key parameters including the 

0.7  pc  0.9 , and the 

 

0.01  pm  0.1 . yy adjusting these parameters, the performance of the Genetic 

 

Algorithm in searching for the optimal GNN architecture is optimized, with the values determined as 0.8 and 0.05, 

respectively. 

2. Experimental Analysis 

2.1 Experimental Setup 

To validate the effectiveness of the Graph Neural Network optimized by the Genetic Algorithm in the 

modeling of higher education ecosystems, the experimental setup employed a hardware environment comprising 

an Intel processor released in 2019 and a high-performance GPU, ensuring efficient model training and reliable 

results. The dataset was sourced from a comprehensive university's teaching management system, encompassing 

multi-dimensional data such as student grades, teacher evaluations, course resources, and spanning multiple 

semesters from 2021 to 2023. The dataset is segmented into University Performance Data (UPD), Educational 

Resource Utilization Data (ERUD), and Student Engagement and Feedback Data (SEFD). The data underwent 

preprocessing to ensure its integrity and consistency. The software environment for the experiment was built on a 

Linux operating system, using Python as the programming language. The core algorithms were implemented with 

the PyTorch deep learning framework, and the Scikit-learn library was integrated for data processing and model 

evaluation. The hardware and software configurations are summarized in Table 1. 

 

Table.1 Software and hardware configurations 
 

Environment type Detailed configuration 

processor Intel Core i9-9900K 

mutation rate is set to 

crossover rate, mutation rate, and selection strategy. The crossover rate is set to 

computed as per Equation (10). select parental individuals from the population, with the selection probability 

is calculated based on the test set data. The fitness proportionate selection method is then employed to 

, a GNN model is constructed and trained, and the fitness value Subsequently, for each individual 
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2.2 Analysis of Algorithm Effectiveness and Robustness 

In the modeling and optimization process of higher education ecosystems, algorithm robustness serves as a 

crucial metric for evaluating model performance. To validate the performance of the proposed GA-GNN 

algorithm across different iterations, the experiment compares it with other classical algorithms, including 

Random Forest, Support Vector Machine, K-Nearest Neighbors, and Decision Trees. Through a comparative 

analysis of performance scores, the focus is on assessing the advantages of GA-GNN in complex system 

optimization, particularly its outstanding performance in multi-variable interactions and dynamic adaptation. The 

robustness comparison of the GA-GNN model is illustrated in Figure 1. 

 

GPU 

 

NVIDIA GeForce RTX 2080 Ti (11GB) 

Internal memory 32 GB DDR4 RAM 

store 1 TB SSD 

Operating system Ubuntu 18.04 LTS 

Programming language Python 3.7 

Deep learning framework PyTorch 1.3.1 

Data processing library Scikit-learn 0.21.3 

Archive MySQL 5.7 
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Fig.1 Comparison of robustness of different algorithms 

As evident from the data in Figure 1, GA-GNN demonstrates remarkable superiority across various iteration 

counts, with its performance score gradually increasing from an initial 0.509 to 0.891 at 800 iterations, showcasing 

a consistent and stable upward trend. In contrast, the performances of other algorithms exhibit slight fluctuations 

and lesser improvement margins. Random Forest lags significantly behind GA-GNN in early iterations, peaking 

at 0.748 after 720 iterations but failing to maintain sustained growth. SVM exhibits significant fluctuations in its 

early performance and a relatively slow rate of improvement, ultimately reaching only 0.649 at 800 iterations, 

indicating inadequate adaptability to system dynamics. KNN displays marked instability throughout the iterations, 

with notable declines at 240 and 400 iterations, ending at 0.582 at 800 iterations, suggesting its limitations in 

handling complex multivariable relationships. DT shows the flattest overall performance, starting with a low 

initial performance and ending with only a slight improvement to 0.581, failing to demonstrate significant 

advantages. It is clear that the advantage of GA-GNN lies in its ability to more stably optimize system states in 
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each iteration, reflecting greater robustness and adaptability in modeling higher education ecosystems, particularly 

those with multivariable and complex relationships, where it exhibits significant advantages. 
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Fig.2 Comparison of generalization ability and convergence performance 

 

 

As shown in Figure 2(a), for the generalization capability analysis and comparison, GA-GNN significantly 

outperforms other benchmark algorithms across the three datasets, demonstrating strong generalization ability. 

On the University Performance Data (UPD), GA-GNN achieves a performance score of 0.895, far exceeding RF's 

0.756, SVM's 0.709, KNN's 0.686, and DT's 0.600, indicating a clear advantage in learning from student 

performance and teacher evaluation data. In the Educational Resource Utilization Data (ERUD) test, GA-GNN's 

performance slightly drops to 0.841 but still maintains the highest score, exhibiting better stability compared to 

RF's 0.793 and SVM's 0.711, while KNN and DT decline to 0.611 and 0.602, respectively, indicating weaker 

adaptability to resource utilization data. For the Student Engagement and Feedback Data (SEFD), GA-GNN scores 

0.891, significantly higher than RF's 0.741 and SVM's 0.705, showcasing its good learning effect and adaptability 

in processing student behavior and feedback data. Overall, GA-GNN's high scores and stable performance across 

all datasets prove its robust adaptability and consistency in handling diverse educational data, demonstrating its 

superior generalization capability in multi-faceted teaching scenarios.From Figure 2(b)'s comparison of 

convergence performance, GA-GNN exhibits notable convergence advantages at various iteration counts. At the 

initial iteration, GA-GNN's convergence score is 0.440, slightly higher than RF's 0.426, SVM's 0.370, and KNN's 

0.200. When the iteration count reaches 400, GA-GNN's score improves to 0.632, indicating a faster performance 

enhancement rate. In later iterations, GA-GNN's convergence score rises to 0.794, while RF and SVM score 0.637 

and 0.632, respectively. Although both show decent convergence to a certain extent, they consistently fail to match 

GA-GNN's level. At 800 iterations, GA-GNN achieves 0.950, far surpassing RF's 0.773 and SVM's 0.750. Overall, 

GA-GNN not only achieves rapid improvement in the early stages but also maintains sustained performance 

advantages in the later stages, exhibiting excellent convergence characteristics. 

After implementing GA-CNN in practical applications, a questionnaire survey was conducted and scored on 

a 10-point scale, where a higher score indicates better performance. The scoring results are presented in Table 2. 

It can be observed that GA-GNN achieved the highest score of 0.947 in the direction of personalized learning. 

For course design, it scored 0.942. In comparison, the score for student performance prediction was slightly lower 

at 0.879, but still demonstrated a high level of application effectiveness. Other directions such as resource 

optimization and teaching effect evaluation received scores of 0.894 and 0.890, respectively, reflecting the broad 
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applicability and outstanding performance of GA-GNN in these application scenarios. 

 

 

Table.2 Score results of different application directions 
 

Application direction Score 

Personalized Learning 0.946632 

Resource Optimization 0.894306 

Student Performance Prediction 0.879092 

Teaching Effectiveness Evaluation 0.889832 

Curriculum Design Improvement 0.942427 

3. Conclusion 

To enhance the health of university education ecosystems, a study was conducted to develop a dynamic 

model based on Graph Neural Networks (GNNs) and Genetic Algorithms (GAs). Experimental results 

demonstrate the superiority of GA-GNN across multiple dimensions. In the robustness analysis, GA-GNN's 

performance score gradually rose from an initial 0.509 to 0.891 at 800 iterations, significantly outperforming 

traditional algorithms such as Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), 

and Decision Tree (DT). Furthermore, GA-GNN excelled in convergence performance, ultimately achieving a 

convergence score of 0.950, far surpassing other comparative algorithms, showcasing rapid improvement and 

sustained optimization capabilities.In terms of generalization ability, GA-GNN outperformed other algorithms on 

all three datasets, particularly scoring 0.895 on the University Performance Data (UPD), indicating its adaptability 

and consistency across diverse educational data. In the practical application direction scoring, GA-GNN surpassed 

0.89 in areas such as personalized learning, course design improvement, and resource optimization, with a 

particularly impressive score of 0.947 in personalized learning, demonstrating its widespread applicability in 

various educational scenarios.A limitation of the study is the high computational complexity of the model when 

dealing with large-scale graph data, necessitating further research into distributed computation methods to 

enhance efficiency. Overall, this research, by constructing a GA-GNN-based model for university education 

ecosystems, provides an effective tool for optimizing the dynamic relationships among various elements of the 

education system, offering a reference for the intelligent and personalized development of future university 

education ecosystems. 
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