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Abstract: Black rot, Cedar rust, and Scab are three common apple diseases caused by fungal 

infections. The infected areas not only impair the function of the current parts but also spread to 

healthy regions of the plant, necessitating early detection in production. Addressing the challenge 

of subtle lesion features, we have designed a deep learning model that integrates multi-scale 

information fusion by combining wavelet transform with a residual network, and introducing a 

multi-channel Collaborative Attention mechanism. In comparisons with similar models, our 

proposed model achieved the best results, with a classification accuracy of 98.1% for various 

lesions. It demonstrated excellent stability in data detection imaging under various conditions. This 

model provides a new perspective for apple lesion detection and may potentially be analogously 

applied to other types of detection in the future. 
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1. Introduction 

Apple is one of the significant economic crops globally, with a worldwide production of 95.83 million tonnes 

in 2024. China’s apple production in 2024 reached 49.6017 million tonnes, accounting for 51.8% of the global 

total. The yield and quality of apples directly relate to agricultural economic stability and food security. However, 

the widespread occurrence of apple leaf diseases, particularly scab, black rot, and cedar rust, poses a severe threat 

to the apple industry. These diseases caused by fungal infections[1,2,3], which can lead to the degradation of leaf 

function and the impediment of photosynthesis. Worse still, damaged areas may serve as entry points for other 

pathogens to infect healthy parts[4], further spreading to fruits, causing fruit deformation, rot, and even the death 

of entire trees, which can result in annual yield losses of up to 20%-50%. In the field of crop disease control, 

detecting and classifying plant diseases is a crucial task. Traditional disease detection primarily relies on manual 

visual inspection or biochemical analysis in laboratories. However, manual methods are inefficient, have high 

misjudgment rates, and are difficult to apply across large-scale orchards. While laboratory testing offers higher 

accuracy, it is time-consuming and costly, making it unsuitable for real-time field monitoring. With climate 

change and the increase in pathogen resistance, the frequency of disease outbreaks and the speed of their spread 

have risen significantly, necessitating a disease detection technology that is efficient, precise, and scalable. 

In research on similar fruits, deep learning is a highly utilized method. Ramachandran et al.[5] developed a 

deep learning model cascaded by two CNN models, achieving a classification accuracy of 91.61% for banana 

Wilt's Disease. Sijan Karki et al.[6] used ResNet-50 to detect strawberry angular leaf spot, anthracnose, gray mold, 

and powdery mildew, with an accuracy of 94.1%. Sharifah et al.[7] cascaded two CNN networks for image 

segmentation and classification to detect and classify disease severity on orange surfaces, achieving an accuracy 

of 94.37%. Existing research has demonstrated the effectiveness of deep learning in detecting fruit diseases. For 

single-class classification tasks of fungal infections in apples, Alexander et al.[8] combined two CNN models, 

MobileNetV2 and EfficientNetV2L, with multispectral imaging, achieving classification accuracies of 93.84% 

and 94.22%, respectively. Deepak[9] combined CNN with Random Forest to classify the black rot disease, 

achieving an average classification accuracy of 95%. Rishabh et al.[10] combined Dual CNN with LSTM to 

classify and predict the severity of Black rot lesions, achieving an overall accuracy of 99.2%. Dounia et al.[11] 

established multiple CNN models (efficientnet_v2, inception_resnet_v2, inceptionV3, mobilenet_v2, VGG-16), 

achieving a prediction accuracy of up to 97.3% for apple and grape varieties and Black rot infections 

Single-class classification tasks generally yield better results because samples of a single disease often have 

significant feature differences from healthy samples, whereas classifying multiple diseases poses greater 

challenges. Diksha et al. used the VGG network to detect multiple diseases in apples, achieving an average 

accuracy of 85%. Zhong et al.[12] used a DenseNet-121 model with an improved focal loss function to classify 

six diseases in apples, achieving an accuracy of 93.71%. Devanshi et al. used various deep learning models to 

detect apple scab, cedar rust, and black rot, with the VGG network performing best, achieving a detection accuracy 
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of 92.5%. Prakhar et al.[13] integrated deep learning models including ResNet-121, achieving an average accuracy 

of 96.25% for detecting multiple apple diseases. 

Based on the analysis of current research trends in this area, this study proposes a deep learning model that 

integrates multi-scale information fusion. This model combines wavelet transform convolution with a residual 

network and introduces a multi-channel collaborative attention mechanism. Its purpose is to classify and predict 

various apple leaf diseases caused by fungal infections. The classification results will be compared with those 

obtained using classic network models employed in similar studies  

2. Materials and Methods 

2.1 Materials 

This research project focuses on accurately classifying and detecting three common fungal diseases affe

cting apple leaves: Scab, Cedar Rust, and Black Rot. To establish a comprehensive and representative dataset, w

e have included sample images of these three diseases, along with healthy leaf images as controls, totaling 1,400

 images. Each category within the dataset encompasses diverse lighting conditions, complex backgrounds, and v

arious shooting angles. This design not only enhances the diversity of the dataset but also ensures its high versati

lity and wide applicability in practical scenarios, catering to disease identification needs under different lighting,

 environmental, and shooting conditions. Currently, these data samples are publicly accessible, which is availabl

e at https://www.kaggle.com/datasets/sadmansakibmahi/plant-disease-expert. 

As shown in Figure 1, during the input stage of training, we conducted a series of preprocessing operations 

on the images. For the color information, we made certain adjustments to the images by adding a 20% random 

fluctuation to their brightness, contrast, and saturation based on their original values before inputting them into 

the network for training. For the geometric information of the images, we applied flipping and rotation 

transformations with a 50% probability. The purpose of these operations is to artificially increase the diversity of 

the training data, helping the model to learn and generalize better, and thereby improving its performance on 

unseen data. 

 

Figure 1. RGB images of samples: healthy(a), Scab(b), Black Rot(c), Cedar Rust(d) 

2.2 Multiscale information fusion 

For various diseases affecting apple leaves, we propose a model based on wavelet transform information 

fusion and channel-wise coordinated attention. This model integrates the aforementioned modules with residual 

https://www.kaggle.com/datasets/sadmansakibmahi/plant-disease-expert
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blocks from ResNet to ultimately achieve precise classification tasks. The proposed network architecture is 

illustrated in Figure 2. 

 

Figure 2. Structure of proposed model 

Initially, image augmentation is applied to the input to enhance the model's generalization capability. 

Subsequently, two WT-Encoders and the main convolutional layers elevate the number of feature map channels 

to 16 and 64, respectively, during the feature fusion stage, yielding frequency-domain-enhanced feature maps. 

Following this, there are four stages, each comprising a varying number of BottleNecks. The structure of a 

BottleNeck is shown in Figure 2(b). Within each stage, changes in the number of convolutional channels occur in 

the first BottleNeck. For a feature map with an input channel count of 𝐶1, the number of channels is first reduced 

to 𝐶1/4 in the first 1 × 1 convolutional layer. After feature extraction in the 3 × 3 convolutional layer, another 

1 × 1 convolutional layer is used to increase the number of feature map channels to 𝐶2, where 𝐶2 is typically an 

integer multiple of 𝐶1. At the output of each WT-Encoder and Stage, we apply MCA Attention to integrate feature 

information from different dimensions of the feature maps. The final extracted features undergo global average 

pooling and are then input into a fully connected layer to output the final classification probabilities. Convolution 

parameters of modules can be seen in table 1. 

Table 1. Convolution parameters of modules 

Module Input channels Output channels Kernel size 

WT-Encoder 1 3 16 1*1 

WT-Encoder 2 16 64 1*1 

Stage 1 64 256 1*1，3*3，1*1 
Stage 2 256 512 1*1，3*3，1*1 

Stage 3 512 1024 1*1，3*3，1*1 

Stage 4 1024 2048 1*1，3*3，1*1 

2.3 Residential Blocks 

ResNet (Residual Network)[14] is a deep neural network architecture whose core idea is the introduction of 

Residual Learning. Residual Learning mainly consists of two crucial components. The first is the residual block, 

a module composed of a set of convolutional layers and tensor operations aimed at increasing network depth while 

reducing convolutional computation costs. There are two classic forms of residual blocks: the basic residual block, 

whose internal structure is shown in Figure 3(a). The basic residual block contains two 3x3 convolutional layers, 

each followed by a ReLU activation function. Due to its simpler structure, the basic residual block is suitable for 

building shallow neural networks.  
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Figure 3. Structure of Basic Block (a) and BottleNeck Block (b) 

The other type of residual block is the Bottleneck block, which has a more complex internal structure. The 

Bottleneck block contains two 1 × 1 convolutional layers and one 3 × 3 convolutional layer. The first 1 × 1 

convolutional layer reduces the number of channels in the input feature map, aiming to decrease the computational 

load during feature extraction. This is followed by a 3 × 3 convolutional layer responsible for extracting the 

input's feature information. The last 1 × 1 convolutional layer increases the number of channels in the feature 

map. And within the Bottleneck, after each convolution, batch normalization and the ReLU activation function 

are applied to the convolution's output. Their purposes are to accelerate network training and introduce 

nonlinearity, respectively. The formula for batch normalization is shown in Equation 2, and the formula for the 

ReLU function is shown in Equation 3. Another important improvement in Residual Learning is skip connections, 

where the input of the module is directly added to its final output. This significantly mitigates the issue of 

vanishing gradients in deep learning. If there is a mismatch in the number of channels between the input and 

output of a residual block, a 1 × 1 convolutional layer is applied to the input x to match the number of channels. 

𝜇 =
1

𝑚
∑ 𝑥𝑖

𝑚
𝑖=1 , 𝜎 =

1

𝑚
∑ (𝑥𝑖 − 𝜇)2𝑚

𝑖=1                                             (1) 

𝑥̂ =
𝑥−𝜇

√𝜎+𝜀
                                                                                        (2) 

𝑅𝑒𝐿𝑢(𝑥) = {
 𝑥 𝑥 > 0
 0 𝑥 ≤ 0

                                                                    (3) 

2.4 Wavelet Multiscale Convolution 

In deep learning, traditional Convolutional Neural Networks (CNNs) have achieved great success in image 

feature extraction through a series of convolutional, pooling, and nonlinear activation operations. However, 

traditional convolutions have some deficiencies in multi-scale feature extraction, especially in preserving high-

frequency features and over-extracting low-frequency features. Additionally, due to the limitation of 

convolutional kernel sizes, CNNs often face the issue of having too small a receptive field. Therefore, Finder et 

al. proposed a method using wavelet transform to enhance the receptive field and details[15]. Building upon this, 

we have made improvements in the utilization of channel numbers and frequency domain details, introducing a 

multi-scale convolutional module based on wavelet transform, known as the WT-Encoder. 

Figure 4 illustrates the internal structure of the two-layer wavelet transform encoder used in this study. It 

accepts input feature maps with an arbitrary number of channels and first performs a standard 1 × 1 convolution 

operation to increase the feature dimensions and integrate multi-channel information. Then, each channel 

undergoes two layers of wavelet transforms, generating a total of 8 corresponding frequency images. Layer 0 only 

contains the input feature map, while layers 1 and 2 respectively contain the component images obtained by 

decomposing the low-frequency components from the previous layer. The low-frequency components represent 

the smooth, overall structure and brightness information of the image, while the high-frequency components 
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capture edges, textures, and fine details, encoded in three directions: horizontal, vertical, and diagonal. Starting 

from the second layer, 1 × 1  convolution operations are applied to the frequency component images. After 

convolution, the transformed feature maps are inverse-transformed, and the result is added to the low-frequency 

components from the previous layer. The final inverse-transform output is combined with the 1 × 1 convolution 

result of Layer 0 and passed to the next layer. During this process, specific frequency components can be selected 

for convolution encoding based on the characteristics of the feature map, while redundant components can be 

discarded. Each layer's 1 × 1 convolution outputs the same number of channels to ensure the accurate fusion of 

information in the final Figure 4. 

 

Figure 4. Structure of WT-conv Encoder 

2.5 Multichannel Collaborative Attention 

In the field of deep learning, especially when dealing with complex data structures, the attention mechanism 

of models plays a crucial role. Traditional attention modules, while capable of capturing key information, often 

struggle when processing multimodal data or complex feature interactions. To more efficiently integrate multi-

source information and enhance the model's ability to perceive details, we introduce Multi-Collaborative-

Attention (MCA)[16]. This mechanism, by constructing multiple attention heads that work collaboratively, not 

only independently focuses on different subsets of features but also achieves deeper feature fusion through cross-

head information interaction. This design enables the model to more comprehensively capture complex 

relationships in data, thereby demonstrating significant performance improvements in tasks such as multimodal 

learning, image recognition, and natural language processing. In this paper, we will delve into the architectural 

design of Multi-Collaborative-Attention and its application effects in specific tasks in detail. 
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Figure 5. Structure of MCA attention 

The MCA module is an advanced multi-dimensional collaborative attention mechanism that 

comprehensively captures feature dependencies through three meticulously designed parallel branches, with each 

branch dedicated to processing the height, width, and channel dimensions of the feature map, respectively. The 

internal structure of the MCA module is illustrated in Figure 5. Starting with the top width branch, the feature 

map is first rotated 90 degrees counterclockwise along the height axis, and then processed through squeeze 

transformation and excitation transformation to capture long-range dependencies in the spatial dimension height-

wise, generating attention weights for the width dimension. Following that is the middle height branch, where the 

feature map is rotated 90 degrees counterclockwise along the width axis before undergoing squeeze transformation 

and excitation transformation to capture long-range dependencies in the spatial dimension width-wise, resulting 

in attention weights for the height dimension. In the bottom channel weight branch, the feature map undergoes 

identity mapping to produce an identical feature map, which is then processed through squeeze transformation 

and excitation transformation to capture interactions between channels and generate attention weights for the 

channel dimension. Since the MCA module can simultaneously capture feature dependencies in both channel and 

spatial dimensions, and its spatial branches further enhance the representation capability of these features, by 

integrating the outputs of the three branches, the MCA module is able to generate more comprehensive and 

accurate attention weights. Process of Squeeze transform can be seen in Figure 6. 

 

Figure 6. Process of Squeeze transform 

3. Results and discussion 

The computer used for data processing features an Intel(R) Xeon(R) Platinum 8481C CPU and an 

NVIDIA GeForce RTX 4090 GPU, running in the operation system of Ubuntu 22.04. The software environment 

is configured with Python version 3.9.1, and the primary toolkit for model development relies on Pytorch version 

2.4.1, along with pytorch-wavelets version 1.3.0[17] 
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3.1 Training and Evaluation Metrics 

In the validation phase of the proposed model's prediction performance, we conducted comparative testing 

of the model presented in this study against classical models of the same type used in similar research. Eventually, 

we established and compared models utilized in similar studies, with the final experimentally validated models 

including Proposed model, DenseNet[10,18], AlexNet[19] and the ResNet [6,20,21]. In the pre-loaded dataset, 

the batch size for training was set to 16, the number of epochs was set to 200, the Adam optimizer was adopted, 

and the learning rate was set to 0.0001. 

During the testing process, corresponding confusion matrices were generated. To evaluate the prediction 

performance of the proposed model compared to similar models, we employed various classification task 

evaluation metrics, including accuracy, precision, recall, and F1 score. The definitions of these metrics are shown 

in Table 2 

Table 2. Evaluation metrics of the classifier based on the confusion matrix. 

Criterion Description 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100% 

The proportion of samples which are correctly classified. 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100% 

The proportion of true positives among all predicted 

positives 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100% 

The proportion of true positives among all positives  

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
× 100% 

The balance measure between precision and recall 

TP: True positive (Correctly predicted as positive) FP: False positive (Incorrectly predicted as positive) 

TN: True negative (correctly predicted as negative) FN: False negative (Incorrectly predicted as negative) 

3.2 Experiment Results 

To ensure randomness in the training and testing processes, we divided the dataset according to a 60% and 

40% probability ratio. Subsequently, we conducted multiple sampling iterations to partition the dataset into 

training and testing sets using each model. We validated the performance of the trained models on the testing sets 

and obtained the average of the validation results. The types, quantities of various samples, and classification 

outcomes are presented in Table 3. Furthermore, based on the number of classified samples, we calculated the 

confusion matrices for each model in the classification task, as shown in Figure 7. 

Table 3． Result of classification on different category 

Model Category Healthy Black rot Cedar rust Scab Total 

 

Proposed model 

Healthy 119 0 0 2 121 

Black rot 4 109 0 1 114 

Cedar rust 0 0 131 0 131 

Scab 3 0 0 119 122 

 

DenseNet 

Healthy 91 1 2 15 109 

Black rot 0 123 1 3 127 

Cedar rust 1 0 121 1 123 

Scab 1 0 2 126 129 

 

AlexNet 

Healthy 100 1 8 6 115 

Black rot 3 122 1 1 127 

Cedar rust 0 0 121 3 124 

Scab 1 1 0 120 122 

 

ResNet-50 

Healthy 114 3 6 1 124 

Black rot 2 123 0 0 125 

Cedar rust 0 0 123 0 123 
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Scab 3 3 0 110 116 

 

Figure 7. Confusion matrices of models: proposed model(a), DenseNet (b), AlexNet (c), ResNet(d) 

From the prediction results of various samples in the test set, it can be observed that in the classification 

task targeting Black rot lesion samples, ResNet achieved the best classification performance, correctly classifying 

98.4% of the Black rot lesion samples. Our proposed model performed slightly inferior to ResNet on this type of 

sample, correctly classifying 95.6% of the lesion samples, with 4 out of 114 Black rot samples being misclassified 

as healthy and 1 being misclassified as Scab-infected. For Cedar rust samples, all models exhibited good 

performance, with our proposed model and ResNet achieving 100% correct classification of Cedar rust samples. 

DenseNet and AlexNet followed closely, with classification accuracies of 98.4% and 97.6%, respectively. For 

Scab-type samples, AlexNet achieved the best classification performance, correctly classifying 98.4% of the 

samples. Our proposed model had a classification accuracy of 97.5%, while ResNet performed the worst, correctly 

classifying only 94.8% of Scab lesion samples. For healthy samples, our model significantly improved accuracy 

compared to other models, correctly classifying 98.3% of healthy samples, with only 2 healthy samples being 

misclassified as Scab by our model. In contrast, among the other models, ResNet had the best classification effect, 

but only 91.9% of the samples were correctly classified. DenseNet performed the worst, with 15 healthy samples 

being misclassified as Scab. Most of the mispredicted healthy samples were identified as either Black rot or Scab. 

Based on these classification results, we calculated the average accuracy, precision, recall, and F1 score from 

multiple experimental trials for further analysis. The evaluation metrics are shown in Table 4. Among similar 

models, ResNet exhibits the best classification performance, with a Recall score of 96.4%, indicating that 96.4% 

of lesion samples can be accurately predicted by ResNet. Our proposed model achieves an average recall rate of 

97.9%, which means it precisely predicts the highest number of lesion samples. 

Table 4. Evaluation metrics of models 

 Accuracy Precision Recall F1 

Proposed model 98.1% 98.0% 97.9% 97.5% 

DenseNet 94.0% 94.8% 94.1% 94.8% 

AlexNet 94.9% 95.0% 94.7% 94.4% 

ResNet 96.0% 96.3% 96.4% 96.2% 
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3.3 Discussion 

As can be seen from Table 4, our proposed model outperforms existing similar models across various 

indicators. The high F1 score further indicates that its performance is superior to classical models in its category, 

especially when compared to the benchmark model ResNet-50. It is evident that our proposed model achieves 

excellent results in the classification and prediction of various lesion samples. Figure 7 and Table 3 show that 

similar models perform well in predicting various diseases. However, they misclassify a considerable number of 

healthy samples as diseased samples, leading to a significant drop in classification accuracy. Upon analysis, most 

of the misclassified healthy samples are categorized as Black rot or Scab, and similarly, most misclassified lesion 

samples are also among these three categories. After analysis, it was found that these three types of samples share 

significant similarities, and the characteristics of early lesion samples are not pronounced. Traditional 

classification models may fail to correctly learn the features of various lesions, resulting in large classification 

errors. Various similar samples are shown in Figure 8 

 

Figure 8. Similar samples of healthy(a), Scab(b), Black rot(c) 

 Compared to ReseNet, which performs best among similar models, our main improvements lie in the 

introduction of multi-scale convolution based on wavelet transform and channel collaborative attention. The role 

of the WT-Encoder is to maximize the utilization of image information in frequency domain feature maps of 

various sizes through a U-shaped wavelet transform, combining global image information with local feature 

information. This enables the model to better capture detailed features of lesion samples and improve classification 

accuracy. The feature map results of the WT-Encoder convolution with double-layer wavelet transform are shown 

in Figure 4. Following that is the MCA attention module. The purpose of introducing MCA is to capture complex 

interactions between features through multiple collaboratively working attention heads, thereby enhancing the 

model's ability to focus on key information. The channel processing results of the MCA module on the feature 

map are shown in Figure 9. The results demonstrate that the improved network significantly outperforms similar 

networks. 

 

Figure 9. Input(a) and output(b) of MCA layer 
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4. Conclusion 

The fungal infection diseases, including Black rot, Cedar rust, and Scab, that apple leaves are exposed to pose 

a severe threat to apple production, making the development of efficient lesion detection algorithms particularly 

urgent. Traditional deep learning algorithms have limitations in detecting various lesion samples. To address this 

issue, we innovatively designed a multi-scale residual network. This network integrates wavelet transform 

convolution and MCA attention modules to enhance the classification and prediction accuracy of multiple fungal 

infection diseases in apple leaves. Specifically, we mainly overcame two major challenges:  

(1) Achieving a multi-classification task by accurately predicting multiple lesion samples simultaneously 

(2) Significantly improving the classification and prediction accuracy for samples with indistinct features.  

To comprehensively verify the effectiveness of the proposed method, we conducted rigorous experimental 

validation using multiple evaluation indicators and compared its performance with commonly used models in 

similar studies. Experimental results show that our proposed multi-scale residual network is a feasible and efficient 

method that can accurately distinguish between healthy samples and various infected lesion samples. This 

achievement has profound significance for the assessment and prevention of apple leaf diseases in practical 

production.  
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