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Abstract: In the early stages of high-altitude earthquake disasters, efficient rescue team scheduling is critical to 

minimize casualties and optimize resource utilization. This study proposes HRLPPO, a hierarchical reinforcement 

learning framework combining Proximal Policy Optimization (PPO) with task stratification, to address the dy-

namic allocation of rescue teams under complex constraints. The framework divides rescue tasks into a high-level 

strategy for selecting teams and disaster sites, and a low-level strategy for determining personnel dispatch quan-

tities. Key innovations include integrating high-altitude compatibility constraints, minimizing dispatch costs via 

distance-aware reward functions, and enabling rapid decisions through pre-trained policies.A custom reinforce-

ment learning environment was designed to simulate real-world scenarios, incorporating rescue team capabilities, 

site demands, and geographical constraints. Experiments using data from the 2022 Luding earthquake in Sichuan 

demonstrated HRLPPO’s superiority over traditional methods (e.g., Genetic Algorithm, Ant Colony Optimiza-

tion). Results showed 18.5% lower dispatch costs, 95% faster decision times (0.43s vs. 487.43s for 10-team sce-

narios), and 99.79% rescue satisfaction rates under both sufficient and insufficient high-altitude team conditions. 

The model’s robustness was further validated in large-scale scenarios (40 teams, 20 sites), achieving 81.68% 

overall satisfaction despite resource shortages.This work provides a novel decision-making tool for emergency 

management, enhancing rescue efficiency in high-altitude regions. Future efforts will integrate GIS platforms for 

real-time disaster response. 

Keywords: Emergency Rescue; Hierarchical Reinforcement Learning (HRL); Proximal Policy Optimization 

(PPO); Resource Allocation; Earthquake Response 

1. Introduction 

After natural disasters such as earthquakes, it is crucial to quickly and accurately assess post-disaster rescue needs 

in the affected areas and to ensure a rapid response and effective allocation of rescue teams. Proper allocation of 

rescue teams can quickly organize a strong rescue force, operate efficiently, and quickly rescue trapped people, 

reducing casualties. At the same time, allocation can ensure the rational use of rescue resources, avoid waste and 

redundant investment, and provide the necessary material and human support for rescue operations. Rapidly as-

sessing post-earthquake rescue needs in the affected areas and emergency rescue needs for the allocation and 

planning of rescue team deployment is an important reference for government departments and emergency man-

agement departments to initiate emergency responses and deploy rescue forces. Accurate assessments help to 

carry out rescue operations to the greatest extent, which is an important scientific issue in the field of post-earth-

quake emergency rescue in China at this stage. 

With the increasing emphasis on resource allocation and route planning issues in various fields, many scholars 

have conducted in-depth research using various algorithms and achieved many results. Fan et al. [1] proposed a 

reinforcement learning-based resource allocation mechanism for multi-vehicle communication-assisted percep-

tion systems, demonstrating the potential for optimizing resource allocation in dynamic environments. Zhong et 

al. [2] used deep reinforcement learning to achieve low-carbon optimization of user-side shared energy storage 

and distribution networks, further proving the application value of deep learning technology in resource optimi-

zation problems. Middelhuisa et al. [3] proposed a learning-based resource allocation method to solve resource 
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allocation problems in business processes, and verified the effectiveness of their method through simulation ex-

periments. Wang et al. [4] addressed the problem of rescue resource allocation and scheduling in emergency 

logistics during storm surges, using deep reinforcement learning methods, demonstrating the practicality of opti-

mizing resource allocation in emergencies. Chu and Zhong [5] explored resource optimization issues in disaster 

response in their research on the allocation methods of medical rescue teams after earthquakes. Kool et al. [6] 

demonstrated solving CVRP and TSP distribution route planning problems through attention mechanisms and 

learning in their research. Ma Zhenpeng et al. [7] studied vehicle route optimization algorithms for urban logistics 

distribution, emphasizing the importance of optimizing route planning in the logistics field. Zhao Zilong et al. [8] 

considered the limited nature of resources in their research on emergency rescue scheduling optimization under 

major forest fires, which is a typical example of resource allocation in emergencies. Zou Shanshan et al. [9] pro-

vided practical methods for optimizing resource allocation in disaster response in their research on emergency 

logistics vehicle route optimization under urban flood disasters. Jia Tingting et al. [10] conducted research on 

emergency rescue and scheduling optimization for subways under extreme rain conditions, demonstrating the 

importance of resource allocation in public transportation systems. Sun Yan et al. [11] studied the optimization of 

emergency material multimodal transport route planning in an interval fuzzy environment, providing solutions for 

resource allocation in uncertain environments. Lou Zibo et al. [12] studied path planning systems through im-

proved Q-Learning algorithms, providing new solutions for dynamic route planning problems. Tang Hongwei et 

al. [13] used ant colony algorithms to study the path planning problem of material transport carts, providing a new 

perspective for logistics path optimization. Lv Chao et al. [14] adopted a hierarchical deep reinforcement learning 

method in their research on UAV hybrid path planning, providing an innovative solution for UAV path planning 

problems. Kong Lin et al. [15] used an improved ant colony algorithm in their research on emergency rescue route 

planning for ambulances, providing an effective strategy for resource allocation in emergency medical services. 

Deng Daojing et al. [16] used parallel GA-PSO algorithms in their research on collaborative task planning for 

multiple UAVs, providing a new planning method for collaborative work of UAVs. 

In summary, against this background, this paper focuses on the important issue of earthquake rescue team sched-

uling, fully integrating the special attributes of high-altitude rescue teams and the specific locations of earthquake 

points to construct a model for rescue team scheduling. By adopting a task-stratified deep reinforcement learning 

method, the rescue tasks are divided into two levels: high-level strategy and low-level strategy. The high-level 

strategy is responsible for the selection of rescue teams and earthquake points, while the low-level strategy mainly 

controls the number of rescuers dispatched to the rescue teams and earthquake points. Based on the distinction of 

rescue reserves into sufficient and insufficient high-altitude rescue reserves, the model is deeply analyzed, and the 

model is converged using a reward function. The model's effectiveness is verified through example rescue deci-

sion analysis, aiming to provide valuable reference for improving the level of earthquake rescue in high-altitude 

areas. 

2. Emergency Rescue Model for Multiple Rescue Teams and Multiple Affected Points 

2.1 Problem Description 

The multi-rescue team and multi-disaster point emergency rescue problem involves determining the most reason-

able rescue strategy for each earthquake-affected point, ensuring that the rescue needs of each affected point are 

met while enabling each rescue team to quickly reach the affected points and carry out efficient rescue operations. 

Table 1. Problem Description Symbol Meanings. 

Parameter 

Type 
Parameter Meaning 

Basic Attrib-

utes 

𝑻 

 
The set of all rescue teams 

𝑻𝐢 

 
Rescue team 

𝑺 

 

The set of all earthquake disaster sites 

 

𝑺𝒋 earthquake disaster site 
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Parameter 

𝒍𝒕𝒊 

 
Location coordinates of rescue team 

𝒄𝒊 

 
Rescue team available rescue capacity (number of people) 

𝒉𝒕𝒊 

 
Is it a high-altitude rescue team 

𝒍𝒔𝒋
 

 
Location coordinates of the disaster site 

𝒅𝒋 

 
Demand for rescue teams in disaster site 

𝒉𝒔𝒋
 Is it located in a high-altitude area 

Decision vari-

ables 
𝒙𝒊𝒋 Number of rescue personnel dispatched by the team and disaster stricken areas 

 

As described in Table 1 for the meaning of the model letter notations, the set of rescue teams is denoted as 𝑇 =

{𝑡1, 𝑡2, ⋯ , 𝑡𝑚} , where 𝑚  represents the number of teams. The set of earthquake-stricken points is 𝑆 =

{𝑠1, 𝑠2, ⋯ , 𝑠𝑛}, where 𝑛 represents the number of earthquake-stricken points. For all rescue teams 𝑡𝑖 ∈ 𝑇: - Lo-

cation coordinates: 𝑙(𝑡𝑖) = (𝑥(𝑡𝑖)
, 𝑦(𝑡𝑖)

) ∈ 𝑅2 - Rescue capacity: 𝑐𝑖 ∈ 𝑁 (the set of natural numbers) - High-alti-

tude support: ℎ(𝑡𝑖)
∈ {0,1} 

For all earthquake-stricken points 𝑠𝑗 ∈ 𝑆: - Location coordinates: 𝑙(𝑠𝑗)
= (𝑥(𝑠𝑗)

, 𝑦(𝑠𝑗)
) ∈ 𝑅2 - Quantity of rescue 

demand: 𝑑𝑗 ∈ 𝑁 - Whether it is an earthquake-stricken point in a high-altitude area: ℎ(𝑠𝑗)
∈ {0,1} 

The emergency rescue model is as follows: 

𝐷 = ∑∑ dist

𝑀

𝑗=1

𝑁

𝑖=1

(𝑙(𝑡𝑖), 𝑙(𝑠𝑗)
) ⋅ 𝑥𝑖𝑗 (1) 

∀𝑡𝑖 ∈ 𝑇,∑𝑥𝑖𝑗

𝑛

𝑗=1

≤ 𝑐𝑖 (2) 

∀𝑠𝑗 ∈ 𝑆,∑ 𝑥𝑖𝑗

𝑚

𝑖=1

≥ 𝑑𝑗 (3) 

∀𝑡𝑖 ∈ 𝑇, ∀𝑠𝑗 ∈ 𝑆, ℎ(𝑠𝑗)
= 1 ∧ ℎ(𝑡𝑖)

= 0 ⇒ 𝑥𝑖𝑗 = 0 (4) 

∀𝑡𝑖 ∈ 𝑇, ∀𝑠𝑗 ∈ 𝑆; 𝑥𝑖𝑗 ∈ 𝑁0 (5) 

Equation (1) is the objective function that minimizes the sum of the rescue distance and the number of rescued 

people to minimize the rescue cost. It represents the sum of the rescue distance of each team and the number of 

rescued people. Equations (2) - (5) are constraint conditions. Among them, Equation (2) is the capacity constraint 

of the rescue team. The number of people dispatched for each rescue mission shall not exceed the remaining total 

dispatchable capacity of the team itself. Equation (3) indicates that the earthquake-stricken points need to have 

their rescue demand met. Equation (4) is the high-altitude constraint. The earthquake-stricken points in high-

altitude areas can only be rescued by teams with high-altitude rescue capabilities. Otherwise, the rescue mission 

will not be executed, that is, the number of dispatched rescuers is 0. Equation (5) represents the constraint that the 

number of rescuers dispatched by the rescue teams is an integer. 

2.2 Markov modeling for emergency rescue dispatching problems. 

This article adopts the deep reinforcement learning approach to solve the problem of rescue team dispatch and 

allocation in rescue operations. Firstly, the mathematical formula problem description designed for the emergency 
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rescue team dispatch issue is transformed into the MDP (Markov Decision Process) framework. The MDP frame-

work is a mathematical space used to solve complex decision-making problems, deal with delayed rewards and 

so on. The core components of the MDP framework generally include the state space, action space, transition 

probability, reward function and discount factor. 

2.2.1 State space 

For the problem of dispatching rescue teams to earthquake-stricken points, in the location coordinate matrix of 

rescue teams, for each rescue team 𝑇𝑖, its location coordinates are 𝑙(𝑡𝑖) = (𝑥(𝑡𝑖)
, 𝑦(𝑡𝑖)

). The location coordinates 

of all rescue teams form a matrix, denoted as 𝐿𝑂𝐶𝑡 =

[
 
 
 
𝑙(𝑡1)

𝑙(𝑡2)

⋮
𝑙(𝑡𝑚)]

 
 
 

∈ 𝑅𝑚×2, where 𝑚 is the number of rescue teams. 

This matrix reflects the distribution of rescue teams in the geographical space and is one of the important pieces 

of information in the decision-making process, because it determines the time and spatial distance required for 

rescue teams to reach the earthquake-stricken points. Among them, for the rescue team 𝑇𝑖, 𝑙𝑜𝑐(𝑇𝑖)
= (𝑥(𝑇𝑖)

, 𝑦(𝑇𝑖)
); 

similarly, for the earthquake-stricken point 𝑆𝑗, the location matrix is 𝑙𝑜𝑐(𝑆𝑗)
= (𝑥(𝑆𝑗)

, 𝑦(𝑆𝑗)
). By combining the 

location information of the teams and the earthquake-stricken points, the location matrix of the overall state space 

is: 

𝐿𝑂𝐶𝑡 =

[
 
 
 
 
 
 
 
 
𝑙𝑜𝑐(𝑇1)

𝑙𝑜𝑐(𝑇2)

⋮
𝑙𝑜𝑐(𝑇𝑚)

𝑙𝑜𝑐(𝑆1)

𝑙𝑜𝑐(𝑆2)

⋮
𝑙𝑜𝑐(𝑆𝑛) ]

 
 
 
 
 
 
 
 

∈ 𝑅(𝑚+𝑛)×2 (6) 

where 𝑚 is the number of rescue teams and 𝑛 is the number of earthquake-stricken points. 

The current available capacity matrix of rescue teams can be expressed as 𝐶𝑡 = [𝐶(𝑇1)
𝑟 , 𝐶(𝑇2)

𝑟 ,⋯ , 𝐶(𝑇𝑚)
𝑟 ]

𝑇
∈

𝑅𝑚 (7) 

𝐶(𝑇𝑖)
𝑟 = 𝐶(𝑇𝑖)

− ∑ ∑𝑞𝑖𝑗𝑘

𝑡−1

𝑘=0

𝑛

𝑗=1

 (8) 

where 𝑞𝑖𝑗𝑘  represents the number of rescuers assigned from team 𝑇𝑖 to earthquake-stricken point 𝑆𝑗 at time step 

𝑘. 

𝐷(𝑆𝑗)
𝑟 = 𝐷(𝑆𝑗)

− ∑ ∑𝑞𝑖𝑗𝑘

𝑡−1

𝑘=0

𝑚

𝑖=1

 (9) 

The remaining demand matrix of earthquake-stricken points can be expressed as 𝐷𝑡 = [𝐷(𝑆1)
𝑟 , 𝐷(𝑆2)

𝑟 ,⋯ , 𝐷(𝑆𝑛)
𝑟 ]

𝑇
∈

𝑅𝑛, where 𝐷(𝑆𝑗)
𝑟  represents the rescue demand of earthquake-stricken point 𝑆𝑗. 

The allocation matrix 𝑄𝑡 = [𝑞𝑖𝑗
𝑡 ] ∈ 𝑅𝑚×𝑛, where 𝑞𝑖𝑗

𝑡  represents the number of rescuers assigned from team 𝑇𝑖 

to earthquake-stricken point 𝑆𝑗 at time step 𝑡. 

In the problem of dispatching rescue teams to earthquake-stricken points for rescue, the overall state space can be 

expressed as 𝑆: 

𝑆 = {𝑠𝑡 = (𝐿𝑂𝐶𝑡, 𝐶𝑡, 𝐷𝑡, 𝑄𝑡 , 𝑡, 𝑖𝑡)} (10) 
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2.2.2 Action space 

The action space 𝐴 contains the indices of all decision-making teams, the indices of earthquake-stricken points 

and the number of rescuers for support. In the problem of dispatching rescue teams to earthquake-stricken points 

for rescue, an action 𝑎 = (𝑖, 𝑗, 𝑞) is designed, where: 𝑖 ∈ {1,2,⋯ ,𝑚}, which represents the index of the selected 

rescue team and corresponds to team 𝑇𝑖 in the rescue team set 𝑇. 𝑗 ∈ {1,2,⋯ , 𝑛}, which represents the index of 

the selected earthquake-stricken point and corresponds to earthquake-stricken point 𝑆𝑗 in the earthquake-stricken 

point set 𝑆. 𝑞 represents the number of resources allocated to earthquake-stricken point 𝑆𝑗, and satisfies the con-

straint: 

0 ≤ 𝑞 ≤ min {𝐶(𝑇𝑖)
− ∑ 𝑞𝑖𝑘

𝑡−1

𝑘=0

, 𝐷(𝑆𝑗)
− ∑ 𝑞𝑘𝑗

𝑡−1

𝑘=0

} (11) 

The action space 𝐴 can be expressed as: 

𝐴 = {𝑎 = (𝑖, 𝑗, 𝑞)
∣
∣
∣
𝑖 ∈ {1,2,⋯ ,𝑚}, 𝑗 ∈ {1,2,⋯ , 𝑛}, 0 ≤ 𝑞 ≤ min {𝐶(𝑇𝑖)

− ∑ 𝑞𝑖𝑘
𝑡−1
𝑘=0 , 𝐷(𝑆𝑗)

− ∑ 𝑞𝑘𝑗
𝑡−1
𝑘=0 } } (12) 

2.2.3 Transition probability 

In a deterministic environment, for a given current state 𝑠𝑡 and action 𝑎, the transition probability of transitioning 

to the next state 𝑠𝑡+1 is: 𝑃(𝑠𝑡+1 | 𝑠𝑡, 𝑎). 

2.2.4 Reward 

The design of the reward function aims to balance the efficiency and effectiveness of rescue operations, while 

taking into account the costs and time urgency of rescue operations. The reward function is designed as follows: 

For the rescue effectiveness part: 𝑅𝑒𝑓𝑓(𝑎) = 𝑞. 

For the distance penalty part: Define the distance function dist(𝑇𝑖, 𝑆𝑗) = √(𝑥(𝑇𝑖)
− 𝑥(𝑆𝑗)

)
2

+ (𝑦(𝑇𝑖)
− 𝑦(𝑆𝑗)

)
2

, 

then the distance penalty is 𝑅𝑑𝑖𝑠𝑡(𝑎) = 𝑑 ⋅ dist(𝑇𝑖, 𝑆𝑗) ⋅ 𝑞, where 𝑑 is the distance penalty factor. 

For the time urgency part: 𝑅𝑡𝑖𝑚𝑒(𝑡) = 𝜏 ⋅ 𝑡 ⋅ ∑ 𝐷(𝑆𝑗)
𝑛
𝑗=1 , where 𝜏 is the time urgency factor. 

For the completion reward part: 𝑅𝑐𝑜𝑚𝑝(𝑎) = 𝜌 ⋅ 𝛿 (𝐷(𝑆𝑗)
𝑟 = 0 ∧ 𝐷(𝑆𝑗)

0 > 0), where 𝜌 is the completion reward 

value, and 𝛿 is an indicator function which takes the value of 1 when the condition is met and 0 otherwise, and 

𝐷(𝑆𝑗)
0  is the initial demand of earthquake-stricken point 𝑆𝑗. 

For the unmet demand penalty part: 𝑅𝑢𝑛𝑠𝑎𝑡(𝑎) = 𝜃 ⋅ 𝛿 (𝐷(𝑆𝑗)
𝑟 > 0), where 𝜃 is the unmet demand penalty value. 

For the high-altitude mismatch penalty part: 𝑅ℎ(𝑎) = 𝜉 ⋅ 𝛿 (𝐻(𝑆𝑗)
= 1 ∧ 𝐻(𝑇𝑖)

= 0), where 𝜉 is the high-altitude 

mismatch penalty value. 

The total reward function is: 

𝑅(𝑎, 𝑠𝑡) = 𝑅𝑒𝑓𝑓(𝑎) − 𝑅𝑑𝑖𝑠𝑡(𝑎) − 𝑅𝑡𝑖𝑚𝑒(𝑡) + 𝑅𝑐𝑜𝑚𝑝(𝑎) − 𝑅𝑢𝑛𝑠𝑎𝑡(𝑎) − 𝑅ℎ(𝑎) (13) 

3. Task based hierarchical reinforcement learning for scheduling high-altitude earthquake rescue teams 

This paper uses hierarchical reinforcement learning combined with the Proximal Policy Optimization (PPO) al-

gorithm to solve the aforementioned Markov Decision Process (MDP) problem. It combines the ideas of hierar-

chical reinforcement learning and the stability of the PPO algorithm, and meanwhile introduces an experience 

replay buffer to improve sample efficiency. The main part of the Actor-Critic Network of this algorithm adopts a 

hierarchical strategy. The high-level strategy is responsible for selecting subtasks (target rescue points), and the 

low-level strategy mainly selects specific rescue actions (the number of dispatched rescuers for specific rescue 
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actions) based on the output of the high-level strategy. Both the High-level and Low-level contain their respective 

actor networks and critic networks. 

In the High-level Actor, it is represented by the function 𝐻(𝜃𝐻), where 𝜃𝐻 is the parameter of the high-level 

strategy. It selects a high-level action according to the current environmental state 𝑠, that is, it determines the 

earthquake-stricken points to focus on. Mathematically, the high-level strategy can be regarded as a probability 

distribution 𝜋𝜃𝐻
(𝑎𝐻|𝑠), where 𝑎𝐻 is a high-level action, such as the index of the selected earthquake-stricken 

point. In the High-level Critic, it is represented by the function 𝑉𝐻(𝑠), which is an estimate of the state value. Its 

goal is to evaluate the expected long-term cumulative reward of following the high-level strategy under state 𝑠, 

and it can be expressed as: 

𝑉𝐻
𝜋𝜃𝐻(𝑠) = 𝐸𝜋𝜃𝐻

[∑𝛾𝑡

∞

𝑡=0

𝑅(𝑠𝑡, 𝑎𝐻)|𝑠0 = 𝑠] (14) 

where 𝛾 is the discount factor, and 𝑅(𝑠𝑡, 𝑎𝐻) is the reward obtained by taking the high-level action 𝑎𝐻 under 

state 𝑠𝑡. 

The rollout buffer is mainly used to store the trajectory data generated during the interaction between the agent 

and the environment, and these data will be used for subsequent policy optimization. Its storage form is usually 

tuples (𝑠, 𝑠𝑡, 𝑎𝐻, 𝑟, 𝑠′), where 𝑠 is the current state, 𝑠𝑡 is the intermediate state transition from state 𝑠 to the next 

state 𝑠′, 𝑎 is the action taken (for the high-level strategy, 𝑎 is a high-level action such as selecting earthquake-

stricken points and can be represented as a probability distribution, where 𝜃𝐻  is the parameter of the high-level 

strategy; for the low-level strategy, it is a low-level action of determining rescue teams and allocating the number 

of rescuers and can be represented as a probability distribution 𝜋𝜃𝐻
(𝑎𝐻|𝑠), where 𝜃𝐻 is the parameter of the low-

level strategy), 𝑟 is the reward obtained, which reflects the feedback given by the environment after taking action 

𝑎 under state 𝑠, and 𝑠′ is the next environmental state. 

The goal is to maximize the expectation of the long-term cumulative reward, and its objective function is: 

𝐽𝐻(𝜃𝐻) = 𝐸
𝑠∼𝜌

𝜋𝜃𝐻
[𝑉𝐻

𝜋𝜃𝐻(𝑠)] (15) 

where 𝜌𝜋𝜃𝐻  is the state distribution under the policy 𝜋𝜃𝐻
. 

During the optimization process, data is sampled from the rollout buffer to estimate the policy gradient. The policy 

gradient method is used for optimization. A batch of samples sampled from the rollout can be represented as 

{(𝑠𝑖, 𝑠𝑡,𝑖 , 𝑎𝐻,𝑖, 𝑟𝑖, 𝑠𝑖′)}𝑖=1
𝐵 , where 𝐵  is the batch size. The advantage function can be estimated as 𝐴𝑡,𝑖 =

∑ (𝛾𝜆)𝑙∞
𝑙=0 𝛿𝑡+𝑙,𝑖, where 𝛿𝑡,𝑖 = 𝑟𝑖 + 𝛾𝑉𝑜𝐻(𝑠𝑖′) − 𝑉𝑜𝐻(𝑠𝑖). 

The policy gradient update formula is: 

∇θ𝐻
𝐽𝐻(θ𝐻) ≈

1

𝐵
∑ ∇θ𝐻

logπθ𝐻
(𝑎𝐻,𝑖|𝑠𝑖)𝐴𝑡,𝑖    

𝐵

𝑖=1

(16) 

where 𝑄𝐻

𝜋𝜃𝐻(𝑠, 𝑎𝐻) is the action-value function after taking the high-level action 𝑎𝐻 under state 𝑠. 

In the Low-level Actor, it is represented by the function 𝐿(𝜃𝐿), where 𝜃𝐿  is the parameter of the low-level strat-

egy. Given the earthquake-stricken points selected by the high-level strategy and the current environmental state, 

it selects specific rescue actions, such as determining rescue teams and the amount of allocated resources. It can 

be represented as a probability distribution 𝜋𝜃𝐿
(𝑎𝐿|𝑠, 𝑎𝐻), where 𝑎𝐿 is a low-level action and 𝑎𝐻 is a high-level 

action. The Low-level Critic is represented by 𝑉𝐿(𝑠, 𝑎𝐻), which evaluates the value of state 𝑠 under the given 

high-level action 𝑎𝐻, that is, it measures the expected long-term cumulative reward of following the low-level 

strategy in this situation. 

The goal is also to maximize the expectation of the long-term cumulative reward, and the objective function is  
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𝐽𝐿(𝜃𝐿) = 𝔼
𝑠∼𝜌

𝜋𝜃𝐻
,𝜋𝜃𝐿

∑  

𝑎𝐻∈𝒜𝐻

𝜋𝜃𝐻
∑  

𝑎𝐿∈𝒜𝐿

𝜋𝜃𝐿
𝑄𝐿

𝜋𝜃𝐻
,𝜋𝜃𝐿(17) 

where 𝜌𝜋𝜃𝐻
,𝜋𝜃𝐿  is the state distribution under the combination of high-level and low-level strategies, and 

𝑄𝐿

𝜋𝜃𝐻
,𝜋𝜃𝐿(𝑠, 𝑎𝐻, 𝑎𝐿) is the action-value function after taking the high-level action 𝑎𝐻 and the low-level action 𝑎𝐿 

under state 𝑠. Data is sampled from the rollout buffer to estimate the policy gradient, and the policy gradient is 

approximately updated as: 

∇θ𝐻
𝐽𝐻(θ𝐻) ≈

1

𝐵
∑ ∇θ𝐻

logπθ𝐻
(𝑎𝐻,𝑖|𝑠𝑖)𝐴𝑡,𝑖  

𝐵

𝑖=1

(18) 

The hierarchical PPO agent is used to complete the training, and the trained hierarchical policy network is used 

for rescue decision-making. The agent can complete the decision-making in milliseconds. The framework of the 

hierarchical PPO algorithm process is shown in Figure 1. 

 

Figure 1. HRLPPO algorithm process framework 
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4. Experiment and Analysis 

In order to verify the above-mentioned problem of rescue team dispatch and allocation in rescue operations, tests 

were conducted on different scales of rescue teams and earthquake-stricken points randomly generated from the 

combination of the data of rescue teams and the rescue team demands of earthquake-stricken points in the actual 

case of the Luding earthquake in Sichuan in 2022. 

4.1 Experimental setup 

The experiment uses Reinforcement Learning (RL) to train the model earthquake-stricken points of different 

scales. The training is based on Python 3.9, PyTorch 2.1.2, stable_baselines3 2.3.2 and Gymnasium 0.29.1. The 

settings of the hyperparameters related to the model training algorithm are shown in Table 2. 

4.2Analysis of Model Training Effect 

During the model training period, Figure 2 shows the reward curves of the cumulative rewards per episode for the 

traditional Proximal Policy Optimization (PPO) algorithm and the hierarchical task-based HRLPPO (proposed in 

this paper) algorithm. The comparison of the curves reveals that in the first 200,000 time steps, the agents are in 

the exploration phase, and as they learn how to navigate the policy space, the rewards fluctuate significantly. After 

approximately 200,000 time steps, the rewards of the agents start to stabilize, indicating that they have learned 

effective strategies for the given tasks. 

The light green curve represents the hierarchical task-based HRLPPO algorithm proposed in this paper. This al-

gorithm disassembles tasks into high-level and low-level strategies and adopts different solution strategies for 

hierarchical subtasks, enabling it to adapt to the environment more quickly. The light orange curve in the figure 

represents the training process of the traditional PPO algorithm. During the training process, the light green curve 

converges and reaches the highest reward value more quickly than the light orange curve at almost the same 

training time steps. In the training process, under the same convergence conditions, the light green curve has a 

higher cumulative reward value. After reaching the convergence conditions, the exploration noise and the ran-

domness of the environment itself may lead to fluctuations in the reward curve. After reaching a stable state, the 

hierarchical task-based HRLPPO algorithm proposed in this paper has more stable fluctuations than the traditional 

PPO algorithm. 

Table 2. Algorithm-related hyperparameter settings 

Hyperparameter Value 

Total Training Steps 5 ∗ 105 

Hidden Layer Dimension 256 

Discount Factor 0.96 

Clipping Range 0.3 

Replay Buffer Size 2048 

Actor Learning Rate 3 × 10−2 

Critic Learning Rate 3 × 10−2 

Network Architecture MlpPolicy 

High-Level PolicyActor Linear→ReLU→Linear→ReLU→Linear→Tanh 

High-Level Policy Critic Linear→Tanh→Linear→Tanh→Linear 

Low-Level Policy Actor Linear→ReLU→Linear→ReLU→Linear→Tanh 

Low-Level Policy Critic Linear→Tanh→Linear→Tanh→Linear 
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Figure 2. The cumulative reward changes with the training timesteps. 

4.3 Analysis of Model Decision-making Effect 

To ensure the rationality of the experiment and verify the performance of the hierarchical task-based HRLPPO 

algorithm proposed in this paper in the problem of rescue team dispatch and allocation, its decision-making effect 

is compared with that of the Genetic Algorithm (GA) in Reference [7], the Ant Colony Optimization (ACO) 

algorithm in Reference [15], and the GA-PSO algorithm in Reference [16]. Based on the data of rescue teams in 

the actual case of the Luding earthquake in Sichuan in 2022, different-scale experimental example environments 

with the number of rescue teams-earthquake-stricken points randomly generated as 10-5, 20-10, and 40-20 are 

created. In these examples, the rescue allocation situations under the circumstances of sufficient reserve of rescue 

teams and the shortage of reserve of rescue teams are compared between the solutions obtained by the above three 

algorithms and the rescue decision-making of the hierarchical task-based HRLPPO algorithm proposed in this 

paper. 

Table 3 Rescue Teams and Earthquake Points with High Altitude Area Data 

Number of Res-

cue Teams 

 

Number of 

Earthquake 

Points 

Number of 

People Res-

cued by 

Rescue 

Teams 

Number of Res-

cue Demands at 

Earthquake 

Points 

Number of 

People Res-

cued in 

High Alti-

tude Areas 

Number of Res-

cue Demands at 

High Altitude 

Earthquake 

Points 

10 5 673 218 311 183 

20 10 1272 451 585 412 

40 15 2365 604 865 432 
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Table 4  Scheduling Costs and Decision Times of GA and ACO 

Number of Rescue 

Teams 

 

Scheduling Cost  

(GA) 

Decision Time  

(GA)/s 

Scheduling Cost  

(ACO) 

Decision 

Time 

(ACO)/s 

10 61.7 9.91 58.18 3.67 

20 237.31 18.90 213.55 9.01 

40 501.36 54.66 485.88 11.04 

 

Table 5  Scheduling Costs and Decision Times of GA-PSO and HRLPPO 

Number of Rescue Teams 

 

Scheduling Cost 

 (GA-PSO) 

Decision Time 

 (GA-PSO)/s 

Scheduling Cost  

(HRLPPO) 

Decision Time  

(HRLPPO)/s 

10 58.18 487.43 56.21 0.43 

20 157.35 226.63 208.2 0.68 

40 469.31 776.99 436.20 0.93 

 

  

(a) Satisfaction Rates of Different Algorithms under a 

Rescue Team Scale of 10 

(b) Satisfaction Rates of Different Algorithms un-

der a Rescue Team Scale of 20 

 

 

(c) Satisfaction Rates of Different Algorithms under a 

Rescue Team Scale of 40 

 

Figure 3. Scheduling cost and satisfaction rate of different algorithms 
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The experiment was conducted by distinguishing between the conditions of sufficient rescue teams (when the 

reserve quantity of high-altitude rescue teams is greater than the high-altitude earthquake rescue demand, which 

is subsequently referred to as sufficient rescue reserve) and the conditions of shortage of rescue teams (when the 

reserve quantity of high-altitude rescue teams is less than the high-altitude earthquake rescue demand, which is 

subsequently referred to as insufficient rescue reserve). 

Under the condition of sufficient rescue reserve, a comparison of the dispatch cost and the decision-making time 

consumed by different methods was carried out. The specific experimental results are shown in Table 3-5. Under 

a small scale (with a rescue team size of 10), the costs of several algorithms do not differ much. After being pre-

trained for the corresponding scale, the algorithm proposed in this paper can make decisions within a short time. 

Among other algorithms, the Ant Colony Optimization (ACO) algorithm also has a relatively short time. The 

hierarchical task-based deep reinforcement learning HRLPPO algorithm proposed in this paper outperforms other 

algorithms. As the size of the rescue teams and the number of earthquake-stricken points increase, the Genetic 

Algorithm (GA), the ACO algorithm, and the GA-PSO algorithm all show a significant increase in decision-

making time. For the method proposed in this paper, after pre-training, the overall increase in time cost for differ-

ent scale increases is not significant. The time cost of the ACO algorithm also increases from 9.91 seconds to 

11.04 seconds, and the GA-PSO algorithm, which has the worst time efficiency, increases from 487.43 seconds 

to 776.99 seconds. Figure 3 shows the satisfaction rates of different methods for rescue demands. In terms of 

dispatch cost, although the GA-PSO algorithm is occasionally not the highest in cost, it fails to fully meet the 

rescue demands when the rescue team size is 20 or 40, and its rescue dispatch time is the slowest. The method 

proposed in this paper can fully meet the rescue satisfaction rate in all three situations, and its time efficiency is 

also better than that of other methods. 

In the early stage of earthquake rescue, the available rescue teams may be less than the rescue demand, and the 

rescue needs to be completed under the condition of limited reserve of rescue teams. Table 6 shows the example 

data of different scales under the shortage of high-altitude rescue reserve. Under the shortage of high-altitude 

rescue, the GA, ACO, GA-PSO algorithms used in the case of sufficient high-altitude rescue teams and the hier-

archical task-based reinforcement learning method proposed in this paper after pre-training were used to compare 

the decision-making effects of the examples. Table 7 shows the experimental results of the dispatch cost and 

decision-making time of different methods under different scales of rescue teams. Table 6 shows the experimental 

results of the rescue satisfaction rates of different methods under different scales of rescue teams under the short-

age of high-altitude rescue. 

In the context of the shortage of high-altitude rescue, by comparing the experimental results of rescue teams of 

different scales, it can be found that the hierarchical task-based deep reinforcement learning HRLPPO method 

proposed in this paper shows significant advantages in dispatch cost, decision-making time, and rescue satisfac-

tion rate in the examples after pre-training. For GA and ACO, when dealing with large-scale rescue teams, the 

cost and decision-making time are relatively high. Especially for ACO, the dispatch cost can be as high as 1063.54 

and the decision-making time can be as long as 34.43 seconds when dealing with large-scale rescue. The GA-PSO 

algorithm performs moderately in small-scale rescue, but its decision-making time increases sharply to 421.91 

seconds in large-scale rescue, with extremely low efficiency. Compared with these methods, HRLPPO maintains 

a relatively low dispatch cost and a fast decision-making time under all scales. Moreover, in terms of the rescue 

satisfaction rate, whether it is high-altitude or non-high-altitude rescue, it reaches a satisfactory level. Especially 

in large-scale rescue teams, the high-altitude rescue satisfaction rate of HRLPPO is 80.75%, the non-high-altitude 

rescue satisfaction rate is 86.67%, and the overall rescue satisfaction rate is 81.68%. The experimental result data 

are all better than those of other methods. HRLPPO shows obvious advantages in terms of high efficiency and 

high rescue satisfaction rate. After pre-training, the model has significant advantages in example decision-making 

for large-scale and urgent high-altitude rescue operations, and is more suitable for the allocation and decision-

making of initial rescue operations under the condition of interrupted rescue reserve. 
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Table6. Rescue reserve data under high altitude rescue shortage 

Number of 

Rescue 

Teams 

Number of 

Earthquake 

Points 

Number of Peo-

ple Rescued by 

Rescue Teams 

Number of Rescue 

Demands at 

Earthquake Points 

Number of People 

Rescued in High 

Altitude Areas 

Number of Rescue De-

mands at High Alti-

tude Earthquake 

Points 

10 5 346 249 148 207 

20 10 955 475 399 400 

40 15 2024 642 433 470 

 

Table 7. Experimental results of different scale costs under high altitude rescue shortage 

Method Scheduling Cost Decision Time 

Numbers of 

Rescue Teams 

10 20 40 10 20 40 

GA 280.16 548.24 934.66 22.14 48.96 53.8 

ACO 401 627.72 1063.54 0.54 4.08 34.43 

AG-PSO 49.23 343.51 605.80 27.10 180.34 421.91 

HRLPPO 275.16 591.12 1024.18 0.40 0.62 0.89 

 

Table 8. The experimental results of different scale rescue satisfaction rate under high altitude rescue shortage 

(Team Size of 10) 

Method 

Satisfaction Rate for a Team Size of 10 

High Altitude Rescue 

Satisfaction Rate 

Non-High Altitude 

Rescue Satisfaction 

Rate 

Overall Rescue Satis-

faction Rate 

GA 71.5 100 76.31 

ACO 71.5 100 76.31 

GA-PSO 9.18 100 24.5 

HRLPPO 71.5 100 76.31 
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Table 9. The experimental results of different scale rescue satisfaction rate under high altitude rescue shortage 

(Team Size of 20) 

 
Satisfaction Rate for a Team Size of 20 

Method High Altitude Rescue 

Satisfaction Rate 

Non-High Altitude Res-

cue Satisfaction Rate 

Overall Rescue Satis-

faction Rate 

GA 91.5 100 92.84 

ACO 82.75 100 85.47 

GA-PSO 48.25 100 56.42 

HRLPPO 99.75 100 99.79 

 

Table 10. The experimental results of different scale rescue satisfaction rate under high altitude rescue shortage 

(Team Size of 40) 

 
Satisfaction Rate for a Team Size of 40 

Method High Altitude Rescue 

Satisfaction Rate 

Non-High Altitude Res-

cue Satisfaction Rate 

Overall Rescue Satis-

faction Rate 

GA 75.5 86.67 77.26 

ACO 77.25 86.67 78.74 

GA-PSO 43 86.67 49.89 

HRLPPO 80.75 86.67 81.68 

 

5. Conclusions 

This paper focuses on the research of the rescue dispatch problem of rescue teams in the early stage of earthquake 

disasters in high-altitude and plateau areas. It comprehensively constructs a model for the earthquake rescue prob-

lem of rescue teams by referring to the rescue attributes of rescue teams, the attributes of earthquake-stricken 

points, the reserve of rescue teams and the rescue demands of earthquake-stricken points. The article adopts the 

hierarchical task-based deep reinforcement learning method to stratify the rescue tasks. The high-level strategy is 

responsible for the selection of rescue teams and earthquake-stricken points, while the low-level strategy is re-

sponsible for determining the number of dispatched rescuers from rescue teams to earthquake-stricken points. 

Based on the actual earthquake situation in Luding in 2022, examples of different scales of rescue teams and 

earthquake-stricken points were generated. Under the conditions of sufficient reserve of high-altitude rescue teams 

and shortage of reserve of high-altitude rescue teams, the hierarchical task-based deep reinforcement learning 

algorithm HRLPPO mentioned in the article was compared with GA (Genetic Algorithm), ACO (Ant Colony 

Optimization) and GA-PSO (Hybrid Genetic Particle Swarm Optimization) through examples, verifying the ef-

fectiveness and rationality of the algorithm. 

Due to problems such as the continuous change of rescue demands in actual earthquakes and incomplete data 

collection, the main problems to be solved in the next step are as follows: establish a perfect earthquake rescue 
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demand platform to collect more comprehensive geological disaster situations, gather more information about 

rescue teams and earthquake demands, etc. to complete the training of the pre-trained model of deep reinforcement 

learning and improve the strategic learning of the model. In the future, combined with technical means such as 

GIS and Amap, a one-stop rescue allocation and planning platform will be completed to improve the more precise 

digital rescue platform for subsequent natural disasters. 
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