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Abstract: The goal of video summarization is to extract key information from a raw video so that 

long videos can be interpreted in a short time without losing much semantic information. Previous 

methods primarily consider the diversity and representation of the obtained summary without 

paying sufficient attention to the semantic information of the resulting frame set, especially when 

generating summaries motivated by user queries. In this paper, we break the conventions in 

conditional video summarization and propose a new model to accept user queries semantically, 

namely Semantic-Conditional Network (SC-Net). Technically, for each video, we first search the 

semantically relevant video frames via a cross-modal retrieval model to convey the 

comprehensive semantic information in the user query. The rich semantics are further regarded as 

semantic prior to trigger the optimization of the summarization network, which produces 

summaries in a diverse and representative way. Furthermore, a novel one-stage training strategy 

optimizes the time complexity from polynomial to linear. Extensive experiments on publicly 

available datasets demonstrate promising results compared with state-of-the-art methods. 

Keywords: User query; Semantic web; Video analysis; Micro-video; Conditional video 

summarization 

 

1. Introduction 

As one of the most popular media types, micro-videos have undoubtedly shown an upward trend in recent years. 

The volume of user-generated micro-videos uploaded on various platforms, including TikTok 

(https://www.tiktok.com/) and Kwai (https://www.kwai.com/), has witnessed an explosive surge. Taking Kwai 

as an example, roughly tens of millions of micro-videos are recorded and published every day. The tremendous 

amount of data brings new challenges to video search within and among videos. Video summarization plays an 

important role in improving search efficiency by representing videos with concise but semantically informative 

summaries.  

 

Facing the huge number of micro-videos, users on the micro-video platform conduct millions of querying 

requests per day to obtain the desired micro-videos. One effective approach for micro-video retrieval is 

conditional video summarization, also known as query-focused video summarization. Compared with generic 

video summarization, conditional video summarization takes into account both the relevance to a given search 

query and the representativeness of the original video. This task naturally connects natural language processing 

and computer vision by perceiving text query and interpreting it in video summarization. It is helpful for search 

engines to generate customized snippets of videos according to user queries.  

 

The dominate force in current state-of-the-art methods [10, 16, 20, 23, 26] primarily considers the diversity and 

representation of the obtained summary without paying sufficient attention to the semantic information of the 

resulting frame set, especially when generating summaries motivated by user queries. However, the short 

duration and low quality of micro-videos hinder the efficient association between query intent and videos. In 

order to obtain more story-telling summaries, high-level semantics should be taken into account. 

 

Our work formulates the problem of conditional video summarization as a Semantic-Conditional Network. We 

devise an efficient optimization framework and improve the efficiency in processing tremendous micro-videos. 

The main contributions of this work are listed as follows: 
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- We propose a novel Semantic-Conditional Network (SC-Net) that provides efficient conditional 

summarization for micro-videos. Unlike the traditional methods, SC-Net first search the semantically relevant 

video frames via a cross-modal retrieval model to convey the comprehensive semantic information in the user 

query. 

 

- Based on the above network structure, we propose an optimization framework for learning the summarization 

network with rich semantic priors. The time complexity is optimized from polynomial to linear. 

 

- We demonstrate the effectiveness of the proposed optimization framework in conditional micro-video 

summarization. Two general video features are utilized to verify that our method is robust to feature changes. 

 

2. Materials and Methods 

 

2.1 Related Work 

Conditional or query-focused video summarization generates user-oriented summaries according to user queries 

[12, 26]. Research [20, 21] developed a probabilistic model based on sequential DPP [7, 15] to capture 

information from lengthy videos. Research [23] leveraged relevance model and submodular functions[9]. Study 

[16] formatted the conditional video summarization problem as submodular span to remove the redundancy. 

Research [19] employed non-monotone submodular functions which improved the summarization results. Some 

studies [10, 11, 25, 26] adopted deep neural networks to generate user preferred video summaries. Research [24] 

verified that semantic information was helpful in video summarization. 

Early semantic awareness works mainly exploited the relevance between a query and a video frame to achieve 

semantic awareness. Text queries were converted to be represented by a vector generated based on a predefined 

dictionary [10, 17, 20, 21, 23, 27]. However, too many search words are available in micro-video, and adding 

new words is time-consuming, which limits the semantic information covered. Some other works computed the 

visual similarity between the user query and each video frame [16, 19]. The semantically relevant frames would 

be extracted as the summary. Although the method is innovative, it depends on the visual quality of a micro-

video, which is generally low due to the usage of handheld devices. Our work will explicitly address this issue 

by adopting the semantic information as prior to guide the learning of the summarization network and hence be 

able to encourage a better semantic alignment between the input query and the micro-video.  

 

2.2 General data 

We conduct the experiments on OVP[7] and YouTube[5] datasets. There are 50 videos in the OVP dataset 

covering several areas: documentary, educational, ephemeral, historical, lecture, etc. All videos are in MPEG-1 

format (30 fps, 352 × 240 pixels). The video duration is from 1 to 4 minutes. YouTube dataset has 39 video 

clips collected from websites like YouTube. It covers various categories, including news, sports, commercials, 

TV-shows, and home videos. We exclude the cartoon videos from the original dataset. The videos are 1-10 

minutes long.  

 

2.3 Evaluation Metric 

Following the previous studies[5], we compute the pairwise distances between a generated summary and the 

user-annotated ground truth. A frame is limited to appearing in the matched pairs at most once. Two frames are 

similar if the distance between them is less than a predetermined threshold, which is equal to 0.5 in our 

experiment. After the matching, we adopt F-score (F), Precision (P), and Recall (R) as the evaluation metric. 

The calculation of the scores is as follows: 

 

P =
𝑙𝑒𝑛𝑔𝑡ℎ(𝑔𝑠∩𝑔𝑡)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑔𝑠)
, R =

𝑙𝑒𝑛𝑔𝑡ℎ(𝑔𝑠∩𝑔𝑡)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑔𝑡)
, F =

2×P×R

P+R
.                                       (1) 

 

2.4 Implementation Details 

We preprocess the experimental data by pre-sampling the videos at 2 fps uniformly. We use the deep feature 

extracted from the Pool 5 layer of the GoogLeNet model, which is pre-trained with ImageNet. The feature 
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dimension of each frame is 1024. During the training stage, all the parameters used in our network are learned 

using AdaGrad optimizer and L1 loss. The learning rate is 10-5 with a weight decay of 10-5. The network is 

implemented under the PyTorch framework. 

 

2.5 Preliminaries 

This section introduces submodular functions, their optimization process, and matroids. Given two sets A ⊆ B ⊆

V ∖ {j} and any element j ∈ V ∖ B, the definition of a submodular function is 𝑓(A ∪ j) − 𝑓(A) ≥ 𝑓(B ∪ j) −

𝑓(B). This is the diminishing returns property, i.e. the incremental value of adding a new element decreases 

with the growth of the set size. It is useful for data summarization[3]. A submodular function is monotone if 

𝑓(A ∪ j) − 𝑓(A) ≥ 0 for all A ⊆ V and j ∈ V ∖ A. In this paper, we allow 𝑓 to be non-monotone.  

Although the traditional maximization method is discrete, it is helpful to lift it to a continuous domain. The 

continuous extension is a function F: [0, 1]V → ℝ+, whose value agrees with 𝑓 for the integer elements. The 

general framework for continuous optimization consists of three steps: 1) to lift the submodular function to a 

continuous extension, 2) to design a  maximization algorithm and optimize the continuous utility function, 3) to 

round the fractional results of step 2) to the integer solution set. Our optimization process follows this general 

framework in the continuous domain. 

 

A matroid is a pair ℳ = (V, 𝔗), where 𝔗 is a family of independent sets of ground set V that satisfies the 

following properties: 1) ∅ ∈ 𝔗; 2) heredity property, i.e., 𝐼1 ⊆ 𝐼2 ∈ 𝔗 ⇒ 𝐼1 ∈ 𝔗; 3) exchange property that is 

𝐼1, 𝐼2 ∈ 𝔗, |I1| < |I2| ⟹ ∃𝑣 ∈ 𝐼2 − 𝐼1: 𝐼1 ∪ 𝑣 ∈ 𝔗. The uniform and partition matroids are examples of matroids. 

A uniform matroid is the family of all subsets with cardinality at most k, where k ≤ n is a nonnegative integer 

(n is the total number of elements in ground set V). The partition matroid is built on the uniform matroid. A 

partition of V is the collection of disjoint nonempty subsets Vi of the ground set V, indexed by the integer i. A 

partition matroid includes all subsets S ⊆ V where 𝑉𝑖 ∩ 𝑆 has a cardinality at most k. It is a uniform matroid of 

Vi for each index i. The matroid contains subsets with independent elements analogous to a summary, offering 

the desirable property for data summarization. Furthermore, matroids can be generalized to the continuous 

domain as matroid polytopes, which are easy to optimize. We adopt the partition matroid as the constraint of the 

submodular function and leverage it in semantic retrieval to capture semantic information from user queries. 

The details are presented in Section 2.6. 

Our Semantic-Conditional Network (SC-Net) aims to maximize a non-monotone submodular function subject to 

partition matroid constraints for conditional video summarization. We partition the original video according to 

the frame-level similarity to the user query. A continuous extension is utilized to find the best summary set that 

maximizes the value of the submodular function and satisfies the constraint. Semantic-Conditional projection 

and local rounding methods are proposed for semantic-focused query processing. We use V to denote a video 

with n  frames. The XV  is the frame-level features extracted from the video 𝑉 , and S ⊆ V  is any possible 

summary matching user query QV. The functions and variables with overlines are in the continuous domain, e.g., 

𝐹̅, 𝑆̅. 

 

2.6 Semantic-Conditional Network (SC-Net) 

 
Figure 1 The overall network architecture of our Semantic-Conditional Network (SC-Net) 
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2.6.1 Overall Network 

We formulate the conditional micro-video summarization task as maximizing a non-monotone submodular 

function subject to a partition matroid constraint as follows: 

 

𝑆∗ = argmax
𝑆∈ℳ

𝑓(𝑋𝑉 , 𝑆, 𝑄𝑉),                                                         (2) 

where 𝑆∗ is the selected optimal summary, ℳ is the partition matroid constraint, XV and QV are the features and 

user queries of video V. 

 

As illustrated in Figure 1, our network includes multi-layer submodular functions similar to deep neural 

networks (DNNs), including an input layer, a summarization layer, a linear layer, and an output layer. Like 

DNNs, the multi-layered architecture enables interaction within multiple layers and extracts data representation 

at a more abstract level[3]. The 𝑓𝑟𝑒𝑝 and 𝑓𝑑𝑖𝑣 are functions to model representativeness and diversity, respectively. 

They both satisfy submodularity but are not necessarily to be monotone. We define the objective function 𝑓 as a 

combination of the 𝑓𝑟𝑒𝑝 and 𝑓𝑑𝑖𝑣 after a fully connected layer with non-negative weights, since submodularity is 

preserved under non-negative linear combinations[14]: 

 

𝑓 = 𝐴𝑇𝑌(𝑋𝑉 , 𝑆, 𝑄𝑉),                                                              (3) 

where 𝑌(𝑋𝑉 , 𝑆, 𝑄𝑉) = [𝑓1(𝑋𝑉 , 𝑆, 𝑄𝑉), 𝑓2(𝑋𝑉 , 𝑆, 𝑄𝑉), . . . , 𝑓𝐿(𝑋𝑉 , 𝑆, 𝑄𝑉)]T, with 𝑙 = 1, 2, . . . , 𝐿, each 𝑓𝑙(𝑋𝑉 , 𝑆, 𝑄𝑉) =

𝛼𝑙𝑓𝑟𝑒𝑝(𝑋𝑉 , 𝑆, 𝑄𝑉) + 𝛽𝑙𝑓𝑑𝑖𝑣(𝑋𝑉 , 𝑆),  𝐿 is the number of nodes in the fully connected layer. We use 𝐿 = 5 in our 

experiment. 𝐴 , 𝛼𝑙 , and 𝛽𝑙  are the trainable weight parameters. During optimization, all the parameters are 

constrained to be non-negative to preserve submodularity. 

 

Representativeness functions measure how well the selected summary represents the original video. One can 

score the subset highly if it contains the major information of the ground set 𝑉. We use Equation (4) to model 

the representativeness as a facility location problem[22]. A video frame is represented with its closest frame in the 

summary.  

 

𝑓𝑟𝑒𝑝(𝑋𝑉 , 𝑆, 𝑄𝑉) = ∑ (1 − min
𝑗∈𝑆

𝑠𝑖,𝑗(𝑄𝑉 , 𝑆))𝑖∈𝑉 ,                                 (4) 

where 𝑠𝑖,𝑗(𝑄𝑉 , 𝑆) = ‖𝑋𝑉𝑖(𝑄𝑉) − 𝑋𝑉𝑗(𝑆)‖
2
 is the Euclidean distance, and 1 − 𝑠𝑖,𝑗  is the measure of similarity. 

𝑋𝑉𝑖(𝑄𝑉) returns the feature 𝑋𝑉𝑖 if the 𝑖th frame is in query set 𝑄𝑉. Otherwise, it returns zero. And 𝑋𝑉𝑗(𝑆) works 

the same way. The value of 𝑠𝑖,𝑗 is normalized to [0, 1].  

 

Diversity functions aim to include the various content in the video. They measure the repulsiveness among the 

summary frames and eliminate redundancy. Although submodularity is still quite natural in diversity functions, 

monotonicity sometimes is not. The Determinantal Point Process (DPP)[15] is a powerful tool for modeling 

diversity in video summarizations. It is a model quantifying the discrete probabilistic distribution. 

 

𝑓𝑑𝑖𝑣(𝑋𝑉 , 𝑆) =
𝑑𝑒𝑡(𝐿𝑆)

𝑑𝑒𝑡(𝐼+𝐿)
,                                                    (5) 

where the 𝑛 × 𝑛 kernel 𝐿 is the pairwise frame-level similarity, 𝐿𝑆 = [𝐿𝑖,𝑗]
𝑖,𝑗∈𝑆

, is the principal minor with rows 

and columns selected according to the indices in 𝑆, and 𝐼 is the 𝑛 × 𝑛 identity matrix. Assuming there are two 

identical frames in the selected subset, 𝐿𝑆 will have duplicate rows and columns, which will result in a zero-

valued determinant. 

 

We don't take the user query 𝑄𝑉 as an input of 𝑓𝑑𝑖𝑣(∙) because the partition matroid constraint of the objective 

function will keep the summary set 𝑆 relevant to the query.  

 

2.6.2 Semantic Retrieval 
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Our Semantic Retrieval model consists of several steps. First of all, the semantic information is recognized from 

user queries. Then, the rich semantics are taken as semantic prerequisites using partition matroid to trigger 

further processing. Before learning the SC-Net, the semantic conditions are extended to the continuous domain. 

In the following learning procedure, the semantic information is learned through the network parameters.  

 

Query Processing A query set 𝑄𝑉 ⊆ 𝑉 refers to one or more visual or text queries. To support the partition 

matroid constraint, we calculate the relevance of each frame to the query set. The frame-level relevance to the 

query set can be estimated via average similarity measurements. We adopt the cosine similarity 

 

𝑓𝑠𝑖𝑚_𝑖(𝑋𝑉𝑖 , 𝑄𝑉) = 1 −
1

𝑞
∑

𝑋𝑉𝑖⋅𝑄𝑉𝑗

‖𝑋𝑉𝑖‖‖𝑄𝑉𝑗‖

𝑞
𝑗=1 ,                                              (6) 

where 𝑖 denotes the 𝑖th frame of video 𝑉, and 𝑞 is the number of user inputs in the query set. 

 

We segment the video frames into partitions, one containing frames with relevance scores higher than a 

threshold and the other containing the rest. Partition matroid constraints are imposed when optimizing the 

summarization result. In our experiment, the relevance threshold is set as the median similarity of all the video 

frames. The details will be covered in Subsection 2.6.3. 

 

Partition matroid constraint We divide the video frames into two parts, 𝑉1 and 𝑉2, according to the relevance 

threshold computed by Equation (6). Suppose the set 𝑉1 contains frames with higher similarity to the user query. 

Then the summary set 𝑆 ⊆ 𝑉 satisfies 𝑆 ∩ 𝑉1 ≤ 𝑘 and 𝑆 ∩ 𝑉2 = 0, where 𝑘 is the cardinality constraint. In our 

experiment, we set 𝑘 as 15% of the total video frames. 

 

Following the general framework in Section 2.5, the above partition matroid constraint is generalized to a 

polytope in the continuous domain, i.e., 

 

𝑃(ℳ) = {𝑥 ∈ [0, 1]𝑉|∀𝑗 ∈ {0, 1}: ∑ 𝑥𝑖 ≤ 𝑘𝑗𝑖∈𝑉𝑗
},                                     (7) 

where 𝑘0 = 𝑘, and 𝑘1 = 0. 

 

Continuous extension According to the general framework in Section 2.5, we need to lift the problem specified 

in Equation (2) to a continuous domain. The Deep Submodular Function (DSF) concave extension [1, 3] is 

adopted because it is easy to obtain and optimize. The continuous objective function is 

 

𝑌̅∗ = argmax
𝑌∈𝑃(ℳ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝐹̅(𝑋𝑉 , 𝑌̅, 𝑄̅𝑉),                                                         (8) 

where 𝐹̅: [0, 1]𝑛 ⟶ ℝ+ is the objective function in the continuous domain, 𝑃 is the matroid polytope constraint 

specified in Equation (7), and the overline represents continuous variables. To obtain the natural concave 

extension 𝐹̅ of 𝑓, the discrete variables, 𝑆 and 𝑄𝑉 , are replaced with real values. 𝑆̅ and 𝑄𝑉
̅̅̅̅  are 𝑛-dimensional 

vectors with 𝑆̅ = 1𝑆 and 𝑄̅𝑉 = 1𝑄𝑉
. The 1𝑆 ∈ ℝ+

𝑉  is 0 if a frame is not in set 𝑆, and 1 if a frame is in set 𝑆. And 

1𝑄𝑉
 works similarly. 

 

Semantic Learning The parameters in the network are learned using annotated summary frames to capture the 

underlying frame selection criteria. Unlike the existing methods of conditional video summarization, our 

training requires only one stage and is more computationally efficient. We employ the modern DNN training 

mechanism to train our submodular network. The training details can be found in the supplementary material. 

 

2.6.3 Optimization 

This section presents how to generate an optimal result as the output summary. Our approach is inspired by 

research[8], which showed that similar results could be achieved with much lower computation costs using the 

monotone algorithms to solve non-monotone submodular function maximization. Despite the effectiveness, their 

algorithm is for greedy methods only. It is not applicable to continuous methods because the intermediate 
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variables in the continuous optimization process are fractional. We cannot directly identify which elements are 

selected by the corresponding monotone algorithm. In addition, conditional video summarization requires 

similarity between the search queries and the summarized results. The constraint cannot be incorporated 

straightforwardly into the method of [8]. We now show how to optimize non-monotone cases using the 

continuous monotone method. 

 

The overall algorithm includes two iterations in the main procedure as two occasions are considered. One 

occasion is that the current subset 𝑆1̅ includes a reasonable fraction of the optimal result. The other is that the 

optimal result is mainly included in the discarded frames 1-𝑆1̅. More details are in supplementary material. The 

final summary set 𝑆 is the better performing one of the two iterations. Here we describe each step in detail. 

 

Mon-Max is a continuous method for monotone submodular function maximization. We adopt the DSF 

concave extension to lift the problem to the continuous domain by replacing the discrete variables with real 

values. The details can be found in Subsection 2.6.2. 

 

The Mon-Max module includes an iterative operation: updating 𝑆0̅, i.e., the 𝑋̅1 input, and projecting the updated 

𝑆0̅ to the constrained matroid polytope. Since the DSF extension is concave, it can be efficiently maximized via 

supergradient ascent and projected to the constraint space. The updated value of 𝑆0̅  is calculated using a 

supergradients. The supergradient of 𝐹̅ is defined as below: 

 

∂𝐹̅(𝑥) = {𝑔 ∈ ℝ𝑛|𝑔T(𝑥′ − 𝑥) ≥ 𝐹̅(𝑥′) − 𝐹̅(𝑥), ∀𝑥′ ∈ 𝑃},                               (9) 

where 𝑃  is a compact convex set. The supergradient of 𝐹̅  is its derivative at its current valuation if it is 

differentiable. 

 

Specifically, we start from the initial summary set 𝑆0̅ and iteratively update 𝑆0̅ as below: 

 

𝑆0̅
(𝑡)

= 𝑆0̅
(𝑡−1)

+ 𝜂 ⋅ ∂𝐹̅(𝑋𝑉 , 𝑆0̅
(𝑡−1)

, 𝑄̅𝑉),                                            (10) 

where 𝜂  is the learning rate, and the suffix (𝑡)  stands for the fractional summary set computed in the 𝑡 th 

iteration. We use 100 iterations in our experiment. The constraint is not considered when updating 𝑆0̅ and is 

taken into account in the subsequent projection. The details on projecting the updated 𝑆0̅  to the constrained 

matroid polytope can be found later in this subsection. 

 

LocalRounding takes the fractional summary set 𝑆̅ from Mon-Max and the continuous extension 𝐹̅ as inputs. 𝑇 

is the set of frame index in partition 𝑉1. Two sets 𝐴0 and 𝐵0 are initialized for further processing. The initial 

value of 𝐴0 is set to ∅. And set 𝐵0 is initialized to include all frames in partition 𝑉1. As specified in Subsection 

2.6.2, the set 𝑉1 contains frames with higher similarity to the user query. LocalRounding includes an iterative 

process with 𝑛1 repetitions, where 𝑛1 is the number of frames in 𝑉1. Each iterative process starts by picking two 

fractional values from the input set. Rounding is performed to change at least one of them to an integer. The 

frames that can increase the value of the continuous objective function 𝐹̅ will remain in the final summary set 

𝐴𝑛1
. Otherwise, it will be discarded. 

 

Rounding is a subprogram of LocalRounding. The algorithm simplifies the randomized pipage rounding[4] to 

finish in linear time under partition matroid constraint. The 𝑦̂𝑖,𝑗
+ (𝛿)  means computing 𝑦̂𝑖 + δ  and 𝑦̂𝑖 − δ 

simultaneously. The 𝑦̂𝑖,𝑗
− (𝛿)  just switch the symbol +  and − . In [4], 𝛿  is calculated by the minimal rank 

difference to ensure that the updated set remains tight. In partition matroid, for a pair of fractional variables, the 

maximum increase in one variable and the corresponding decrease in the other will not break the constraint. 
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Let ℳ be the partition matroid constraint and OPT be the optimal solution. The LocalRounding performs local 

search for maximizing continuous submodular functions under ℳ and returns an integral set 𝑆 ∈ 𝑉 with 𝑓(𝑆) ≥
1

3+1∕𝛼
OPT in 𝒪(𝑛) time. The proof is provided in the supplementary material. 

 

Projection is to find a point on the constraint space ℳ to minimize the distance of the two points. 

 

X𝑖+1 = argmin
𝑥∈𝑃(ℳ)

1

2
‖𝑥 − 𝑆𝑖̅‖2

2,                                                      (11) 

where 𝑆𝑖̅ is the point to be projected. It is a convex optimization problem and can be solved with the KKT 

conditions and Lagrangian function.   

 

3 Results 

 

3.1 Quantitative Results 

In this subsection, we compare our network with several state-of-the-art video summarization algorithms. 

VSUMM[5] is a methodology for producing static video summaries based on color feature extraction from video 

frames and k-means clustering algorithm. The seqDPP[7] treated video summarization as a supervised subset 

selection problem and overcame the deficiency of the standard DPP by incorporating the sequential structure of 

video data. It is the summarization part of the conditional video summarization method[20]. The Fantom[18] 

maximizes a submodular function (not necessarily monotone) for personalized data summarization. The 

StreamingLS[19] extracted and conditionally summarized the data streams (e.g., video streams) with non-

monotone submodular function maximization. The QCVS[10] is an end-to-end method for conditional video 

summarization based on deep learning. It consists of a video summary controller, video summary generator, and 

video summary output module. The S3[16] is the submodular span problem that involves finding a large set of 

elements with small gain relative to a given query set. See Table 1 for details. 

 

Table 1 Comparison with state-of-the-art video summarization methods on OVP and YouTube datasets 

Method 
OVP                                     YouTube 

F-score    P rec is ion   Reca l l     F -score  Precis ion    Reca ll  

seqDPP[7] 77.7 75.0 87.2 60.3 59.4 64.9 

Fantom[18] 78.0 75.1 88.6  60.3 59.1 64.7 

StreamingLS [19]  75.6 71.8 86.5 59.8 58.6 64.2 

QCVS[10] 79.1 75.8 85.4 61.8 65.0 64.9 

S3[16] 78.5 73.9 86.6 61.6 57.7 68.3 

TSML [13 ]  73.4 - - 62.2 - - 

GADL [ 2 ]  77.2 79.2 76.9 69.5 71.6  69.6 

SVS _MCO [ 6 ] 83.3 79.5 84.0 - - - 

SC-Net (GoogleNet)  83.4  79.8  87.3 69.9  64.2 76.8  

SC-Net (color) 83.2 81.1  85.4 69.6  69.0 70.2  

We compare the running time with the traditional greedy method. The results are shown in Table 2.  

 

Table 2 Analysis results of time complexity with greedy 

Time per video (sec)   0.05      0.1     0.15    0.2     0.25     0.3     Avg. 

Greedy 24 37 50 63 75 87 56 

Ours 28 31 34 35 38 40 34.3 
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3.2 Ablation Study 

We conduct ablation study to understand the contribution of each component in our proposed network and 

algorithm. The following models are considered: 1) woRep. To understand the contribution of the 

representativeness part in the full model, we remove it and report the evaluation scores. 2) woDiv. It is a model 

similar to woRep. The diversity part is removed for further understanding. 3) woTrn. We keep the proposed full 

model here but ignore the training stage. The parameters in the network are randomly assigned when 

initialization. It will help us understand the benefit of the learning methodology. 4) woLR. We remove the 

optimization algorithm LocalRounding for non-monotone submodular functions. The conventional optimization 

technique of projected supergradient ascent is utilized to get an optimal result. The optimization uses the trained 

full model. 5) wTLR. This model replaces the proposed LocalRounding with traditional local search and 

rounding methods. The comparison results are shown in Figure 2. 

 

 
Figure 2 Conditional summary produced by our full model and the ablation models for OVP video 38 

 

3.3 Qualitative Results 

Figure 3 demonstrates the selected frames for a person in the query. 

 

 
Figure 3 Qualitative results on video 39 of the OVP dataset 

 

4 Discussion 

 

4.1 Quantitative Results 

Our findings from Table 1 are three-fold: 1) Overall, our algorithm outperforms other baseline methods, which 

verifies the effectiveness of our SC-Net and the approach of optimization. 2) Across the three evaluation scores, 

our method has higher Recall rates than Precision, especially for the YouTube dataset. Since the YouTube 

dataset has fewer videos with more diverse content, it is generally more difficult to summarize. The results 
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indicate that our method is efficient in capturing the diverse content of the video. 3) Our method outperforms the 

DNN-based method QCVS, demonstrating the effectiveness of using submodular functions for subset selection. 

 

In Table 2, the first line is the length of the summaries. For example, 0.05 means the summary length is 0.05∗ 𝑛, 

where 𝑛 is the length of the original video. We can find from the table that the time keeps stable for our 

proposed method as it updates the summary from the subset level. On average, our method is about 40% faster 

than greedy, which validates the efficiency of our optimization method. 

 

4.2 Ablation Study 

We can see that our full model performs best, indicating the effectiveness of each component. From the network 

point of view, removing the diversity part, woDiv, has more impact than woRep on the evaluation scores. It is 

essential to capture the diverse video content in a generated summary, and that is why we need to solve the non-

monotone diversity problem. 

 

The results of the models woLR and woTLR in the table demonstrate the benefit of our optimization algorithm. 

For both OVP and YouTube datasets, the model woLR produces the worst performance scores, which validates 

our optimization method for non-monotone submodular functions is crucial to generate an optimized summary. 

The performance of woTrn is not so good as the well-trained full model. We believe that the performance gap is 

attributed to the network parameters that model the internal structure of the video data. Replacing the proposed 

LocalRounding with the conventional local search and rounding approach significantly decreases the 

performance, which verifies the effectiveness of our method. 

 

4.3 Qualitative Results 

The summary consists of different situations of the person in the query. For example, with captions, eyes closed, 

smiling, and so on. Overall, our method can generate summaries closely related to the user query with diversity. 

 

Data Sharing Agreement 

The datasets used and/or analyzed during the current study are available from the corresponding author on reaso

nable request. 

Competing Interests 

The authors have no relevant financial or non-financial interests to disclose. 

 

References 

[1] Bai, W., Noble, W.S., Bilmes, J.A.: Submodular maximization via gradient ascent: the case of deep 

submodular functions. Advances in Neural Information Processing Systems 2018, 7989 (2018) 

[2] Benoughidene, A., Titouna, F., Boughida, A.: Static video summarization based on genetic algorithm and 

deep learning approach. Multimedia Tools and Applications pp. 1-26 (2024) 

[3] Bilmes, J., Bai, W.: Deep submodular functions. arXiv preprint arXiv:1701.08939 (2017) 

[4] Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject to 

amatroid constraint. SIAM Journal on Computing 40(6), 1740-1766 (2011) 

[5] De Avila, S.E.F., Lopes, A.P.B., da Luz Jr, A., de Albuquerque Araújo, A.: Vsumm: A mechanism designed 

to produce static video summaries and a novel evaluation method. Pattern Recognition Letters 32(1), 56-68 

(2011) 

[6] Dhanushree, M., Priya, R., Aruna, P., Bhavani, R.:  Static video summarization with multi-objective 

constrained optimization. Journal of Ambient Intelligence and Humanized Computing 15(4), 2621-2639 

(2024) 

[7] Gong, B., Chao, W.L., Grauman, K., Sha, F.: Diverse sequential subset selection for supervised video 

summarization. Advances in Neural Information Processing Systems 27, 2069-2077 (2014) 

[8] Gupta, A., Roth, A., Schoenebeck, G., Talwar, K.: Constrained non-monotone submodular maximization: 

Offline and secretary algorithms. In: International Work-shop on Internet and Network Economics. pp. 

246-257. Springer (2010) 



Computer Fraud and Security  

ISSN (online): 1873-7056 

 

__________________________________________________________________________________________ 

89 
Vol: 2025 | Iss: 2 | 2025 

 

[9] Gygli, M., Grabner, H., Van Gool, L.: Video summarization by learning submodular mixtures of objectives. 

In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3090-3098 

(2015) 

[10] Huang, J.H., Worring, M.: Query-controllable video summarization. In: Proceedings of the International 

Conference on Multimedia Retrieval. pp. 242-250 (2020) 

[11] Jia, M., Wei, Y., Song, X., Sun, T., Zhang, M., Nie, L.: Query-oriented micro-video summarization. IEEE 

Transactions on Pattern Analysis and Machine Intelligence (2024) 

[12] Jiang, P., Han, Y.: Hierarchical variational network for user-diversified & query-focused video 

summarization. In: Proceedings of the International Conference on Multimedia Retrieval. pp. 202-206 

(2019) 

[13] Khurana, K., Deshpande, U.:  Two  stream  multi-layer  convolutional  network  for keyframe-based video 

summarization. Multimedia Tools and Applications 82(25), 38467-38508 (2023) 

[14] Krause, A., Golovin, D.: Submodular function maximization. Tractability  3, 71-104 (2014) 

[15] Kulesza, A., Taskar, B.: Determinantal point processes for machine learning. arXiv preprint 

arXiv:1207.6083 (2012) 

[16] Kumari, L., Bilmes, J.:  Submodular span, with applications to conditional data summarization. In: 

Proceedings of the AAAI Conference on Artificial Intelligence. vol. 35, pp. 12344-12352 (2021) 

[17] Lee, Y.J., Ghosh, J., Grauman, K.: Discovering important people and objects for egocentric video 

summarization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 

1346-1353. IEEE (2012) 

[18] Mirzasoleiman, B., Badanidiyuru, A., Karbasi, A.: Fast constrained submodular maximization: 

Personalized data summarization. In: International Conference on Machine Learning. pp. 1358-1367. 

PMLR (2016) 

[19] Mirzasoleiman, B., Jegelka, S., Krause, A.: Streaming non-monotone submodular maximization: 

Personalized video summarization on the fly. In: Proceedings of the AAAI Conference on Artificial 

Intelligence. vol. 32 (2018) 

[20] Sharghi, A., Gong, B., Shah, M.: Query-focused extractive video summarization. In: Proceedings of the 

European Conference on Computer Vision. pp. 3-19. Springer (2016) 

[21] Sharghi, A., Laurel, J.S., Gong, B.: Query-focused video summarization: Dataset, evaluation, and a 

memory network based approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern 

Recognition. pp. 4788-4797 (2017) 

[22] Tschiatschek, S., Iyer, R.K., Wei, H., Bilmes, J.A.: Learning mixtures of submodular functions for image 

collection summarization. In: Advances in Neural Information Processing Systems. pp. 1413-1421 (2014) 

[23] Vasudevan, A. B., Gygli, M., Volokitin, A., Van Gool, L.: Query-adaptive video summarization via 

quality-aware relevance estimation. In: Proceedings of the ACM International Conference on Multimedia. 

pp. 582-590 (2017) 

[24] Wei, H., Ni, B., Yan, Y., Yu, H., Yang, X., Yao, C.:  Video  summarization  via semantic attended 

networks. In: Proceedings of the AAAI conference on artificial intelligence. vol. 32 (2018) 

[25] Wu, G., Lin, J., Silva, C.T.: Intentvizor: Towards generic query guided interactive video summarization. In: 

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 10503-10512 

(2022) 

[26] Xiao, S., Zhao, Z., Zhang, Z., Guan, Z., Cai, D.: Query-biased self-attentive network for query-focused 

video summarization. IEEE Transactions on Image Processing 29, 5889-5899 (2020) 

[27] Yeung, S., Fathi, A., Fei-Fei, L.: Videoset: Video summary evaluation through text. arXiv preprint 

arXiv:1406.5824 (2014) 

[28] Buchbinder, N., Feldman, M., Seffi, J., Schwartz, R.: A tight linear time (1/2)-approximation for 

unconstrained submodular maximization. SIAM Journal on Computing  44(5), 1384-1402 (2015). 

  



Computer Fraud and Security  

ISSN (online): 1873-7056 

 

__________________________________________________________________________________________ 

90 
Vol: 2025 | Iss: 2 | 2025 

 

Supplementary Material of 

Semantic-Conditional Network for Micro-Video Summarization 

 

1. Learning 

The parameters in the network are learned using annotated summary frames to capture the underlying frame 

selection criteria. Unlike the existing methods of conditional video summarization, our training requires only 

one stage and is more computationally efficient. We employ the modern DNN training mechanism to train our 

submodular network. The parameter 𝜃 includes the weights 𝐴, 𝛼, and 𝛽 mentioned in Subsection 2.6.1, which 

can be computed as follows: 

 

𝜃∗ = arg min
𝜃≥0

∑ ∑ 𝐿𝑐𝑗(𝜃) + ‖θ‖1𝑗𝑐 ,                                                   (1) 

where 𝑐 = 1, 2, . . . , 𝑁𝑡  is the 𝑁𝑡  videos for training, 𝑗 = 1, 2, . . . , 𝑁  is the 𝑁  training subsets selected from a 

training video, and 𝐿𝑐𝑗(⋅) is the loss function. The 𝑙1-norm of the parameter, ‖θ‖1, is to keep its value small and 

sparse. And 𝜃  remains non-negative to preserve submodularity. Although multiple subsets can be used for 

training, we found using only one training subset can achieve fairly good results. The training subset 𝑆0̅ ∈ ℝ+
𝑉  is 

a vector with all coordinates equal to 
𝑘

𝑛
, where 𝑘 is the cardinality constraint, and 𝑛 is the total number of video 

frames. 

 

For the loss function 𝐿𝑐𝑗(⋅), we adopt 𝑙1 loss with the formula shown below:  

 

𝐿𝑐𝑗(𝜃) = ‖𝐹̅𝑐𝑗 − 𝐹̅𝑐𝑔𝑡‖,                                                             (2) 

where 𝐹̅𝑐𝑗 = 𝐹̅(𝑋𝑉𝑐
, 𝑆𝑐̅𝑗 , 𝜃),  𝐹̅𝑐𝑔𝑡 = 𝐹̅(𝑋𝑉𝑐

, 𝑆𝑐̅𝑔𝑡 , 𝜃), and 𝑆𝑐̅𝑔𝑡 is the annotated user summary. The user query 

vector 𝑄̅𝑉 is set to 1 for each dimension. That is to say, all the video frames are targeted, which is equivalent to 

generic video summarization. Other loss functions, like mean squared error (MSE) loss, are also applicable. The 

intuition of the training mechanism is to narrow the distance between the training subset and the ground truth 

summary set, which makes the optimal subset easier to be discovered in the subsequent optimization stage and 

expedites the optimization process. 

 

We leverage the projected subgradient gradient descent (SGD) to learn and optimize the objective function in 

Subsection 2.6.1. After each training step, we project the parameters to θ ≥ 0, thus keeping the function non-

negative. The rectified linear unit (ReLU) 𝑔(⋅) = max(0,⋅) can be used for the projection, which changes the 

Equation (3) as below: 

 

𝜃∗ = arg min ReLU(∑ ∑ 𝐿𝑐𝑗(𝜃) + ‖θ‖1𝑗𝑐 ).                                            (3) 

 

2. Explanation of the Overall Algorithm 

In this section, we explain why there are two iterations in the overall algorithm in Subsection 2.6.3. For 

efficiency, a monotone optimization method is utilized to maximize non-monotone submodular functions. The 

optimal result for monotone submodular function maximization often satisfies 𝐹̅(𝑆1̅) ≥ 𝛾𝐹̅(𝑆1̅ ∪ 𝐶∗), where 0 <

γ ≤ 1 , and 𝐶∗ = OPT  is the optimal result. When 𝐹̅  is monotone, 𝐹̅(𝑆1̅ ∪ 𝐶∗) ≥ 𝐹(𝐶∗) , and we reach the 

approximation outcome 𝐹̅(𝑆1̅) ≥ γOPT. In the non-monotone case, we cannot get the optimization result. So we 

consider two occasions. If 𝐹̅(𝑆1̅ ∩ 𝐶∗) ≥ 𝜖OPT , the current subset 𝑆1̅  includes a reasonable fraction of the 

optimal result, and we run the local search algorithm LocalRounding to get the final result. Otherwise, if 

𝐹̅(𝑆1̅ ∩ 𝐶∗) ≤ 𝜖OPT, running another round of approximation within 1 − 𝑆1̅ will find a good solution. That is 

why we need two iterations in the main procedure. 

 

3. Proof of time complexity 

According to the explanation in Appendix 2, the monotone submodular function 𝐹̅  provides 𝐹̅(𝑆1̅) ≥

𝛼𝐹̅(𝑆1̅ ∪ 𝐶∗) , where 𝑆1̅  is the selected subset, 0 < α ≤ 1  is the approximation error, and 𝐶∗ = OPT  is the 



Computer Fraud and Security  

ISSN (online): 1873-7056 

 

__________________________________________________________________________________________ 

91 
Vol: 2025 | Iss: 2 | 2025 

 

optimal result. In the non-monotone case, the solution 𝑆1̅
′  of the LocalRounding satisfies 𝐹̅(𝑆1̅

′) ≥ 𝜖𝐹̅(𝑆1̅
′ ∩ 𝐶∗) , 

where 𝜖 is the approximation error of the LocalRounding. 

 

According to the lemma from [1], we get 𝔼[𝑓(𝑆 ∪ 𝐶∗)] ≥ (1 −
1

𝑘
) 𝑓(𝐶∗), where 𝑘 is the cardinality constraint. 

Then, we can write 𝑓(𝑆) ≥
𝑘−1

𝑘(
1

𝛼
−

1

𝜖
)

𝑓(𝐶∗). In our experiment, the value of the ratio 
𝑘−1

𝑘
 is close to 1. Following 

research [1], the approximation for a deterministic unconstrainted submodular maximization is 
1

3
. Using ϵ =

1

3
, 

we get the desired result 𝑓(𝑆) ≥
1

3+1∕𝛼
𝑓(𝐶∗). 

 

Now we verify the time complexity. Research [1] proposed a deterministic unconstrained local search method 

for submodular maximization, which requires linear time to complete. We expand the result to satisfy the 

partition matroid constraint. The partition matroid can be taken as uniform matroids in the set 𝑉1, the segment 

with higher similarity to the user query. When the cardinality of the uniform matroid constraint is 𝑘, the task is 

transformed to find out the 𝑘 most similar elements. Linear interpolation can do this in linear time. 

 

 


