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Abstract: The dynamic model of a two-wheeled self-balancing robot (TWSBR) has the 

characteristics of multivariable, strong coupling, nonlinear, and unstable control performance. In 

this paper, the mathematical model of the motor is combined with the Lagrangian equation of 

motion, and the dynamic model of the TWSBR based on voltage as the control input is re-

established. Based on this dynamic model, a novel sliding mode control method based on linear 

matrix inequality (LMI-SMC) optimization is designed. The stability of TWSBR is proved using 

Lyapunov’s theorem. Finally, the sliding mode control method and the stability of TWSBR are 

verified through simulation. A detailed comparison with other typical control methods is carried out. 

The simulation results show that the sliding mode controller reduces the steady-state error, 

suppresses the chatting, and is robust. 

Keywords: two-wheeled self-balancing robot; linear matrix inequality; sliding mode control; 

Lyapunov’s proof; Comprehensive weighted performance evaluation index. 

1.  Introduction 

TWSBR is a particular type of robot, usually consisting of two wheels and some sensors that can adjust to 

maintain a balanced state[1]. The advantages of TWSBR are mainly reflected in their flexibility, self-balancing 

ability, efficient energy utilization, and versatility[2]. The robot can move flexibly in a small space, balance itself 

without external support, and use energy efficiently, making it suitable for various application scenarios[3]. In 

addition, TWSBR has good human-computer interaction and technological attraction, can interact with humans, 

and has attracted attention in scientific research, education, and enterprises[4]. This kind of robot has potential 

application value in improving production efficiency, reducing labor costs, and improving the working 

environment[5]. 

As a statically unstable system, the first problem to be solved for a TWSBR is balance control[6]. To achieve 

this, researchers generally need to establish a dynamic model of the robot, which can be designed based on 

Newtonian mechanics, Lagrangian mechanics, and Kane modeling methods[7]. 

The Newton-Euler method uses Newtonian mechanics to analyze the robot’s force and obtains the dynamic 

model through simultaneous equations. Although this method is cumbersome and error-prone, it is relatively 

intuitive, so most researchers use it to model robots. The Newton-Euler method was employed by E. H. Karam et 

al.[8] for modeling a TWSBR. They designed a robust controller for controlling TWSBR with a state-feedback-

based sliding mode controller (SFSMC) to solve the balancing and tracking problems. The Newton-Euler method 

was utilized by V. Mudeng et al.[9] to model a TWSBR and maintain it in equilibrium. The authors applied a 

proportional-integral differential (PID) controller as a control system for a TWSBR and achieved good results. 

The Lagrangian function method analyzes from the energy point of view, avoids the complicated analysis of 

internal forces, and can effectively simplify the modeling process. The robot equations of motion are derived 

using the Lagrangian and mapped to transfer functions in the complex s-domain in [10]. The control is 

implemented on an Arduino microcontroller using a zero-order hold discretization method. C. Iwendi et al.[11] 

used Lagrangian equations and developed a robot model. This study conducted experiments on the PD-PI 
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navigation control of TWSBR to achieve maximum obstacle avoidance. The Kane method also starts from the 

generalized coordinates without considering the internal forces of the system, and the Kane method is the most 

excellent model method proposed recently. The Kane method was employed by H. Ahmadi Jeyed et al.[12] to 

derive a three-degree-of-freedom (3-DOF) model of a TWSBR, encompassing the longitudinal displacement, yaw, 

and pitch motion of the chassis. 

The controller design and stability proofs are based on precise mathematical models without any 

uncertainties taken into account. However, uncertainties and model mismatches between nominal mathematical 

models and actual plants are inevitable. Sliding mode control is robust and can effectively suppress system 

parameter uncertainties and external disturbances. A study of sliding mode control in a TWSBR is presented in 

[13]. They designed a full-state feedback controller (LQR) and a sliding mode controller. Simulations show that 

the sliding mode controller outperforms full-state feedback control in controlling a TWSBR. A robust sliding 

mode controller is proposed in [15] for tracking a TWSBR under terrain inclination and disturbances. The 

controller is designed using a continuous approximation around the switch surface to minimize chattering 

phenomena. In [14], the dynamic equations of the system are given, and two control methods, cascade control, 

and sliding mode control, are applied to the system. Two control methods for stabilizing a TWSBR are 

investigated in [16]. A mathematical kinetic model is constructed using the Lagrangian function method. A sliding 

mode controller (SMC) for automatic balance and yaw rotation is proposed. Experimental results show that the 

SMC controller outperforms (LQR) in transient performance and noise immunity. Developing a robust sliding 

mode-based controller for a TWSBR is discussed in [17]. Control can be smoothed by approximating 

discontinuous functions to continuous functions. 

The combination of sliding mode control and other control methods has apparent advantages in controlling 

TWSBR. Sliding mode control provides stable control of the system through its robustness and fast response. 

Other control methods, such as PID control[18–20], LQR control[21–23], fuzzy control[24–27], neural network 

control[28– 31], Sliding mode control[32–34], adaptive control[35–37], Optional control[38, 39], and Artificial 

intelligence[40–42], can further optimize the controller’s performance and deal with problems such as inaccurate 

modeling and unknown system parameters. Research on hybrid control methods can improve the performance 

and stability of TWSBR under different working conditions. However, in-depth theoretical analysis and 

experimental verification are needed to determine the optimal control strategy and parameter settings. 

Linear matrix inequalities (LMI) have significant advantages in control theory. LMI is a robust analysis and 

design tool that can be used for system stability analysis, performance optimization, and other issues. In addition, 

the LMI method is easy to calculate and implement, can be solved by convex optimization technology, and has 

the characteristics of scalability and broad applicability. The performance of observer-based LQR and LMI 

controllers for the vertical stability control of a nonlinear TWSBR is investigated in [43]. A robust attitude 

controller is proposed in [44] for TWSBR to enhance stability during ramp driving by maintaining a balanced 

body attitude angle and wheel angular velocity target values. This paper uses LMI to design a feedback system 

controller that meets performance requirements and compensates for impulsive disturbance robustness through 

state feedback. A dual-loop robust control design method is proposed in [45], which consists of two degrees of 

freedom to coordinate nominal and robust performance, respectively. LMI solvability conditions are used to 

synthesize full-order H2/H∞ controls. 

The main contributions of this paper are summarized as follows: 

1. The motor model is added to TWSBR, and the overall mathematical model, whose input is voltage, is 

redesigned. 

2. A novel sliding mode control based on linear matrix inequality (LMI-SMC) was designed, and the stability 

of the control method was proven using the Lyapunov method. 

3. The performance of LMI-SMC with other typical optimal controllers is compared under various working 

conditions. 
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4. A novel comprehensive weighted performance evaluation index (CWPEI) is proposed to evaluate control 

performance under the same conditions more fairly. 

The rest of this paper is organized as follows. Section II establishes a dynamic model of TWSBR based on 

controlling the motor voltage. In Section III, an LMISMC controller is designed. In Section IV, the controller’s 

performance is simulated, and the evaluation criteria for the performance of TWSBR are redesigned. Meanwhile, 

its performance is compared with other typical optimization controllers. In Section V, an experimental study is 

conducted, and TWSBR is verified in a 3D simulation environment. The simulation proves that the controller in 

this paper has good control performance. In Section VI, this paper is summarized and concluded. 

2.  Methodology 

2.1. Preliminary 

The design of the TWSBR is shown in Fig.1(a). The mechanical mechanism of TWSBR mainly includes an 

inverted pendulum mounted on a pair of wheels, each wheel driven by an independent motor. The dynamics of a 

TWSBR is an underactuated system with only two inputs but three degrees of freedom. Due to the unique physics 

of such robotic systems, we can decouple the overall dynamics of the vehicle into two decoupled subsystems. 

The first subsystem consists of the first equation of robot dynamics, called the   subsystem, with 

2 l ru v v= − as the control input, also known as the steering subsystem. The second subsystem consists of the 

last two equations of vehicle dynamics, called the { , }  subsystem, with 1 l ru v v= + as the control input, also 

known as a self-balancing subsystem, where the driver is insufficient. Considering variable structure technology’s 

parameter insensitivity and anti-interference characteristics, this paper uses the sliding mode control method to 

design the control inputs 1u an 2u . 

In particular, we assume that ( ), ( )d dt t  and ( )d t are bounded and twice continuously differentiable. In 

general terms, the requirements of ( )d t and ( )d t are guaranteed. As for ( )d t , as mentioned before, it is 

determined by robot dynamics and rolling friction resistance. According to practical experience, if the high-order 

dynamics of the robot are ignored, the necessary conditions of ( )d t (boundedness and quadratic continuous 

differentiability) can also be satisfied.  Such control target research can achieve the goal. 

Fig.1(b) shows a side view of the TWSBR. The coordinate system used in 2 Motion Equations of TWSBR 

is described in Fig.1(c). The physical parameters of the TWSBR are shown in Tab 1. ,M bR K , and tK values are 

extracted from [46], whereas the values for , , ,m m WJ n f f , and few are selected appropriately since they are hard 

to measure. 

 

 (a) TWSBR                        (b) Side view of TWSBR           (c) Plane view of TWSBR 

Figure 1. TWSBR 
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2.2. Motion Equations of TWSBR 

According to the coordinate systems in Fig.1(b) and Fig.1(c), the motion equation of TWSBR can be derived 

using the Lagrangian method. If the motion direction of TWSBR at time t = 0 is the positive direction of the x-

axis, then the coordinates are as follows. 

 ( ) ( )
1

( , ) ,
2

l r r l

R

W
     

 
= + − 
 

 (1) 

 ( ) ( ), , , ,m m m m mx y z x dt y dt R=    (2) 

 ( ) ( ), cos , sinm mx y R R   =  (3) 

 ( ), , sin , cos ,
2 2

l l l m m m

W W
x y z x y z 

 
= − + 
 

 (4) 

 ( ), , sin , cos ,
2 2

r r r m m m

W W
x y z x y z 

 
= + − 
 

 (5) 

 ( ) ( ), , sin cos , sin sin , cosb b b m m mx y z x L y L z L    = + + +  (6) 

 

Table 1. Robot parameters 

 

Robot Parameters Interpretation 

29.81m/sg =  Gravity acceleration 

0.051kgm =  Wheel weight 

0.0325mR =  Wheel radius 

2
2kg m

2
W

mR
J =   

Wheel inertia moment 

0.703kgM =  Body weight 

0.192mW =  Body width 

0.082mD =  Body depth 

0.112mH =  Body height 

m
2

H
L =  

Distance of the center of mass from the wheel axle 

2
2kg m

3

ML
J =   

Body pitch inertia moment 
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2 2
2( )

kg m
12

M W D
J

+
=   

Body yaw inertia moment 

5 21 10 kg mmJ −=    DC motor inertia moment 

2.9mR =   DC motor resistance 

0.024V s/radbK =   DC motor back EMF constant 

0.025N m/AtK =   DC motor torque constant 

30n =  Gear ratio 

0.0022mf =  Friction coefficient between body and DC motor 

0Wf =  Friction coefficient between wheel and floor 

 

Where  represents the body pitch angle, 
,l r represents the wheel angle  ( ,l r represents the left wheel and right 

wheel),
,l rm represents the DC motor Angle, ( , ,m m mx y z ) represents the coordinate value of the center position 

of TWSBR, ( , ,l l lx y z  )represents the coordinate value of the left wheel position, ( , ,r r rx y z  ) represents the 

coordinate value of the right wheel position.( , ,b b bx y z ) represents the coordinate value of the center of gravity 

of TWSBR. 

The translational energy 1T , rotational kinetic energy 2T , and potential energyU are as follows: 

 ( ) ( ) ( )2 2 2 2 2 2 2 2 2

1  
1 1 1

2 2 2
l l l r r r b b bT m x y z m x y z M x y z= + + + + + + + +  (7) 

 ( ) ( )
2 2

2 2 2 2 2 2

2  
2

1 1 1 1 1 1

2 2 2 2 2
w l w r m l m rT J J J J n J n J        = + + + + − + −  (8) 

 l r bU mgz mgz Mgz= + +  (9) 

The fifth and sixth terms in 2T are the rotation kinetic energy of an armature in the left and right DC motor. The 

Lagrangian L has the following expression. 

 1 2L T T U= + +  (10) 

The following variables are used as generalized coordinates:  : Average angle of left and right wheel , : Body 

pitch angle, : Body yaw angle. Following are the Lagrange equations: 

 
d L L

F
dt


 

  
− = 

  
 (11) 

 
d L L

F
dt


 

  
− = 

  
 (12) 
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d L L

F
dt


 

  
− = 

  
 (13) 

The following equation is derived by evaluating equations (11), (12) and (13). 

 )2 2 2 2(2 ) 2 2 ( cos 2 sinw m mm M R J n J MLR n J MLR F     + + + + − − =   (14) 

 
( ) ( )2 2 2

2 2

cos 2 2

sin sin cos

m mMLR n J ML J n J

MgL ML F





  

   

− + + +

− − =
 (15) 

 ( )
2

2 2 2 2 2

2

1
sin 2 sin cos

2 2
w m

W
mW J J n J ML ML F

R
     

 
+ + + + + = 

 
 (16) 

In consideration of DC motor torque and viscous friction, the generalized forces are given as the following: 

 ( ) ( ), , , ,
2

l r r l

W
F F F F F F F F

R
   

 
= + − 
 

 (17) 

 ( )l t l m l w lF nK i f f  = + − −  (18) 

 ( )r t r m r w rF nK i f f  = + − −  (19) 

 ( ) ( )t l t r m l m rF nK i nK i f f    = − − − − − −  (20) 

Where ,l ri is the DC motor current. 

A DC motor cannot be controlled directly by current, as it is PWM (voltage) based. Therefore, we use the DC 

motor equations to evaluate the current ,l ri  and the voltage ,l rv . If the friction inside the motor is negligible, the 

DC motor equations are usually as follows: 

 ( ), , , ,m l r l r b l r m l rL i v K R i = + − −  (21) 

Here, it is assumed that the motor inductance can be ignored at approximately zero. Therefore, the current is 

 
( ), ,

,

l r b l r

l r

m

v K
i

R

 + −
=  (22) 

The generalized force can be expressed using the motor voltage. 

 ( ) ( )2 2l r wF v v f    = + − + +  (23) 

 ( ) 2 2l rF v v   = − + + −  (24) 

 ( ) ( )
2

22 2
r l w

W W
F v v f

R R
   = − − +  (25) 
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 ,t t b
m

m m

nK nK K
f

R R
 = = +  (26) 

 

2.3. State Equations of TWSBR 

The state equations are derived based on modern control theory by linearizing the equations of motion of the 

equilibrium point of TWSBR. Considering the limit 0(sin ,cos 1)   → → → and ignoring the second-

order terms such as 
2 , the equations of motion (14)-(16) are approximated as follows: 

 ( )2 2 2[(2 ) 2 2 ] 2w m mm M R J n J MLR n J F + + + + − =  (27) 

 ( ) ( )2 2 22 2m mMLR n J ML J n J MgL F   − + + + − =  (28) 

 ( )
2

2 2

2

1

2 2
w m

W
mW J J n J F

R
 

 
+ + + = 

 
 (29) 

Eqs. (27) and (28) have  , and  , Eq. (29) has  only. Eqs. (27) and (28) can be expressed in the form: 

  

 
l

r

v
E F G H

v

 

 

      
+ + =      

      
 (30) 

, ,E F G ,and H  in (30) 

2

2 2

2 2 2

(2 ) 2

2 2

2 2

w

m m

m m

m M R J MLR

n J n J
E

MLR n J ML J n J

 + +
 

+ − =
 
 

− + +  

 

0 0
2 , ,

0

wf
F G H

MgL

   

   

+ −     
= = =     

− − − −     
 

Eq. (29) can be expressed in the form: 

 ( )r lI J K v v + = −  (31) 

,I J and K in (31) 

( ) ( )
2 2

2 2

2 2

1
, ,

2 2 2 2
w m w

W W W
I mW J J n J J f K

R R R
  = + + + = + =  

Consider the following variables 1 2,x x as states and u as input. 
Tx represents the transpose of x . 

 1 2, , , , , , ,
T T T

l rv v        = = =   x x u  
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Therefore, the state equation of the TWSBR is derived from Eq. (30) and Eq. (31). 

 
.

1 1 1 1A B= +x x u  (32) 

 
.

2 2 2 2A B= +x x u  (33) 

The matrix 1A  in the state-space model is defined as 

 1

1 1 1

1 1 1

0 0 1 0

0 0 0 1

0 (3,2) (3,3) (3,4)

0 (4,2) (4,3) (4,4)

A
A A A

A A A

 
 
 =
 
 
 

 (34) 

The matrix 1B  in the state-space model is defined as 

 1

1 1

1 1

0 0

0 0

(3) (3)

(4) (4)

B
B B

B B

 
 
 =
 
 
 

 (35) 

The matrix 2A  in the state-space model is defined as 

 
2

0 1

0 /
A

J I

 
=  

− 
 (36) 

The matrix 2B in the state-space model is defined as 

 2

0 0

/ /
B

K I K I

 
=  

− 
 (37) 

The variables in the 1 2 1, ,A A B and 2B matrix are defined as 

1(3,2) (1,2) / det( )A gMLE E= − , 1(4,2) (1,1) / det( )A gMLE E= ,

( )1(3,3) 2 (2,2) (1,2) / det( )wA f E E E = − + +   , 

( )1(4,3) 2 (1,2) (1,1) / det( )wA f E E E = + +   , 

1(3,4) 2 [ (2,2) (1,2)] / det( )A E E E= +  

1(4,4) 2 [ (1,1) (1,2)] / det( )A E E E= − +  

1(3) [ (2,2) (1,2)] / det( )B E E E= +  

1(4) [ (1,1) (1,2)] / det( )B E E E= − +  
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2det( ) (1,1) (2,2) (1,2)E E E E= −  

The state space model of TWSBR (with parameters from table 1) is divided into two subsystems, as shown below: 

The state equation of the self-balancing subsystem is as follows: 

 

0 0 1 0 0 0

0 0 0 1 0 0

0 55.540 0.610 0.610 9.385 9.385

0 62.794 0.316 0.316 4.857 4.857

 
l

r

v

v









       
       

        = +         −  
       

− − −        

 (38) 

The state equation of the steering subsystem is as follows: 

 
6

 
0 1 0 0

0 11.742 61.146 61.14

l

r

v

v





        
= +        

− −        
 (39) 

With the state space equations, it can be calculated that the system is completely controllable and observable. 

3. Controller design 

Fig.2 shows the system block diagram of the LMI-SMC method. First, TWSBR is divided into a self-balancing 

and steering subsystem. Then, an LMI-SMC control method is proposed to deal with the two subsystems in 

TWSBR. The controller of the self-balancing subsystem implements system stabilization control, while the 

steering subsystem implements trajectory tracking control. 

 

 

Figure 2. Block diagram of the control method of TWSBR 

3.1. self-balancing system 

3.1.1. System description 

For the self-balancing subsystem, as in the state space equation (38), the control goal is to converge 1x to 0, and 

the self-balancing system is stabilized. 
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3.1.2. Equivalent sliding mode control 

Considering uncertainty and interference ( , )f x t , Eq. (32) can be written as: 
.

1 1 1 1( ( , )).u f x t= + +x A x B

Where,
0| ( , ) | , 0.ff x t   „  

Firstly, the sliding mode function s of sliding mode control is designed: 

 
T

1s =B Px  (40) 

where, P is a 4×4 order positive definite matrix, and 0s =  is realized through the design of P . 

So, a sliding mode controller is designed: 

 
eq n( )u t u u= +  (41) 

According to the equivalent control principle, taking ( , ) 0f x t = , then from 1 1( ) ( )x t t u= +A x B and 0s = , 

we can get 
.

T T

1 1 1 1( ( ) ) 0s t u= = + =B P x B P A x B . 

Thereby 

T 1 T

eq 1 1 1 1( ) ( )u t−= − B PB B PA x  (42) 

To ensure 0s  , a robust control term is taken 

( )
1

T T

n 1 1 1 1 f 0 sgn( )u s 
−
 = − +
 

B PB B PB (43) 

Theorem 1: For the state space Eq.(38), if the sliding mode controller of the proposed Eq.(41) is used, as well as 

the equivalent control rate of Eq.(42) and the robust control term of Eq.(43), then the system is asymptotically 

stable. 

Proof: Take the Lyapunov function. 

 
21

2
V s=  (44) 

Where, 

 
.

T T

1 1 1 1( ) ( ( ) ( ( , ))) s t t u f x t= = + +B P x B P A x B  (45) 

T T T

1 1 1 1 1 1( ) ( , ) t u f x t= + +B PA x B PB B PB  

( )(
1

T T T T

1 1 1 1 1 1 1( ) ( ) t t
−

= + −B PA x B PB B PB B PA x  

( ) )1
T T T

1 1 1 1 f 0 1 1sgn( ) ( , )s f x t 
−
 − + +
 

B PB B PB B PB  

T T

1 1 f 0 1 1sgn( ) ( , )s f x t  = − + +
 

B PB B PB  

Therefore, 
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T T

1 1 0 1 1 0| | ( , ) | |fV ss s f x t s   = = − + +  −
 

B PB B PB  (46) 

This completes the proof. 

3.1.3. Sliding mode control based on auxiliary feedback 

Use LMI to design P . 

To solve the symmetric positive definite matrix P in the control law, the control law formula is written as 

 ( ) ( )u t v t= − +Kx  (47) 

where,
eq n( )v t u u= + +Kx  

Then equation becomes 

 
.

1 1( ) ( ) ( ( , ))t t v f x t= + +x A x B  (48) 

where, 1 1 1  .= −A A B K  

Theorem 2: K is designed to make 1A Hurwitz, thus ensuring the stability of the closed-loop system. 

 

Proof: Take the Lyapunov function 

 
TV = x Px  (49) 

Therefore 

 
.

T T T T
1 1 1 12 2 ( ( ) ( ( , ))) 2 ( ) 2 ( ( , ))V t v f x t t v f x t= = + + = + +x P x x P A x B x PA x x PB  (50) 

From the analysis of the control law formula, it can be known that there exists 
T

0 1, ( ) 0t t s = =B Px t holds 

true, namely 
T T

1 0s = =x PB is established, then the above formula becomes 

 ( )T
T T

1 1 12V = = +x PA x x PA A P x  (51) 

 In order to ensure that 0V  , we need 

 
T

11 0+ PA A P  (52) 

Multiply 
1−

P by the left and right sides of 
T

1 1+PA A P respectively, and get 

 
T

1 1
1 1 0− −+ A P P A  (53) 

Take
1−=X P , then 

 
T

T
1 1 1 1 1 10,( ) ( ) 0+  − + − A X XA A B K X X A B K  (54) 

Take =L KX , then 
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T T T

1 1 1 1 0− + − A X B L XA L B  (55) 

Then 

 
T T T

1 1 1 1+  +A X XA B L L B  (56) 

This completes the proof. 

In addition, in LMI design, it is necessary to ensure that P is a symmetric positive definite matrix. 

 
T T0 or =  =P P X X  (57) 

3.2. navigation system 

3.2.1. System description 

For the steering subsystem, as in the state space equation (39), the control goal is 2x to converge to rx and to 

achieve system trajectory tracking of the self-balancing system, where rx is the ideal instruction. 

3.2.2. Controller design 

Define the tracking error as rz x x= − , then 

 
. . .

r r2 2z u= − = + + −x x A x B d x  (58) 

The tracking error z is designed as a sliding mode function, and the control law is designed as 

 r s= + +u Fx u u  (59) 

Where F  is the state feedback gain, which can be obtained by designing the LMI. Taking the feedforward control 

term
.

1 1
rr r 2 2 r 2

− −= − − +u Fx B A x B x  , sliding mode robust term
1 1

s 2 ( sgn( )), ,n

i iR d− = −  u B η z η  , 

and  
T

1 1sgn( ) sgn sgnn nz z =η z  

Then 

 

.
1 1 1

rr 2 2 r 2 2

.
1 1 1

r2 2 r 2 2

( sgn( ))

( sgn( ))

− − −

− − −

= − − + −

= − + −

u Fx Fx B A x B x B η z

Fz B A x B x B η z

 (60) 

And 

 

. . .
1 1 1

r r2 2 2 2 r 2 2

. .

r r2 2 2 r

2 2

( sgn( ))

sgn( )

sgn( )

z z

z

− − − 
= + − + − + − 

 

= + − + − + −

= + − +

z A x B Fz B A x B x B η z d x

A x B F A x x η d x

A z B F η z d

 (61) 

Theorem 3: If the inequality is satisfied 

 
T T

2 2 0+ + + A P M PA M  (62) 
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Where,
1

2( )−=F PB M. 

The closed-loop system comprising the controlled object Eq.(39) and the control law Eq.(59) is asymptotically 

stable. 

Proof: Take the Lyapunov function 

 
TV = z Pz  (63) 

Where,  idiag p=P is a diagonal matrix, i 0p  . 

Then 

 

( )

( )

..
T T T T

T T

2 2 2 2

T T T T T T

2 2

T T T

2 2

T T T T T

2 2 2 2

( sgn( ) ) ( sgn( ) )

(  sgn( ) )

( sgn( ) )

V


= + = +

= + − + + + − +

= + + − +

+ + + − +

 + + + =

z P z z P z z Pz z Pz

A z B Fz η z d Pz z P A z B Fz η z d

z A Pz z F B Pz η z d Pz

z PA z z PB Fz z P η z d

z A P F B P PA PB F z z Ωz

 (64) 

Where,

( )

( )

T T T T T

2 2 2 2

1

1

, ( sgn( ) ) 0, ( sgn( ) )

0.

n

i i i i

i

n

i i i i

i

d p z

d p z





=

=

= + + + − + = − +  − +

= − + 





Ω A P F B P PA PB F η z d Pz z P η z d

 

In order to ensure 0V  , it needs to satisfy 0Ω , that is 

 
T T T

2 2 2 2 0+ + + A P F B P PA PB F  (65) 

In the LMI equation (65), since both F and P are unknown, to solve the LMI, they need to be linearized, setting

2=M PB F , at this time LMI is expressed as 

 
T T

2 2 0+ + + A P M PA M  (66) 

Through LMI, we can get M  and P , so we can get
1

2( )−=F PB M .  

According to
T 0V z Qz  , we can know that when 0V  , 0z  . According to Lasalle’s invariance theorem, 

when t approaches infinity, z  approaches zero infinitely.  

This completes the proof. 

4. Results and discussion 

4.1. self-balancing subsystem stabilization control 

The related robot self-balancing subsystem stabilization control simulation experiment was carried out in the 

Simulink simulation environment, which verified the effectiveness, stability, and robustness of the balanced aspect 

of the LMI-SMC controlled TWSBR system. The system parameters of the TWSBR during the experiment are: 

The sampling time is 10T =  ms, the initial state of the system is
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(0) 0, (0) 0.3, (0) 0.1, (0) 0.3   = = = =  , the ideal control task is (0) 0, (0) 0, = =

(0) 0, (0) 0 = = . Use the sliding mode controller Eq.(41), and take
00.90, 0.10f = = . 

In the same experimental environment, the control effects of the continuous function (th(S)), the sign function 

(sgn(S)), the hyperbolic tangent function (tanh(S)), and the saturation function (sat(S)) on LMI-SMC method are 

tested. 

Based on the experimental results and image analysis presented in Fig.3, the performance of different 

functions in SMC can be evaluated in detail. The sign function (sgn(S)) exhibits severe chattering in the control 

input (Fig.3(e)). Although it performs well in terms of average angle and angular velocity control (Fig.3(a) and 

3(b)), its practical application may lead to rapid actuator wear and the introduction of high frequency noise, 

thereby affecting the long-term stability and reliability of the system. The saturation function (sat(S)) demonstrates 

excellent performance across all aspects. It shows stability and minimal overshoot in average angle (Fig.3(a)), 

angular velocity control (Fig.3(b)), pitch angle (Fig.3(c)), and pitch angular velocity (Fig.3(d)). 

 

Figure 3. Control performance of different function styles. (a)The average angle of the left and right wheels. 

(b)Average angle speed of the left and right wheels. (c)Body pitch angle. (d)body pitch angle speed. (e)Control 

input. (f)Sliding surface about SMC. 

Additionally, the chattering in the control input is significantly reduced (Fig.3(e)), and the sliding surface 

converges well (Fig.3(f)), indicating superior control performance and smoothness in SMC. The hyperbolic 

tangent function (tanh(S)) and the continuous function (th(S)), while exhibiting good smooth control performance, 

have slightly higher overshoot and slower response compared to the saturation function. In Fig.3(a)(d), tanh(S) 

and th(S) show lower control accuracy and dynamic response compared to the saturation function. Their control 

inputs are smoother, effectively suppressing chattering (Fig.3(e)), and their sliding surfaces converge well 

(Fig.3(f)). However, they are somewhat deficient in terms of rapid response and precision. 

Therefore, considering all performance indicators, the saturation function (sat(S)) exhibits the best overall 

control performance in sliding mode control. The saturation function as the sliding mode controller in TWSBR 

systems is recommended to achieve superior control effects and system robustness. The saturation function is 

used, and the boundary layer thickness is ∆ = 0.05. From Eq.(56) and Eq.(57), X and L can be solved so that we 

can get 

2.2161 0.9628 2.6787 1.7761

0.9628 2.2159 1.7316 1.5750

2.6787 1.7316 5.6874 3.1574

1.7761 1.5750 3.1574 2.9177

 
 
 =
 
 
 

P  12.6884 17.2798 22.4561 20.9620=K  

It can be verified that K makes A1 Hurwitz. 
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4.1.1. Experiment one 

To better reflect the advantages of the LMI-SMC method proposed in this article, we first compare it with 

the pole placement(PP), Linear Quadratic Regulator(LQR), and Robust control based on linear matrix inequalities 

(LMI-H∞) methods to show the excellent control performance of the proposed method. 

In Fig.4, through the analysis of experimental results, LMI-SMC shows significant performance advantages 

in many aspects. First, the LMI-SMC controller exhibits minimal overshoot in the control of the average wheel 

angle (Fig. 4(a)) and the body pitch angle (Fig. 4(c)), indicating that it has better dynamic response characteristics. 

The overshoot of LMI-H∞ is the largest in the average wheel angle (Fig. 4(a)), and the overshoot of PP is the 

largest in the body pitch angle (Fig. 4(c)). Secondly, the overshoot of LMI-SMC in the control of the average 

angular velocity of the left and right wheels (Fig. 4(b)) and the body pitch angular velocity (Fig. 4(d)) is small, 

further demonstrating its superior performance in suppressing overshoot. In addition, the control input of the LMI-

SMC controller is within the limit range of -24V to 24V (Fig. 4(e)), which meets the actual requirements of the 

system, while LMI-H∞ and LQR The controller exceeded the limit, reaching 31v and -43v respectively, which is 

not ideal. Finally, the good convergence of LMI-SMC on the sliding surface (Fig. 4(f)) shows that it has strong 

robustness and control accuracy. In summary, the LMI-SMC method shows excellent performance in various 

control scenarios, verifying its feasibility and superiority as an efficient control method for two-wheeled self-

balancing robot systems.Tab. 2 shows the parameter selection of different controller types and optimized 

controllers’ gains. 

Table 2. Parameter selection of the LMI-SMC,PP,LQR and LMI −H∞ controller and determination of the K 

value. 

Controller Type Parameters K 

PP ζ=0.5, ωₙ=3, 

p=[-1.5-2.6i, -1.5+2.6i, -8, -10] 

K=[0.8391, 8.2436, 0.4079, 0.2342] 

LQR 10000 0 0 0

0 1 0 0
,

0 0 10000 0

0 0 0 1

 
 
 =
 
 
 

Q  

R=1 

K=[100.0000, 20.8668, 105.6967, 

5.9927] 

LMI-SMC δf=0.90, ε₀=0.10 K=[12.6884, 17.2798, 22.4561, 20.9620] 

LMI −H∞ q₁=1.0, q₂=1.0, q₃=1.0, q₄=1.0, ρ=1 K=[1.7546, 95.8777, 1.7977, 10.6114] 

 

4.1.2. Experiment two 

During the self-balancing control process of TWSBR, external impacts and other interferences make it easy to be 

disturbed, causing the load to shake unexpectedly. The purpose of this experiment is to verify the robustness of 

LMI-SMC. This paper designs and simulates external interference. During the simulation process, artificial 

interference f(t) = 0.3sint is added to affect the control performance of the controller. 

This experiment aims to verify the robustness of the LMI-SMC method under external disturbance conditions. 

The performance of the controller is affected by adding artificial disturbance f(t) = 0.3sint during the simulation 

process. Fig. 5 shows the control performance of different optimized controllers under disturbance conditions. 

The results show that the LMI-SMC controller performs well in many indicators. Specifically, LMI-SMC 

maintains minimal fluctuations and overshoots in the control of the average angle and the average angular velocity 

of the left and right wheels, showing high control accuracy and stability (Fig. 5(a) and Fig. 5(b)). In contrast, the 

LMI-H∞ and PP controllers exhibited large fluctuations and overshoots after the addition of disturbances, and the 
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control accuracy decreased significantly (Fig. 5(a) and Fig. 5(c)). In addition, the control input of the LMI-SMC 

controller is within the limit range of -24V to 24V, which meets the actual requirements of the system, while the 

LMI-H∞ and LQR controllers exceed this limit in the early stage of control, affecting the reliability and safety of 

the system (Fig. 5(e)). Finally, the good convergence of LMI-SMC on the sliding surface (Fig. 5(f)) further proves 

its robustness and control accuracy. In summary, the LMI-SMC method shows excellent control performance 

under external disturbance conditions, verifying its feasibility and superiority as an efficient control method for 

the two-wheeled self-balancing robot system. 

 

Figure 4. Control performance of different types of controllers. (a)The average angle of the left and right 

wheels. (b)Average angle speed of the left and right wheels. (c)Body pitch angle. (d)body pitch angle speed. 

(e)Control input. (f)Sliding surface about SMC. 

4.1.3. Experiment three 

The payload mass and robot height are changed to verify the robustness of the proposed control method to 

parameter uncertainty. 

(1) The payload mass M suddenly changes from 0.2kg to 0.3kg, while the wheel mass m remains at 0.065kg. 

(2) The TWSBR height suddenly changes from 0.14m to 0.20m. 

This paper analyzes in detail the control performance of four control methods (LMI-H∞, LQR, PP and LMI-

SMC) under three conditions: constant parameters (N-turning), weight adjustment (M-turning) and height 

adjustment (H-turning), and further verifies the robustness under different parameter changes. The specific 

experimental conditions are that the payload mass M changes from 0.2kg to 0.3kg, or the TWSBR height changes 

from 0.14m to 0.20m. In both cases, when the above four control methods are used as controllers, the control gain 

parameters remain unchanged. The experimental results of Fig.6, Fig.7, Fig.8, and Fig.9 show that the LMI-SMC 

control method (Fig.8) exhibits good control performance under all parameter adjustments. It performs best in 

terms of stability and control accuracy of the average angle of the left and right wheels, the average angular 

velocity, the pitch angle of the vehicle body, and the pitch angular velocity of the vehicle body, and the fluctuation 

of the control input is also the smallest. In contrast, the LMI-H∞ (Fig.9) and PP control methods (Fig.6) fluctuate 

greatly after parameter adjustment, and overshoot occurs, especially when adjusting the height, the system 

stability and control accuracy are significantly reduced. The LQR control method (Fig.7) maintains the stability 

of the system to a certain extent, but the control input still fluctuates. 
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Figure 5. Control performance of different types of controllers with interference f(t) = 0.3sint. (a)The average 

angle of the left and right wheels. (b)Average angle speed of the left and right wheels. (c)Body pitch angle. 

(d)body pitch angle speed. (e)Control input. (f)Sliding surface about SMC. 

 

Figure 6. Performance of PP controller after robot parameters change. (a)The average angle of the left and right 

wheels. (b)Average angle speed of the left and right wheels. (c)Body pitch angle. (d)Body pitch angle speed. 

(e)Control input. 

 

Figure 7. Performance of LQR controller after robot parameters change. (a)The average angle of the left and 

right wheels. (b)Average angle speed of the left and right wheels. (c)Body pitch angle. (d)Body pitch angle 

speed. (e)Control input. 
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Figure 8. Performance of LMI-SMC controller after robot parameters change. (a)The average angle of the left 

and right wheels. (b) Average angle speed of the left and right wheels. (c)Body pitch angle. (d)Body pitch angle 

speed. (e)Control input. (f)Sliding surface about SMC. 

 

Figure 9. Performance of LMI-H∞ controller after robot parameters change. (a)The average angle speed of the 

left and right wheels. (b)The average angle of the left and right wheels. (c)Body pitch angle. (d)Body pitch 

angle speed. (e)Control input. 

The robustness verification of load mass and height changes further demonstrates the superiority of the LMI-

SMC method in handling parameter uncertainty, ensuring the stability and control accuracy of the system under 

various parameter changes, thereby verifying its feasibility and superiority as an efficient two-wheeled self-

balancing robot system control method. 

4.2. Steering subsystem trajectory tracking 

A related robot steering subsystem trajectory tracking simulation experiment was conducted in the Simulink 

simulation environment, which verified the effectiveness, stability, and robustness of the steering trajectory 

tracking in the LMI-SMC control TWSBR system. We can get the values of the state equations 2A  and 2B  for the 
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controlled object Eq.(39). The ideal instructions for the two states are[sin cos ]t t , and the corresponding 

interferences are
T[50sin 50sin ]t t . 

To solve the LMI Eq.(66), take 

100000 0

0 100000

 
=  
 

P  

we can get 

0.0041 32.9711

0.0041 32.9711

 
=  

− − 
F  

 using the control Eq.(60), take
T[50 50]=η , 

When tracking the steering subsystem’s trajectory, the self-balancing subsystem’s saturation function is also 

used, and the boundary layer is ∆ = 0.05. In order to better reflect the advantages of the LMI-SMC method 

proposed in this paper, we compare it with pole placement (PP), linear quadratic regulator (LQR) and robust 

control based on linear matrix inequality (LMI-H∞) methods to demonstrate the excellent control performance of 

the proposed method. 

 

Figure 10. Trajectory tracking performance of PP 

Fig.10(a) and Fig.10(b) show the trajectory tracking performance of the PP method. Although it has good 

trajectory tracking ability, it has a large overshoot phenomenon and a slow initial response speed; Fig.11(a) and 

Fig.11(b) show the trajectory tracking performance of the LQR method, which shows good trajectory tracking 

control performance, fast response speed and small overshoot; Fig.12(a) and Fig.12(b) show the trajectory 

tracking performance of the LMI-SMC method, which performs best, has fast response speed and high-precision 

trajectory tracking ability, and almost no overshoot. Fig.13(a) and Fig.13(b) show the trajectory tracking 

performance of the LMI-H∞ method. This method has low control accuracy and poor trajectory tracking 

performance. Comprehensive comparison shows that the LMI-SMC method performs best in trajectory tracking 

control, verifying its feasibility and superiority as an efficient control method. 
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Figure 11. Trajectory tracking performance of LQR 

 

Figure 12. Trajectory tracking performance of LMI-SMC 

 

Figure 13. Trajectory tracking performance of LMI − H∞ 
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4.3. Evaluation system 

Since the controller control indicators are highly related to the robot dynamics, the evaluation indicators proposed 

include the average angle error of the left and right wheels of the self-balancing system as wheele = , and the 

pitch angle tracking error as
pitche = . Similarly, the steering angle tracking error of the steering subsystem is

yawe = , where and are the thI coordinates of the left and right wheel average angle and body pitch angle in 

the world coordinate system, respectively.   is the thI  coordinate of the robot’s steering angle in the world 

coordinate system. 

1) The integrated absolute pitch error and wheel angle rate error (IATE) are: 

 ( )wheel pitch
0

IATE .
t

e e dt= +  (67) 

2) The integration time product of absolute pitch angle error and wheel angle rate error (IAPE) is: 

 ( )wheel pitch
0

IAPE .
t

t e e dt= +  (68) 

3) The integral of the absolute value of the yaw angle (IASA) is: 

 yaw
0

IASA .
t

e dt=   (69) 

Where t is the control duration. IAPE is in addition to IATE, which does not consider duration. To make the above 

indicators more universal and objective, the dimensionless comprehensive weighted performance evaluation 

index (CWPEI) is defined as 

 
( ) ( )

1 2

2

wheel pitch wheel pitch

3

yaw max

CWPEI  IATE  IAPE
max , max ,

 IASA 

e e t e e t

e t

 



= +

+

 (70) 

Where 1 2,   and 3 are the weights of three user-defined indicators, respectively, 1 2 3 1  + + = . The value 

of ( )wheel pitchmax ,e e  can be set according to the experimental results. yaw max
e  represents the maximum 

steering angle. Since the quantitative performance of the three indicators is not equally important in the evaluation, 

the weights 1 2,   and 3  were set to values such as 0.3, 0.5, and 0.2, respectively, in this simulation test. The 

weights are chosen to penalize lateral tracking errors and minimize control inputs. The controller’s performance 

improves as the CWPEI value decreases. 

Table 3. CWPEI fluctuations under different controllers 

Exp. Controller IATE IAPE IASA CWPEI 

1 

 

PP 0.267 0.733 0.62 19.21% 

LQR 0.104 0.488 0.089 18.19% 

LMI-SMC 0.301 0.5 0.105 18.82% 

LMI-H∞ 5.809 4.373 2.385 23.61% 



Computer Fraud and Security  

ISSN (online): 1873-7056 

 

__________________________________________________________________________________________ 

66 
Vol: 2025 | Iss: 2 | 2025 

 

2 

 

PP-INTER 3.204 15.953 0.62 43.32% 

LQR-INTER 0.102 0.483 0.089 18.13% 

LMI-SMC-INTER 0.343 0.79 0.105 19.97% 

LMI-H∞-INTER 7.648 15.656 2.385 54.80% 

3 

 

PP-H 0.379 1.024 0.62 21.83% 

PP-W 0.274 0.726 0.62 19.43% 

LQR-H 0.213 1.016 0.089 24.03% 

LQR-W 0.102 0.479 0.089 19.12% 

LMI-SMC-H 0.375 0.679 0.105 19.88% 

LMI-SMC-W 0.397 0.566 0.105 19.41% 

LMI-H∞-H 8.417 4.834 2.385 32.91% 

LMI-H∞-W 5.926 4.402 2.385 26.51% 

 

To check the robustness of the controller, the controller performance evaluation index CWPEI is calculated, 

as shown in Fig.(14). The fluctuation of CWPEI can be calculated using the percentage change of CWPEI: 

 Controller

| max (CWPEI) min (CWPEI) |

max (CWPEI)
Per

−
=  (71) 

 

Figure 14. CWPEI in robustness test for different controllers. 
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Fig.14 shows that LMI-SMC Per (5.76%)is smaller than
PP LQR,Per Per , and

LMI-HPer


increased by 55.66%, 

24.30% and 56.92% respectively. Based on the simulation results and overall performance analysis, the proposed 

LMI-SMC outperforms the PP controller, LQR, and LMI-H∞. 

5. simscape Results analysis 

To prove the superiority of our proposed LMI-SMC controller, we conducted a simulated 3D simulation model of 

TWSBR to verify our proposed controller’s feasibility more intuitively. Fig.15 shows the 3D model established 

through simscape and Fig.16 shows the procedure for establishing the 3D model. 

 

Figure 15. 3D-model of TWSBR 

 

Figure 16. Simulation block of the 3D-model 
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Figure 17. Performance of 3D model application controller LMI-SMC for TWSBR 

In order to more accurately simulate the experimental environment, we adjusted the dynamic friction 

coefficient between the left and right wheels and the ground to 0.3, the static friction coefficient to 0.5, added 

noise interference, and used the LMI-SMC controller to make the three-dimensional model of the TWSBR travel 

5 meters. 

The experimental results are shown in Fig.17. Fig.17(a) shows that the roll angle fluctuates within a small 

range of about 0.03 during driving, indicating that the LMISMC controller can effectively suppress the fluctuation 

of the roll angle and ensure the lateral stability of the system; Fig.17(b) shows that the TWSBR travels about 4.8 

meters smoothly in 10 seconds, close to the set 5-meter target, proving that the LMI-SMC controller can achieve 

relatively accurate displacement control under friction and noise interference; Fig.17(c) shows the speed curve. 

The speed of the TWSBR rises rapidly to about 0.5 m/s in the initial stage and remains relatively stable near this 

speed, verifying the effectiveness of the LMI-SMC controller in speed control; Fig.17(d) shows that the pitch 

angle rises rapidly to about 0.4 at startup, and then gradually decreases and tends to stabilize, indicating that the 

TWSBR has a slight tilt during startup, but under the action of the LMI-SMC controller, it can quickly recover 

and maintain an upright state; Fig.17(e) shows that the pitch angular velocity gradually stabilizes after a peak at 

startup, indicating that the LMI-SMC controller can effectively control the fluctuation of the pitch angular velocity 

and ensure the pitch stability of the system; Fig.17(f) shows that the yaw angle is basically kept near zero during 

the entire driving process, Fig.17(g) shows that the yaw angular velocity has a small fluctuation in the initial stage 

and then quickly tends to zero, indicating that the LMI-SMC controller can effectively suppress the change of the 

yaw angle and its velocity, ensuring that the system travels along the predetermined trajectory. In summary, the 

LMI-SMC controller can maintain the stability and control accuracy of the TWSBR in a complex environment 

containing dynamic friction, static friction and noise interference, verifying its feasibility and superiority in 

practical applications. 

4. Conclusion 

This paper designs a new sliding mode control method based on linear matrix inequality optimization. 

First, the motor mathematical model is combined with the Lagrangian equation of motion to re-establish the 

dynamic model of TWSBR. Then, based on the dynamic model, a new sliding mode control method based on 

linear matrix inequality optimization is designed, and the stability of TWSBR system is proved by using the 

Lyapunov theorem. Finally, the simulation experiment of the sliding mode control method and the stability 
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experiment of TWSBR are carried out, and a detailed comparison is made with other typical control methods. The 

simulation and experimental results show that the linear matrix inequality sliding mode controller can reduce the 

steady-state error, improve the control accuracy, and have good robustness. 

In future research, considering the chattering nature of the sliding mode control, this method can be used as 

a nominal system and fuzzified through fuzzy control, thereby reducing the system chattering and the uncertainty 

of the system parameters. 
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