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Abstract: In practical applications, learning accurate representations from multi-view data is a critical step. The 

approaches of shared-and-specific framework have consistently been a focal point in the field of multi-view 

classification, as they leverage both shared and complementary information through these representations. 

However, existing authoritative methods lack precision in extracting information from multi-view data, resulting 

in a significant amount of interfering redundant information. Furthermore, research on data augmentation at the 

level of specific information has not been fully developed. To address this issue, a novel semi-supervised multi-

view learning method, SEMA (Specific-InforMation Extraction and Augmentation), is proposed. SEMA 

achieves more accurate specific information by incorporating orthogonal constraints and designs a data 

augmentation strategy tailored for specific information. This strategy provides a large number of auxiliary 

samples for semi-supervised multi-view learning while preventing the consistency of shared information from 
being repeatedly augmented. The experimental results on seven benchmark datasets demonstrate the 

effectiveness of SEMA. 
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1. Introduction 

Multi-view data, a significant form of modern data representation, seeks to capture and document the same 

object from various dimensions or perspectives, including but not limited to color, texture, and shape. This 

approach provides a richer and more comprehensive feature description of the object [1,2]. Compared to single-

view data, multi-view data offers a deeper insight into the object’s intrinsic properties and external 

characteristics, thereby facilitating a more precise and detailed analysis. The labeling of multi-view data is 

prohibitively costly, whereas unlabeled data is readily accessible. Consequently, semi-supervised learning [3,4] 

is an effective strategy. Semi-supervised multi-view learning utilize a limited amount of labeled data combined 

with a large volume of unlabeled data for model training, aiming to enhance learning performance by extracting 

latent information from the unlabeled data. This learning method has shown considerable promise across various 

domains and applications, such as image recognition and natural language processing [5,6]. 
Unlike single-view data, multi-view data is characterized by three fundamental attributes. Firstly, it 

encompasses shared and specific information [7]. Shared information refers to the correlated data that is 

common across multiple views, whereas specific information denotes the unique data contained within each 

individual view [8]. Furthermore, multi-view data incorporates a significant amount of redundant information. 

The primary challenge lies in effectively integrating these diverse representations to maximize the utility of both 

shared and specific information, while simultaneously mitigating the detrimental effects of redundancy [9]. 

In recent years, significant advancements have been made in the field of multi-view representation 

learning, with the emergence of numerous semi-supervised and supervised learning methods. These 

methodologies can be broadly categorized into two classes: joint methods and alignment methods [10]. Joint 

methods integrate multiple views into a single unified feature vector, with common models including graph-

based models [11, 12] and neural network-based models [13]. On the other hand, alignment methods aim to 

project different views into a shared subspace to maximize the correlation between views, thereby ensuring 
feature consistency and facilitating their effective application in learning tasks [14,15]. Typical representatives 

of alignment methods include Canonical Correlation Analysis (CCA) [16] and its variants, such as Kernel CCA 

(KCCA) [17], Multi-view CCA (MCCA) [18], and DeepCCA [19]. 

However, existing methods exhibit certain limitations when handling multi-view data. While joint methods 

achieve representation fusion, they neglect the consensus attributes and information exchange between views, 

leading to a significant presence of redundant information [20]. Alignment methods capture relevant 

information between views but fail to fully exploit the unique internal information and rich complementary 

details of each view [21]. To address these limitations, the shared-and-specific approach has been developed, 

which effectively leverages the consensus and complementary characteristics of multi-view data by partitioning 

the information of each view into shared information and view-specific information [22]. For instance, Zhou et 

al. [23] developed a method to learn a shared dictionary alongside multiple view-specific dictionaries in the 
latent space, thereby fully exploiting consensus and complementary information. Hu et al. [24] introduced 

MvDML (sharable and individual multi-view metric learning), a framework that leverages individual features 

and shared features across all views through multi-view specific networks and a common network, respectively. 

Xu et al. [25] utilized deep neural networks to extract interactive information between pairwise views. Jia et al. 
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[26] proposed MDDRL, a multi-view deep discriminant representation learning method, which, by 

incorporating orthogonality and adversarial similarity constraints, simultaneously addresses the three 

characteristics of multi-view data, demonstrating that reducing redundancy in representation learning can 

effectively enhance learning performance. 

While the previously discussed shared-and-specific frameworks have marginally improved the 

performance of multi-view representation learning, they remain deficient in accurately extracting specific 
information. View-specific information refers to the unique attributes not possessed by other views. However, 

existing methods fail to adequately eliminate redundancy, resulting in insufficiently accurate extraction of 

specific information. To address this issue, we propose an innovative solution: enhancing orthogonality 

constraints to extract more accurate specific information and reduce redundancy. Orthogonal constraints force 

the specific information of different views to be mutually independent, thereby ensuring that the extracted 

specific information truly reflects the unique attributes of each view. Furthermore, orthogonal constraints also 

aid in eliminating redundant information, thereby improving the compactness and efficiency of the 

representation. Through theoretical analysis and experimental validation, our paper demonstrates the 

effectiveness and superiority of enhancing orthogonal constraints in improving the performance of multi-view 

representation learning. 

In the field of multi-view classification, semi-supervised learning techniques enhance model performance 

by generating additional training data from a limited set of labeled data through data augmentation methods. For 
example, Mixup [27] generates new samples by combining two existing samples in a proportional manner, 

MixMatch [28] extends label information by predicting low-entropy labels for unlabeled samples, and GVCA 

[29] utilizes both labeled and unlabeled data to expand feature distributions, thereby enhancing the diversity of 

feature representations. These approaches have effectively improved the accuracy and robustness of multi-view 

classification to a certain extent. 

However, existing data augmentation methods suffer from significant limitations in their design and 

application: they are not tailored to the shared-and-specific framework and typically enhance the entire 

representation of all views. For instance, new representations are generated by linearly combining the 

representations with the sum of combination weights equal to 1, thereby achieving overall enhancement for all 

views. This approach overlooks the fundamental differences between shared and specific information in multi-

view data, leading to repeated enhancement of shared information and consequently generating substantial 
redundancy. To address this issue, our paper proposes an innovative data augmentation method specifically 

designed for the shared-and-specific framework. When generating training samples using unlabeled data, this 

method only specifically enhances the specific information while keeping the shared information unchanged. 

This targeted augmentation strategy ensures that the unique attributes of each view are fully exploited and 

utilized, while avoiding redundant repetition of shared information. 

Based on the discussion, two critical aspects for semi-supervised multi-view learning based on the shared-

and-specific representation framework are the enhancement of the extraction method for specific information 

and the design of data augmentation strategies based on specific information. We introduce a novel semi-

supervised multi-view learning approach SEMA. The contributions of this paper are summarized as follows: 

Firstly, we introduce a novel semi-supervised multi-view learning method. This method achieves the 

accurate extraction of specific information by imposing orthogonality constraints on the shared and specific 

representations within each view and between the specific representations of different views. Secondary, a data 
augmentation method specifically designed for the shared-and-specific framework is proposed, offering both 

supervised and unsupervised information augmentation. This method fully leverages labeled and unlabeled data 

to generate a substantial number of reliable auxiliary samples through targeted enhancement of specific 

information, thereby enhancing the model’s accuracy and robustness. We conducted extensive experiments on 

seven public datasets. The experimental results validate the effectiveness and rationality of our approach. 

Further ablation studies confirm the feasibility and superiority of the method in specific information extraction 

and data augmentation. 

 

2. Multi-view deep partition representation learning 

 MDPRL (Multi-View Deep Partition Representation Learning) is an innovative method for multi-view 

representation learning, whose performance improvement is attributed to the strategic application of 

orthogonality and adversarial similarity constraints. The overall architecture is illustrated in Fig. 1. 

Consequently, the loss function of the proposed approach can be partitioned into four components: a 

classification loss cL  for categorization, the constraint loss specL , which aims to minimize redundancy in the 

extracted specific information; the constraint loss conL  for extracting consensus information, further reinforcing 

consistency across multiple views; and finally, the semi-supervised loss semiL , which leverages unlabeled data 

more effectively to boost model performance.  This divide-and-conquer strategy enables MDPRL to exhibit 

distinct advantages in the field of multi-view learning. The combined loss function can be presented as: 
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c spec con semiL L L L L        (1) 

where  ,   and   are trade-off parameters. 

 

Figure. 1. The architecture of our proposed approach. 

 

2.1 Consensus Information 

Suppose the sample set 
1

v
M

v d

v
X x


 R  is collected from M  views, where vd  denotes the feature 

dimensionality of the view v , with each view comprising N  samples. The sample set originating from view v  

can be represented as 
1

v
N

v v d
i

i
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
 R , where v

ix  signifies the representation of the thi  sample under view 

v , 1,2,i N . 

For consensus information, defining a set of neural networks 
1

M
v

c
v

f


where v
cf  captures the high-level 

consensus representation for the thv  view, the step can be represented by the following: 

 ,
v v v

ci c iy f x     (2) 

where ,
v d

vi cy R  and v
cf  is a nerual network that has a total of L  layers. 

 1
v v v v

c c c c

l l l l
f f f f

h W h b     (3) 

For layer l ( 1,2, ,l L ), the weight matrix 1l l
v

c

l m m
f

W R , where 0 vm d , Lm d . The bias vectors 

l
v

c

l m
f

b R , l
v

c

l m
f

h R  are the outputs of the thl  layer, and . . is the activation function. 

  Building on [25], we employ adversarial training to evaluate the similarity of the acquired representation 

,
v
i cy . We conceptualize the representation learning networks 

1

M
v

c
v

f


 as a set of generators, where the 

parameters are trained in parallel. We then utilize an M-class classifier as the discriminator D  to differentiate 

the distribution of each generated representation, which can be presented as: 

  v v
vi iP D G x   (4) 
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Upon the completion of training, the comprehensive consensus representations from all views are nearly 

identical. Consequently, we employ the average ,i cy  as a substitute, and get all the consensus information 

 ,
1

N
d

c i c
i

Y y


 R , which can be expressed as: 

, ,
1

1 M
v

i c i c
v

y y
M



    (5) 

2.2 Specific Information 

For the extraction of specific information, we define a collection of neural networks 
1

M
v
s

v
f


 to capture the 

view-specific representation, which can be formalized as follows: 

 ,
v v v

si s iy f x   (6) 

where ,
v d

vi sy R  and v
sf  is a nerual network that has a total of L  layers. 

 1
v v v v
s s s s

l l l l
f f f f

h W h b     (7) 

For layer l  ( 1,2, ,l L ), the weight matrix 1l l
v
s

l m m
f

W R , where 0 vm d , Lm d . The bias vectors 

l
v
s

l m
f

b R , l
v
s

l m
f

h R  are the outputs of the thl  layer, and   is the activation function. 

To effectively disentangle the shared information from the specific information across different views and 

significantly reduce information redundancy, we introduce an orthogonal constraint mechanism. Unlike 
traditional methods that focus solely on ensuring the absence of shared information within view-specific 

information, neglecting the potential correlations and redundancies among different view-specific information, 

our approach innovatively incorporates a new orthogonality constraint into the model. This constraint not only 

enforces the independence between view-specific information and shared information but also ensures the 

orthogonality among different view-specific information. As a result, a profound separation of view-specific 

information is successfully achieved. 

Let  ,
1

N
v v d
s i s

i
Y y


 R  be the specific information extracted from the thv  view, the orthogonality loss of 

the consensus information and view-specific information can be defined as: 

2

1

1

M
v

spec c s
F

v

L Y Y



 •   (8) 

where 
2

F
  is the squared Frobenius norm and the orthogonality loss among the view-specific information itself 

can be defined as: 

2

2

1 1

M M
v u

spec s s
F

v u v

L Y Y

  

  •   (8) 

Combining these two components, the final loss for this section can be expressed as: 

.
2 2

1 1 1

M M M
v v u

spec c s s s
F F

v v u v

L Y Y Y Y

   

   • • .  (9) 

2.3 Different kinds of information integration 

Building upon the foundations established in the preceding two sections, the initial step involves 
concatenating the features extracted from all views. This concatenation aims to obtain a comprehensive 

representation of both view-specific information and shared information, as demonstrated in (11) and (12): 

1 2, , , M
c c c cY Y Y Y 

 

•
• • •   (10) 
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1 2, , , M
s s s sY Y Y Y 

 

•
• • •   (11) 

Subsequently, the final representation is achieved through concatenation, as illustrated in (13): 

,s cY Y Y 
 

•
• •   (12) 

We designed a neural network   for classification, that is: 

 i iz y   (13) 

where iz  denotes the probability distribution over the possible classes. For classification, the cross-entropy loss 

is utilized, which is formulated as follows: 

1

log
C

c i i

c

L l z



    (14) 

where il  represents the one-hot encoding of the sample label for sample iy  and C  represents the total number 

of classes. 

3. Semi-supervised mixup 

The insufficiency of training data constitutes a prevalent challenge in machine learning, particularly within 

the context of multi-view learning. Mixup [27], recognized as an effective data augmentation technique, has 

inspired the development of an innovative semi-supervised blending approach in this study. This method aims to 
delve into the feature distribution between labeled and unlabeled data, thereby generating additional samples 

with reliable labels. The strategy comprises two components: labeled data augmentation and unlabeled data 

augmentation.  

 

3.1 Labeled data augmentation 

For labeled samples, our method begins by sampling a random variable '  from the Beta distribution. We 

calculate the final weight parameter by setting ' 'max( ,1 )    . Subsequently, for the specific information 

and labels derived from the labeled samples, augmentation is performed separately according to the following 

formulas: 

   

   

 

, , ,

, , ,

1 , 1,2, ,

1 , 1,2, ,

1

v v v
nm s n s m s

v v v
nm c n c m c

nm n m

y y y v M

y y y v M

l l l

 

 

 

   

   

  

  (15) 

where ,
v
n sy  and ,

v
m sy  represent the specific information extracted from two randomly chosen labeled samples 

v
nx  and v

mx  of the thv  view according to (6), ,
v
n cy  and ,

v
m cy  represent the corresponding shared information. nl  

and ml  denote their labels. Subsequently, the components are integrated according to (11), (12), and (13) to 

generate the final representation. During the prediction phase, rather than relying on (15), the objective is to 

ensure that the predicted results closely resemble the target representation, a process described by the following 

formula: 

 
2

c nm nm
F

L Y l    (16) 

 

3.2 Unlabeled data augmentation 

The aforementioned method can also be applied to unlabeled samples. Randomly select an unlabeled 

sample ux  and two labeled samples nx  and mx , and the corresponding labels for the labeled samples are nl  

and ml . According to (16), the augmented specific representation and labels obtained by mixing ux  and nx  are: 

   

 

, , ,1 , 1,2, ,

1

v v v
un s u s n s

un u n

y y y v M

l l l

 

 

   

  
  (17) 
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Similarly, the augmented specific representation and label obtained by mixing ux  and mx   can be 

expressed as: 

   

 

, , ,1 , 1,2, ,

1

v v v
um s u s m s

um u m

y y y v M

l l l

 

 

   

  
  (18) 

In (18)(19), ul  is unknown and therefore cannot participate directly in the training. To circumvent this 

unknown label, we can subtract the two augmented labels and conduct training by calculating the difference 

between the two samples. This step can be expressed as: 

  1un um n ml l l l                                                          (19) 

According to (12)(13), the final representation after augmentation can be expressed by the following 
formulas: 

1 2
, , , ,, , , M

un s un s un s un sY Y Y Y 
 

•
• • •   (20) 

1 2
, , , ,, , , M

um s um s um s um sY Y Y Y 
 

•
• • •   (21) 

, ,,un un s u cY Y Y 
 

•
• •                                                       (22) 

, ,,um um s u cY Y Y 
 

•
• •                                                      (23) 

Based on the above, we adopt prediction differences in the calculation of the objective function, rather than 
precise prediction results, which can be presented by the formula: 

        2

1

1
M

semi un um n m F
v

L Y Y l l   


   ‖ ‖                           (24) 

The enhancement process is specifically tailored to view-specific information, rather than raw features or 

shared information. Experimental results indicate that shared information tends to remain consistent across the 

entire sample set, while view-specific representations become increasingly distinct as noise levels are reduced. 

This approach yields samples of high quality and distinctiveness. Consequently, the decision boundaries of the 

trained classifiers are refined to be more distinct, enhancing the generalization and performance of the model. 

To prioritize the influence of sample n  on the overall performance, the parameter   is set above 0.5. 

4. Experiment 

 

4.1 Experimental Setup 

1) Datasets 
To comprehensively validate the effectiveness of the model, experiments were conducted on seven 

datasets: 

Caltech101 [30]: Comprises 101 object categories with a total of 9144 samples, employing the standard 

102-class setting. Additionally, a subset (Caltech101-7) consisting of 7 categories was selected from Caltech101 

for more refined evaluation. 

Internet Advertisements (AD) [31]: Focuses on the task of web page advertisement classification, 

containing two categories: advertisement and non-advertisement web pages. This dataset aims to test the 

model’s classification capability in complex web content. 

NUSWIDEOBJ [32]: A multi-view web image dataset with 30,000 images, covering 31 categories and 

providing rich view features. 

Flowers-102: A large flower image dataset comprising 102 categories with a total of 8189 images. 
HW [33]: Includes 2,000 images divided into 10 categories. Each image has been extracted with 6 types of 

features. 

Reuters: Contains feature representations of documents written in five different languages (English, 

French, German, Spanish, and Italian), covering 6 categories. 

These datasets, characterized by their varying number of categories, sample sizes, and view counts, 

collectively constitute a comprehensive testing platform. This platform is designed to validate the model’s 

effectiveness and robustness across different scenarios and tasks. Table 1 provides a detailed description of the 

seven datasets. 
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Table 1 Information of datasets 

Dataset # of samples # of views # of classes 

Caltech101 9 144 6 102 

Caltech101-7 1 474 6 7 

AD 3 279 3 2 

NUSWIDEOBJ 30 000 5 31 

Flowers-102 8 189 4 102 

HW 2 000 6 10 

Reuters 1 8758 5 6 

 

2) Baselines 

To validate the effectiveness of the proposed method, we compared it with several state-of-the-art 

approaches for multi-view classification tasks. Specifically, we employed two semi-supervised multi-view 

learning methods: Auto-weighted Multiple Graph Learning (AMGL) [34] and Multi-view Learning with 

Adaptive Neighbors (MLAN) [35]. Additionally, we considered five semi-supervised multi-view deep 
representation learning methods: Deep Canonically Correlated AutoEncoder (DCCAE) [36], Generative View-

Correlation Adaptation (GVCA) [29], Co-embedding [2], Learnable Graph Convolutional Network and Feature 

Fusion (LGCNFF) [37] and Generative Essential Graph Convolutional Network (GEGCN) [38]. 

3) Implementation Details 

In the experiments, the feature embedding networks v
cf  and v

sf  were implemented as three-layer fully 

connected networks with hidden and output layer sizes set to 512 and 256, respectively, and both employing the 

ReLU activation function. The classification network   comprised two hidden layers with sizes set to 256 and 

128. The batch size was set to 64, and the Adam optimizer was used with a learning rate of 0.0001. The network 

depth and the number of neurons per layer for the comparative methods were set according to their original 
versions. For DCCAE and GVCA, which are designed for two-view problems, we utilized a concatenation 

strategy to combine multiple views into two, and then selected the concatenation that achieved the highest 

classification accuracy. All experiments were conducted on the same computer with the following 

configuration: Intel i7 quad-core 3.6GHz CPU, two NVIDIA GTX1080Ti GPUs, and 16GB of RAM. 

Classification accuracy and F1-score were the primary evaluation metrics for these experiments. Each 

experiment was repeated 20 times, and the average value was taken as the result. Each dataset was randomly 

divided into training and testing sets, each comprising 50% of the data. To simulate a semi-supervised learning 

environment, a certain proportion of the training data (ranging from 10% to 90%) was randomly selected as 

labeled data, with the remainder serving as unlabeled data. For the three parameters in (1), they were set to 

 =0.5,  =0.7 and  =1.0. 

 

4.2 Results 

 

 
(a)Caltech-7                       (b) Caltech-101                (c)NUSWIDEOBJ 

 
(d) Flower                                (e)AD                               (f)HW                                    (g)Reuters 

Figure. 2 Performance comparison of our approach and compared methods on all the datasets 
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Table 2 F1-score and training time for all datasets across different methods 
Method Dataset (F1-socre|Training time: s) 

Caltech101
-7 

Caltech101 NUSWIDEO
BJ 

Flower AD HW Reuters 

AMGL 80.46|27.27 39.44|133.4
5 

11.84|598.23 20.42|392.4
8 

80.63|52.53 45.59|23.31 - 

DCCAE 90.28|43.94 41.29|491.8
8 

16.23|1631.19 23.57|689.9
9 

85.98|64.63 51.18|41.53 - 

MLAN 79.83|39.52 38.31|274.3
7 

14.26|1289.31 22.56|481.2
3 

82.66|81.92 52.67|28.15 - 

CO-
EMBEDDIIN

G 

90.77|248.7
5 

45.76|2831.
25 

23.17|2293.24 29.71|3674.
22 

92.78|392.5
6 

79.31|273.8
2 

81.94|3928.3
1 

GVCA 91.83|381.2
0 

42.12|3493.
05 

22.99|3294.53 31.34|5929.
47 

91.34|521.1
2 

58.72|682.9
1 

74.87|22124.
26 

LGCNFF 90.92|41.69 37.42|312.3
1 

20.21|1461.82 21.49|1589.
22 

92.65|96.06 96.75|56.89 61.24|1942.3
9 

GEGCN 92.20|74.07 32.89|593.2
9 

21.63|2194.08 24.35|1733.
93 

93.64|118.3
5 

95.25|92.03 62.54|2364.4
0 

SEMA 94.44|223.1
6 

60.73|1120.
58 

28.31|2632.44 53.13|1702.
05 

94.18|187.4
2 

97.36|213.1
7 

83.25|18327.
64 

 

The experimental results presented in Fig. 2 thoroughly validate the effectiveness of the proposed method. 

On the Reuters dataset, due to computational complexity limitations imposed by the algorithm and machine 

resources, certain models encountered timeouts or memory insufficiency errors and are accordingly not 

displayed. When addressing datasets with already high classification accuracy (such as Caltech101-7, AD, HW, 

and Reuters), although further improvements present challenges, the method consistently demonstrates a stable 
advantage. For datasets with relatively lower classification accuracy (such as Caltech101, NUSWIDEOBJ, and 

Flower), the method notably outperforms other competing approaches. 

Table 2 presents the F1-score and training time of SEMA and other comparative methods across various 

datasets with 50% labeled data. The results indicate that SEMA significantly outperforms other methods in 

terms of F1-score, while its training time remains within an acceptable range. 

This significant advantage primarily stems from two key factors: Firstly, the method, in its information 

processing, not only emphasizes the integration of shared and complementary information but also endeavors to 

minimize redundancy to the greatest extent, thereby effectively enhancing the precision of the representation. 

Secondly, the implemented data augmentation strategy, by combining labeled and unlabeled data, generates a 

more diverse and robust set of auxiliary samples. This not only strengthens the model’s robustness but also 

provides substantial support for performance improvement. 

To visually demonstrate the classification performance of SEMA, we obtained the representations of all 
methods on four datasets and projected them into a two-dimensional space using the t-SNE (t-distributed 

stochastic neighbor embedding) dimensionality reduction technique. Subsequently, the mapped two-dimensional 

data were color-coded according to the true labels. As illustrated in Fig. 3-6, these visualizations clearly show 

that the feature representations generated by SEMA are more compact within classes and exhibit clear inter-

class boundaries, further validating the effectiveness and superiority of the model. 

 

4.3 Ablation Study 

To verify the effectiveness of each component, a series of ablation experiments were designed. In these 

experiments, the proportion of labeled data was fixed at 50%, and a total of 20 repeated experiments were 

conducted across multiple datasets to ensure the stability and reliability of the results. The average classification 

accuracy was used as the primary evaluation metric, with detailed results presented in Table 3. 
 

Table 3 Ablation Study 

Method B+complete-A C+complete-A SEMA 

Caltech101-7 96.53 97.68 97.79 

Caltech101 59.52 60.80 62.73 

NUSWIDEOBJ 41.69 42.14 42.26 

Flower 64.88 65.31 66.77 

AD 94.46 95.53 95.89 

HW 96.77 97.48 97.57 

Reuters 83.46 83.84 84.07 
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B+complete-A: Employing the conventional shared-specific framework, as utilized in MDDRL, this 

approach ensures that specific information is only unrelated to shared information during extraction. In the 

semi-supervised learning module, data augmentation operations are applied to the entire representation. 

C+complete-A: Based on the shared-specific framework, a new orthogonality constraint is introduced to 

enhance the orthogonality between specific information. In the semi-supervised learning module, the global 

enhancement strategy is still employed. 
The experimental results demonstrate that the reinforced constraints effectively reduce redundant 

information in the representation, thereby enhancing the model’s representational capacity. Additionally, the 

introduced specific data augmentation strategy has shown its superiority by significantly improving the model’s 

performance in a semi-supervised learning setting. 

 
(a)GVCA       (b)CO-EMBEDDING          (c) LGCNFF                 (d)GEGCN                (e)SEMA 

Figure. 3 T-SNE visualization results on Caltech101-7 dataset 

 
(a)GVCA       (b)CO-EMBEDDING          (c) LGCNFF                 (d)GEGCN                (e)SEMA 

Figure. 4 T-SNE visualization results on AD dataset 

 
(a)GVCA       (b)CO-EMBEDDING          (c) LGCNFF                 (d)GEGCN                (e)SEMA 

Figure. 5 T-SNE visualization results on HW dataset 

 
(a)GVCA       (b)CO-EMBEDDING          (c) LGCNFF                 (d)GEGCN                (e)SEMA 

Figure. 6 T-SNE visualization results on Reuters dataset 

 

4.4 Effect of Trade-off Parameters 

 

(a)Caltech101-7                       (b) NUSWIDEOBJ 

Figure. 7 Influence of trade-off parameters on model 

 

This experiment deeply explores the impact of trade-off parameters   and   on model performance. To 

find the optimal combination of these two parameters, a grid search method was used, and a thorough search 

was conducted under the condition of 50% labeled data. Each experiment was repeated 20 times to ensure result 
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stability and reliability, with average classification accuracy serving as the evaluation metric. Fig. 7 clearly 

illustrates the experimental outcomes on the Caltech101-7 and NUSWIDEOBJ datasets. For Caltech101-7, the 

optimal values for α and β were identified as 0.7 and 0.5, respectively; meanwhile, for NUSWIDEOBJ, the 

optimal values were 0.6 for both parameters. The results indicate a significant decline in model performance 

when   and   values are either too high or too low, underscoring the criticality of parameter selection. 

Furthermore, similar experiments were performed on additional datasets. The optimal values for   and   

were 0.8 and 0.5 on Caltech101, 0.7 and 0.6 on AD, 0.9 and 0.5 on Flower, 0.4 and 0.3 on HW, and 0.8 and 0.4 

on Reuters. These findings further substantiate the substantial impact of trade-off parameters on model 

performance and reveal the variability in optimal values across different datasets. 

 

5. Conclusion 

In this paper, we propose an innovative unified semi-supervised multi-view feature learning method 

SEMA. SEMA leverages a shared-and-specific framework and significantly enhances orthogonality constraints. 

By deeply exploring shared and view-specific information, this approach effectively reduces redundancy in the 
learned feature representations, thereby generating more precise and efficient feature representations. 

Furthermore, a meticulously designed specific data augmentation strategy, which utilizes labeled and unlabeled 

data to generate reliable auxiliary samples, further enhances the model’s performance in a semi-supervised 

learning environment. Extensive experimental evaluations consistently demonstrate the superior effectiveness of 

this method across seven public datasets, fully validating its substantial potential and value in practical 

applications. More comprehensive ablation experiments further reveal that each module within the method plays 

an indispensable role, collectively contributing to a significant enhancement in the final performance. Future 

research can further explore more complex and diverse data augmentation strategies to better accommodate 

various types of datasets and task requirements. Additionally, investigating how to more effectively integrate 

enhanced orthogonality constraints with deep learning models to achieve higher-level feature representation and 

classification performance remains an important direction worthy of in-depth research and exploration.  
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