
Computer Fraud and Security  

ISSN (online): 1873-7056 

 

__________________________________________________________________________________________ 

755 
Vol: 2025 | Iss: 1 | 2025 

 

IFDMamba: An Image Forgery Detection Method Based on Context-aware 

Mamba 
 

Aifan Zhuang1, Zhijun Chen1,*, Xiaozhao Li2, Yimiao Liu3,4, Zhiguang Lv5, Yajing Shi6 
1School of Law, People’s Public Security University of China, Beijing 100038, China 

2Institute of Electrical Engineering and Advanced Electromagnetic Drive Technology, Qilu Zhongke, Jinan 

250013, Shandong, China 
3Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China 

4School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, 

Beijing 100049, China 
5Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao 125105, Liaoning, 

China 
6Institute of Computing Technology, China Academy of Railway Science Corporation Limited, Beijing 100081, 

China 

*Corresponding Author. 

 

Abstract: 

To address the challenges in existing image forgery detection methods, including the difficulty of effectively 

capturing and integrating local fine-grained features with global background features and the overlooked 

relative definition of pristine and forged pixels within a single image, we propose IFDMamba, a context-aware 

Mamba-based Image Forgery Detection method. Firstly, we propose a novel context-aware Mamba, which 

enhances local contextual relationships between image patches by constructing a Gated Spatial Convolution 

(GaSC) module. Additionally, a bidirectional Mamba model is introduced to capture the global contextual 

relationships across the entire sequence of image patches. This enables the effective extraction and 

complementary integration of local fine-grained features and global background features in forged images, 

facilitating accurate localization of forged regions in complex backgrounds. Secondly, we propose an improved 

NT-Xent contrastive loss tailored for image forgery detection tasks, utilizing pixel-wise contrastive learning 

to supervise the extraction of high-level forensic features for each image. This loss function effectively captures 

the inherent distinction between pristine and forged pixels within an image. Finally, during the model testing 

phase, we use K-means to map the extracted high-level forensic features to the predicted forgery masks in real-

time, further minimizing cross-image interference in the training data. Experimental results demonstrate that 

IFDMamba achieves consistent performance improvements over mainstream methods on five public 

datasets—Coverage, NIST, CASIA, MISD, and FF++. The method exhibits strong forgery detection capability 

and robustness in complex backgrounds, and holds significant application value in combating criminal 

networks in the black and gray markets that rely on image forgery. 

Keywords: image evidence, image forgery detection, Mamba, context-aware, contrastive learning 

INTRODUCTION 

As image editing tools and generative models continue to evolve, ordinary users can now easily manipulate digital 

images without specialized knowledge. The convenience and high realism of image forgery techniques present 

significant challenges to legislative, judicial, and administrative oversight in combating criminal activities in the 

black and gray markets. The rise of new types of internet-based crimes relying on image forgery is exhibiting a 

trend of industrialization and sophistication, severely threatening citizens’ rights and social security. Meanwhile, 

the technical barriers to digital forensics hinder the collection, traceability, and detection of electronic evidence. 

To effectively address these challenges, innovating image forgery detection technologies is a logical and necessary 

approach to tackling the key pain points in managing criminal networks in the black and gray markets. 

Traditional image forgery detection methods [1-4] mainly rely on handcrafted features to identify forged regions 

in images. However, these methods struggle to generalize when faced with diverse and complex forgery 

techniques, exhibiting significant limitations. In recent years, classification-based deep learning methods [5-8] 

have significantly outperformed traditional approaches in terms of performance. These methods automatically 

learn forensic features from images, enabling more accurate detection and localization of forged regions, and 

demonstrating stronger generalization ability when dealing with unseen forgeries. Some studies focus on detecting 
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specific types of forgeries, such as splicing [9], copy-move [10], and inpainting [11], achieving good results in 

those particular tasks. Additionally, more robust and practical solutions have been developed to detect complex 

and mixed forgeries, even when they are accompanied by transmission degradation and various post-processing 

operations [5-7,12]. 

Although existing image forgery detection methods have achieved notable progress, they still face several 

challenges. First, many approaches focus on extracting features from local regions of the image, such as forgery 

boundary artifacts [5,6], compression artifacts [12], and noise features [7]. However, these methods often overlook 

the integration of global information when handling complex backgrounds. The lack of effective complementarity 

between local fine-grained features and global background features makes it difficult for detection models to 

accurately identify forgery regions, especially in the presence of complex backgrounds or mixed types of forgeries. 

Second, existing deep learning-based detection methods typically simplify the problem as a binary classification 

task, categorizing pixels as either pristine or forged. However, the definition of pristine and forged pixels is only 

relative within a single image, a nuance that is often ignored by these methods. As a result, forged (or pristine) 

regions from different images are unnecessarily mixed into the same category, leading to potential 

misclassifications. 

In recent years, State Space Models (SSMs) have been introduced into the field of deep learning [13-15]. Inspired 

by continuous state space models in control systems and combined with HiPPO [16] initialization, the Linear State 

Space Layer (LSSL) [14] has shown effectiveness in handling long-range dependencies. However, LSSL has high 

computational and memory requirements, which makes it difficult to apply to complex tasks. To address this 

issue, the Structured State-Space Sequence Model (S4) [13] was proposed, which normalizes parameters into a 

diagonal structure and has become a potential alternative to CNNs or Transformers. Since then, various structured 

SSMs have been proposed, including a data-dependent SSM introduced by Gu and Dao [17], which builds a 

universal language model backbone called Mamba. Mamba surpasses Transformers in handling large-scale real-

world datasets, showcasing its ability to scale linearly with increasing data size. Following the success of S4 in 

long-sequence data modeling, researchers have gradually extended their work to the visual domain. S4ND [18], 

the first model to apply SSMs to visual tasks, demonstrated its potential to compete with ViT [19]. DiffuSSM [20] 

further employs an SSM-based backbone to replace traditional attention mechanisms, enabling the generation of 

high-resolution images at an acceptable computational cost. 

To address the challenges in image forgery detection, and inspired by the ability of SSMs to handle long-range 

dependencies and global contextual relationships in visual tasks, we propose IFDMamba, an image forgery 

detection method based on context-aware Mamba. This method extracts both local fine-grained features and 

global background features from forged images using context-aware Mamba. It also employs pixel-wise 

contrastive learning to explicitly model the relative nature of pristine and forged pixels within a single image. Our 

primary contributions are outlined as follows: 

(1) We propose a novel context-aware Mamba model, which effectively enhances local contextual relationships 

between image patches using a newly introduced Gated Spatial Convolution (GaSC) module. Additionally, by 

incorporating a bidirectional Mamba modeling mechanism, the model captures global contextual relationships 

across the entire sequence of image patches. This enables the effective extraction and complementary integration 

of local fine-grained features and global background features in forged images, enhancing the model’s precision 

in localizing forged regions within complex backgrounds. 

(2) We design an improved NT-Xent contrastive loss tailored for image forgery detection tasks. This loss function 

employs pixel-wise contrastive learning to supervise the extraction of high-level forensic features on a per-image 

basis, explicitly modeling the relative relationship between pristine and forged pixels within a single image. This 

approach effectively improves both the precision and robustness of forgery detection. 

(3) Extensive experiments were conducted on five public datasets—Coverage, NIST, CASIA, MISD, and FF++. 

The results demonstrate that IFDMamba accurately detects forged regions in complex backgrounds and 

significantly reduces false positives, outperforming existing mainstream methods. 
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METHODOLOGY 

This section elaborates on the conceptual framework and practical implementation details of IFDMamba. First, 

we introduce the foundational concepts related to SSMs, including both their continuous and discrete forms, and 

provide an overview of the efficient computational methods for selective SSM (Mamba). Next, we present the 

overall framework of the model and conduct an in-depth analysis of its key components, including the context-

aware mamba encoder and the GaSC module. Following this, we introduce the improved NT-Xent contrastive 

loss and discuss the model testing approach based on unsupervised clustering. Finally, we analyze the algorithmic 

complexity of IFDMamba. 

Preliminaries 

State space models  

SSMs are conceptualized as linear time-invariant (LTI) systems that transform an input sequence 𝑥(𝑡) ∈ ℝ𝐿 into 

an output sequence 𝑦(𝑡) ∈ ℝ𝐿  via a hidden state. SSMs are generally described using the following system of 

linear ordinary differential equations (ODEs): 

ℎ′(𝑡) = 𝑨ℎ(𝑡) + 𝑩𝑥(𝑡)

𝑦(𝑡) = 𝑪ℎ(𝑡) + 𝐷𝑥(𝑡)
                                (1) 

where 𝑨 ∈ ℂ𝑁×𝑁, 𝑩, 𝑪 ∈ ℂ𝑁, and 𝐷 ∈ ℂ1 are the weight parameters. 

Discretization of SSMs  

To integrate continuous-time SSMs into deep neural network models, discretization is required. This process can 

be achieved by solving the ODE and applying a straightforward discretization method. Specifically, the analytical 

solution to Eq. (1) can be expressed as: 

ℎ(𝑡𝑛) = 𝑒𝑨(𝑡𝑚−𝑡𝑛)ℎ(𝑡𝑚) +                 𝑒𝑨(𝑡𝑚−𝑡𝑛) ∫ 𝑩(𝛾)𝑥(𝛾)𝑒−𝑨(𝛾−𝑡𝑚)𝑑𝛾
𝑡𝑛

𝑡𝑚
               (2) 

Next, by sampling with a step size 𝚫 (i.e., 𝑑𝛾 |
𝑡𝑖+1

𝑡𝑖
= Δ𝑖), we can discretize ℎ(𝑡𝑛) as: 

ℎ𝑛 = 𝑒𝑨(Δ𝑚+⋯+Δ𝑛−1)(ℎ𝑚 + ∑ 𝑩𝑖
𝑛−1
𝑖=𝑚 𝑥𝑖𝑒

−𝑨(Δ𝑚+⋯+Δ𝑖)Δ𝑖)                  (3) 

This discretization is approximately equivalent to the result obtained using the zero-order hold (ZOH) method, 

which is commonly used in SSM-related literature. Specifically, let 𝑛 = 𝑚 + 1, then Eq. (3) can be written as: 

ℎ𝑚+1 = 𝑒𝑨Δ𝑚(ℎ𝑚 + 𝑩𝑚𝑥𝑚𝑒−𝑨Δ𝑚Δ𝑚)

= 𝑒𝑨Δ𝑚ℎ𝑚 + 𝑩𝑚Δ𝑚𝑥𝑚

= 𝑨𝑚
̅̅ ̅̅ ℎ𝑚 + 𝑩𝑚

̅̅ ̅̅̅𝑥𝑚

                        (4) 

Here, 𝑨𝑚
̅̅ ̅̅ = 𝑒𝑨Δ𝑚  aligns with the discretization result of ZOH, while 𝑩𝑚

̅̅ ̅̅̅ = 𝑩𝑚Δ𝑚 is essentially the first-order 

Taylor expansion of the corresponding result obtained through ZOH. 

Selective SSMs  

To overcome the limitations of linear time-invariant SSMs in capturing contextual information, the weight 

matrices B, C, the weight parameter D, and the step size 𝚫 in Eq. (1) are configured as input-dependent functions 

[17]. However, the resulting time-varying SSMs introduce challenges in efficient computation, as convolution 

operations do not support dynamic weights. Nevertheless, if the recurrence relation for ℎ𝑛 in Eq. (3) can be 

derived, it can still be computed efficiently. Specifically, let 𝑒𝑨(Δ𝑚+⋯+Δ𝑖−1)  be denoted as 𝒖𝑨,𝑚
𝑖 , and its 

recurrence relation can be written as: 

𝒖𝑨,𝑚
𝑖 = 𝑒𝑨Δ𝑖−1𝒖𝑨,𝑚

𝑖−1                                      (5) 

For the second term in Eq. (3), we obtain: 

𝒖𝑩,𝑚
𝑛 = 𝑒𝑨(Δ𝑚+⋯+Δ𝑛−1) ∑ 𝑩𝑖

𝑛−1
𝑖=𝑚 𝑥𝑖𝑒

−𝑨(Δ𝑚+⋯+Δ𝑖)Δ𝑖

= 𝑒𝑨Δ𝑛−1𝒖𝑩,𝑚
𝑛−1 + 𝑩𝑛−1𝑥𝑛−1Δ𝑛−1

                      (6) 

Thus, using Eq. (5) and (6), we can derive: 

ℎ𝑛 = 𝒖𝑨,𝑚
𝑛 ℎ𝑚 + 𝒖𝑩,𝑚

𝑛                                    (7) 
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This expression can be efficiently computed in parallel using associative scan algorithms [15,21], which 

effectively reduce the overall computational complexity to linear. Furthermore, IFDMamba accelerates the 

computation by utilizing hardware-aware algorithms [17]. 

Model Architecture 

As illustrated in Figure 1, the IFDMamba framework comprises two stages: the training phase and the testing 

phase. In the training phase, the model first extracts high-level forensic features F from the given input image X 

using the context-aware Mamba. The context-aware Mamba enhances local contextual relationships between 

image patches by constructing the Gated Spatial Convolution (GaSC) module. It also introduces a bidirectional 

Mamba model to capture the global contextual relationships across the entire sequence of image patches, enabling 

effective extraction and complementary integration of both local fine-grained features and global background 

features from the input image. Next, the improved NT-Xent contrastive loss is applied to perform pixel-wise 

contrastive learning on the high-level forensic features F for each individual image. The ground truth forgery 

mask Y naturally provides positive and negative class labels, making the pixel-wise contrastive learning more 

effective. Moreover, this per-image training approach distinguishes itself from existing methods [8,9,22], which 

train on entire mini-batches. It better captures the relative nature of pristine and forged pixels within a single 

image. 

 

Figure 1. The Overall Framework of IFDMamba 

In the testing phase, the test image is passed through the trained context-aware Mamba to generate high-level 

forensic features F, which are then mapped in real-time to the predicted forgery mask P using the K-means 

clustering algorithm. Assuming that the forged pixels occupy a relatively minor proportion of the overall image, 

the cluster label containing the majority of elements is assigned to pristine pixels, while the remaining labels are 

designated as forged pixels. This testing framework not only resolves the feature mapping issue but also reduces 

the cross-image interference present in the training data, enabling IFDMamba to more accurately detect forged 

regions when processing new images. 

Context-Aware Mamba 

The standard Mamba model is designed for one-dimensional sequences. As depicted in Figure 1, to address the 

image forgery detection task, the input image 𝑿 ∈ ℝ𝐻×𝑊×𝐶  is first transformed into flattened 2-D image patches 

𝒙𝐽 ∈ ℝ𝐸×(𝐽2∙𝐶) . Here, (𝐻, 𝑊) denote the height and width of the input image, C represents the number of 

channels, J specifies the patch size, and E indicates the total number of image patches. Subsequently, 𝒙𝐽 

undergoes a linear projection to form a vector of size D, and positional embeddings 𝑬𝑝𝑜𝑠 ∈ ℝ𝐸×𝐷 are added as 

follows: 

𝑿0 = [𝒙𝐽
1𝑾; 𝒙𝐽

2𝑾; ; 𝒙𝐽
𝐸𝑾] + 𝑬𝑝𝑜𝑠                           (8) 

where 𝒙𝐽
𝑒 denotes the e -th patch of image X, while 𝑾 ∈ ℝ(𝐽2∙𝐶)×𝐷 is a trainable projection matrix. 
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The sequence of image patches 𝑿𝑙−1 is subsequently fed into the l-th layer of the context-aware Mamba encoder, 

yielding the output 𝑿𝑙. Finally, the output 𝑿𝐿 is normalized to obtain the final high-level forensic feature 𝑭 ∈

ℝ𝐻̂×𝑊̂×𝐶̂ , where 𝐻̂ = (
𝐻−𝐽

𝑆
) + 1, 𝑊̂ = (

𝑊−𝐽

𝑆
) + 1, and S is the stride used to extract image patches, while 𝐶̂ is 

the dimensionality of the output embedding space. The above process is summarized as: 

𝑿𝑙 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑿𝑙−1) + 𝑿𝑙−1                             (9) 

𝑭 = 𝑁𝑜𝑟𝑚(𝑿𝐿)                                  (10) 

where the Encoder denotes the proposed context-aware Mamba encoder, L denotes the total number of layers, 

while Norm refers to the normalization layer. 

Context-aware mamba encoder 

The standard Mamba block is optimized for processing one-dimensional sequences and is not suitable for vision 

tasks that require spatial awareness. In this section, we introduce the context-aware Mamba encoder, which 

integrates the GaSC module and a bidirectional modeling mechanism to adapt to image forgery detection tasks. 

Its structure is shown in Figure 2(a). 

 

(a) Context-aware Mamba encoder (b) GaSC 

Figure 2. Architecture of the context-aware mamba encoder and the GaSC module 

Table 1. Context-aware mamba encoder 

Algorithm 1: Context-Aware Mamba Encoder 

Input: Image patch sequence 𝑿𝑙−1 

Output: Image patch sequence 𝑿𝒍 

// Normalize the input image patch sequence 

1   𝑿𝑙−1
′ ← 𝑁𝑜𝑟𝑚(𝑿𝑙−1) 

2   𝒙 ← 𝐿𝑖𝑛𝑒𝑎𝑟𝑥(𝑿𝑙−1
′ ) 

3   𝒛 ← 𝐿𝑖𝑛𝑒𝑎𝑟𝑧(𝑿𝑙−1
′ ) 

// Bidirectional processing 

4   for v in {forward, backward} do 

5     𝑿𝑣
′ ← 𝑆𝑖𝐿𝑈(𝐺𝑎𝑆𝐶𝑣(𝒙)) 

6     𝑩𝑣 ← 𝐿𝑖𝑛𝑒𝑎𝑟𝑣
𝐵(𝑿𝑣

′ ) 

7     𝑪𝑣 ← 𝐿𝑖𝑛𝑒𝑎𝑟𝑣
𝐶(𝑿𝑣

′ ) 

8     ∆𝑣← log (1 + exp (𝐿𝑖𝑛𝑒𝑎𝑟𝑣
∆(𝑿𝑣

′ ) + 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑣
∆)) 

9     𝑨𝑣
̅̅̅̅ ← ∆𝑣⨂𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑣

𝐴 

10    𝑩𝑣
̅̅ ̅̅ ← ∆𝑣⨂𝑩𝑣 

11    𝒚𝑣 ← 𝑆𝑆𝑀(𝑨𝑣
̅̅̅̅ , 𝑩𝑣

̅̅ ̅̅ , 𝑪𝑣)(𝑿𝑣
′ ) 

12  end for 

13  𝒚forward
′ ← 𝒚forward⨀𝑆𝑖𝐿𝑈(𝒛) 
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14  𝒚backward
′ ← 𝒚backward⨀𝑆𝑖𝐿𝑈(𝒛) 

// Residual connections 

15  𝑿𝑙 ← 𝐿𝑖𝑛𝑒𝑎𝑟𝑋(𝒚forward
′ + 𝒚backward

′ ) + 𝑿𝑙−1 

return: 𝑿𝑙 
 

Specifically, the operations of the context-aware Mamba encoder are described in detail in Table 1. The input 

image patch sequence 𝑿𝑙−1 is first normalized. Then, the normalized sequence is linearly projected into two 

components, x and z. Next, the x undergoes processing in both forward and backward directions. This bidirectional 

modeling mechanism captures the global contextual relationships within the image patch sequence, effectively 

enhancing the extraction of global background features. 

For each direction, x is first passed through the GaSC module to obtain 𝒙𝑣
′ . The 𝒙𝑣

′  is then linearly projected 

into 𝑩𝑣, 𝑪𝑣, and 𝚫𝑣, and 𝚫𝑣 is used to transform 𝑨𝑣
̅̅̅̅  and𝑩𝑣

̅̅ ̅̅ . The Mamba model is then applied to compute 

𝒚forward  and 𝒚backward . The outputs 𝒚forward  and 𝒚backward  are gated by 𝑆𝑖𝐿𝑈(𝒛), resulting in 𝒚forward
′  

and 𝒚
backward

′ . Finally, the gated outputs undergo a linear transformation and are summed before being combined 

with the residual connection from 𝑿𝑙−1, resulting in the output sequence 𝑿𝑙. 

Gated Spatial Convolution (GaSC) 

The context-aware Mamba models feature dependencies by flattening the 2D image into a 1D sequence. To 

effectively extract local fine-grained features and enhance the local context relationships between image patches 

before the bidirectional Mamba modeling, a GaSC module is designed. As illustrated in Figure 2(b), the input 

image patch sequence x is fed in parallel into two convolution blocks to capture and represent features across 

various hierarchical levels. In the feature extraction block, the input x is normalized through layer normalization 

and then passed into a convolutional layer configured with a kernel size of 𝑘 = 3, stride 𝑠 = 1, and padding 𝑝 =

1. The output then passes through a ReLU activation function. This convolution block applies a small convolution 

kernel to adjacent image patches, enabling the extraction of subtle local features. In the gating generation block, 

the input x undergoes normalization, followed by processing through a convolutional layer configured with a 

kernel size of 𝑘 = 1, stride 𝑠 = 1, and padding 𝑝 = 0. Subsequently, a Sigmoid activation function is applied 

to the resulting output. 

The outputs of the feature extraction block and gating generation block are then multiplied pixel-by-pixel. This 

gating mechanism dynamically weights the feature channels using the gating vector, emphasizing important 

feature information and suppressing irrelevant or redundant features, effectively controlling the flow of 

information. Finally, the features are further fused using the feature extraction block, with a residual connection 

reusing the input features. The process can be represented as: 

GaSC(𝒙) = 𝒙 + Conv3,1,1(Conv3,1,1(𝒙) ∙ Conv1,1,0(𝒙))                (11) 

where Conv𝑘,𝑠,𝑝 denotes a convolutional block characterized by a kernel size of k, a stride of s, and a padding of 

p. The convolutional layers in Figure 2(b) follow the same notation. 

Improved NT-Xent Contrastive Loss 

To preserve the relative relationship between original and forged pixels within a single image, we propose an 

improved NT-Xent contrastive loss for pixel-wise contrastive learning in IFDMamba. Specifically, we first 

process the high-level forensic features F by applying a flattening operation 𝑓(∙): ℝ𝐻̂×𝑊̂×𝐶̂ → ℝ𝐻̂𝑊̂×𝐶̂, as follows: 

𝑓(𝑭) → {𝒒, 𝒌1
+, 𝒌2

+, ⋯ 𝒌𝐾
+, 𝒌1

−, 𝒌2
−, ⋯ 𝒌𝑃

−}                         (12) 

Here, we define the dictionary as {𝒒, 𝒌1
+, 𝒌2

+, ⋯ 𝒌𝐾
+, 𝒌1

−, 𝒌2
−, ⋯ 𝒌𝑃

−}, where q is the encoded query vector. The set 

{𝒒, 𝒌1
+, 𝒌2

+, ⋯ 𝒌𝐾
+} represents features extracted from pristine regions, indexed as 0 in the ground truth forgery 

mask 𝒀 ∈ {0,1}𝐻̂×𝑊̂. Similarly, {𝒌1
−, 𝒌2

−, ⋯ 𝒌𝑃
−} corresponds to features from forged regions, indexed as 1 in Y. 

In image forgery detection tasks, both pristine and forged regions often span multiple pixels, resulting in the 

dictionary containing a significantly larger number of positive keys (𝐾 > 1). Thus, the improved NT-Xent 

contrastive loss function tailored for image forgery detection can be expressed as: 
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ℒNT−Xent+ = −𝑙𝑜𝑔
1

𝐾
∑ exp (𝑠𝑖𝑚(𝒒,𝒌𝑖

+)/𝜏)𝐾
𝑖=1

∑ exp (𝑠𝑖𝑚(𝒒,𝒌𝑗
−)/𝜏)𝑃

𝑗=1
                            (13) 

where 𝜏 is the temperature hyperparameter [23], and 𝑠𝑖𝑚(∙,∙) denotes the cosine similarity. In the original NT-

Xent loss [24], each query vector q only matches one positive key in the dictionary. However, in the improved 

NT-Xent loss (Eq. (13)), all positive keys are considered in the loss calculation, which is accomplished by 

calculating the expected value of the dot product between q and the elements in the set {𝒌𝑖
+}. 

As depicted in Figure 1, supervision during the training phase involves directly aligning the ground truth forgery 

mask Y with the extracted high-level forensic features F, without generating a predicted forgery mask 𝑃 ∈ ℝ𝐻̂×𝑊̂ . 

Additionally, for every image within the minibatch, the contrastive loss ℒNT−Xent+ is computed on an image-by-

image basis and subsequently aggregated to calculate the total loss, rather than being computed over the entire 

batch. Specifically, given a mini-batch of features {𝑭1, 𝑭2 ⋯ , 𝑭𝐵}, the total contrastive loss ℒ is computed as 

follows: 

ℒ =
1

𝐵
∑ ℒNT−Xent+(𝑭𝑖)

𝐵
𝑖=1                              (14) 

In Eq. (14), the mini-batch features are not merged to compute the overall ℒNT−Xent+, which helps avoid cross-

image influences within the training data. This loss function is designed based on the relative definition of original 

and forged pixels within a single image, which significantly differs from the batch-level loss computation used in 

methods like [8,24,25]. 

It is worth noting that, compared to the original NT-Xent loss function, the improved NT-Xent contrastive loss 

may increase the computation time. The main reason is that the query vector q now matches with K positive keys 

instead of just one, leading to an increased number of positive similarity calculations. Moreover, the loss function 

is computed on an image-by-image basis (as shown in Eq. (14)), which may further increase the computational 

overhead. However, as demonstrated in Section 3.4.2, the additional computational cost is within an acceptable 

range, and a good balance between model performance and time efficiency is achieved. 

Model Testing with Unsupervised Clustering 

This section outlines the testing phase of IFDMamba in detail. A major challenge during the testing phase is 

effectively mapping the extracted high-level forensic features to a predicted forgery mask. In contrast to 

conventional approaches that rely on pre-trained classifiers, we adopt an unsupervised, online learning method. 

As previously mentioned, the classification of pristine and forged pixels is relative within a single image and does 

not generalize well across different images. This highlights the limitations of earlier classification-based detection 

methods, where classifiers trained on the training datasets often fail to generalize to previously unseen test 

samples. Therefore, mapping the features of each image separately to the final forgery mask is a more reasonable 

solution. 

Specifically, we use K-means to cluster the high-level forensic features F. The cluster containing the majority of 

elements is labeled as pristine while the others is labeled as forged under the assumption that forged pixels 

constitute only a small fraction of the overall image. The high-level forensic features F extracted through context-

aware Mamba and pixel-wise contrastive learning enable effective extraction and complementary integration of 

local fine-grained features and global background features from the test image. These features exhibit strong 

discriminative power, making unsupervised clustering sufficient for the task. 

Algorithm Complexity Analysis 

The computational complexity of IFDMamba can be assessed by examining its three primary components: linear 

projection, context-aware Mamba encoder, and the improved NT-Xent contrastive loss. First, in the linear 

projection phase, the complexity of computing the linear projection for each image patch is O(J2CD). Here, J 

represents the patch size, C denotes the number of channels, and D indicates the feature dimension. For E image 

patches, the total complexity for the linear projection is 𝑂(𝐸𝐽2𝐶𝐷). Second, for the context-aware Mamba 

encoder, the computational complexity is primarily influenced by the GaSC module and the Mamba module. The 

complexity of the GaSC module primarily arises from the convolution operations. When performing convolution 

on a 1-D sequence, the complexity depends on the number of image patches E, the input and output channel 
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dimensions 𝐷𝑖𝑛 and 𝐷𝑜𝑢𝑡, and the kernel size k. When the input/output channels are large and k is constant, the 

complexity can be simplified to 𝑂(𝐸𝐷𝑖𝑛𝐷𝑜𝑢𝑡). The Mamba module plays a crucial role in adaptively capturing 

global context, akin to the self-attention mechanism used in Transformers. The complexity of the Mamba module 

is also 𝑂(𝐸𝐷𝑖𝑛𝐷𝑜𝑢𝑡), which is significantly lower than the quadratic complexity of self-attention, thus reducing 

computational resource consumption while still capturing global contextual relationships effectively. 

Additionally, as described in Section 2.1, the derivation of Mamba’s expressions can be efficiently computed 

using the associated scanning algorithm [15,21], and further accelerated by hardware-aware algorithms [17]. 

Finally, for the improved NT-Xent contrastive loss, each query vector q needs to compute similarity with K 

positive samples and P negative samples. Given the input high-level forensic features 𝐹 ∈ ℝ𝐻̂×𝑊̂×𝐶̂ , for a mini-

batch size of B, the computational complexity is 𝑂(𝐵𝐻̂𝑊̂(𝐾 + 𝑃)𝐶̂). 

In summary, the computational complexity of IFDMamba scales linearly with the number of image patches E 

(i.e., image size). This indicates that IFDMamba is highly efficient in processing high-resolution images, allowing 

it to control computational resource consumption while maintaining strong model performance, thus meeting the 

requirements of practical applications. Additionally, by incorporating model compression and pruning techniques, 

the number of model parameters and the computational load can be further reduced. Furthermore, training 

strategies such as mixed-precision training and gradient checkpointing can be employed to lower memory usage 

and computational overhead during the training process. 

EXPERIMENT 

To comprehensively evaluate the proposed IFDMamba, we carried out a series of experiments focused on 

answering the following research questions: 

Q1: How does IFDMamba perform quantitatively and qualitatively compared to mainstream image forgery 

detection methods? 

Q2: Do the core components of IFDMamba, including the bidirectional modeling mechanism of the context-aware 

Mamba encoder, the GaSC module, and the improved NT-Xent contrastive loss, play a critical role in enhancing 

its detection performance? 

Experimental Setup 

Datasets 

Training Datasets IFDMamba is trained using the same datasets as described in [8,12], specifically the 

tamperedCOCO and tamperedRAISE datasets. 

TamperedCOCO: This dataset comprises two subsets, SP COCO and CM COCO, both derived from the COCO 

dataset. SP COCO is designed specifically for splicing forgery and contains approximately 200,000 forged 

images. CM COCO is tailored for copy-move forgery, also comprising around 200,000 forged images. 

TamperedRAISE: This dataset includes three subsets: CM RAISE, CM-JPEG RAISE, and JPEG RAISE, all 

created from the RAISE dataset. It contains approximately 400,000 forged images in total. CM RAISE is designed 

for copy-move forgery, CM-JPEG RAISE is derived from CM RAISE with additional image compression applied, 

and JPEG RAISE is created by compressing images directly from the original RAISE dataset. 

Testing Datasets We evaluated IFDMamba using five commonly used datasets: Coverage [26], NIST [27], CASIA 

[28], MISD [29], and FF++ [30]. These datasets encompass a wide variety of highly complex forged images, 

providing a comprehensive testbed for forgery detection algorithms. 

Coverage: This dataset includes forged images specifically designed to challenge similarity-based copy-move 

forgery detectors. It intentionally introduces similar but authentic objects to increase detection difficulty. 

NIST: This dataset contains a wide range of forged images, including splicing, copy-move, software 

manipulations, and post-processing operations. It is characterized by high-resolution images. 

CASIA: A commonly used dataset for detecting copy-move and splicing forgeries, with diverse image sources. 

Since ground truth forgery masks are not officially provided, masks created by a third-party user [31] were used. 
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MISD: This dataset includes multi-source forged images, where forged images are generated by combining 

content from multiple distinct sources. 

FF++: A dataset containing facial images synthesized using Generative Adversarial Networks (GANs). 

Importantly, the training and testing datasets are completely distinct, ensuring that the evaluation reflects real-

world conditions and effectively measures the ability of forgery detection algorithms to generalize. 

Baselines and evaluation metrics 

We selected the following five mainstream baseline models for comparison: 

PSCC-Net [6]: An end-to-end image forgery detection model that employs a high-resolution feature network as 

the backbone and incorporates a progressive spatiotemporal attention mechanism to capture contextual 

information. 

MVSS-Net [5]: This model leverages multi-view feature learning and multi-scale supervision to detect and 

identify forged regions by exploiting noise distribution features and boundary artifacts around the forged areas. 

IF-OSN [7]: A model designed to capture predictable and imperceptible noise introduced by online social 

platforms. 

CAT-Net [12]: An end-to-end fully convolutional neural network that jointly learns RGB image features and 

compressed forgery features in the DCT domain. 

TruFor [8]: A Transformer-based fusion architecture that extracts high- and low-level scale features by combining 

RGB images with noise-sensitive fingerprints, enabling the detection of diverse local forgeries. 

To ensure a fair comparison, PSCC-Net, MVSS-Net, and IF-OSN were re-trained on identical training datasets. 

Following the convention [5,8,12], two commonly used metrics are employed to evaluate the performance of 

IFDMamba: the F1 score and Intersection over Union (IoU). The macro-averaged F1 score is formally defined as 

follows: 

𝐹1 =
1

𝑋
∑

2×𝑇𝑃𝑥

2×𝑇𝑃𝑥+𝐹𝑃𝑥+𝑇𝑁𝑥

𝑋
𝑥=1                            (15)

The IoU metric is computed as: 

IoU =
𝑷∩𝒀

𝑷∪𝒀
                                   (16) 

where P and Y represent the predicted forgery mask and the ground truth forgery mask, respectively. 

Experimental details 

IFDMamba is implemented using the PyTorch framework, with the Adam optimizer (using default parameters) 

and an initial learning rate of 1𝑒 − 4. The training batch size is set to 4, and all input images are resized to 

1024 × 1024 . A projection layer with a convolution kernel size of 16 × 16  is employed to obtain non-

overlapping image patch sequences. The context-aware Mamba encoder comprises 24 stacked layers, with the 

output embedding dimension set to 256. The feature space of the extracted high-level forensic features F is 

ℝ64×64×256. All experiments are independently conducted in a consistent environment, with an Intel(R) Xeon(R) 

Platinum 8358P processor and an NVIDIA Tesla A40-48GB GPU. 

Quantitative Comparison 

We compared IFDMamba with five baseline models across five datasets: Coverage, NIST, CASIA, MISD, and 

FF++. The detailed results are presented in Table 2. The results for PSCC-Net, MVSS-Net, and IF-OSN were 

obtained by retraining these models on the CAT-Net training dataset. The top-performing and second-best results 

are marked in bold and underlined, respectively. Key observations from the experimental results include: 

(1) Deep learning-based classification algorithms provide strong detection performance. Among them, IF-OSN 

performs well on the MISD dataset, while CAT-Net achieves superior results on the CASIA dataset. The recently 

proposed TruFor demonstrates robust performance on the other three datasets. 
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(2) IFDMamba outperforms all baseline methods across all metrics on the five test datasets. Compared to the next 

best method, IFDMamba demonstrates an average improvement of 5.25% in F1 score and 15.38% in IoU. These 

substantial gains over baseline models can be attributed to three primary factors. First, IFDMamba leverages a 

context-aware Mamba architecture to enhance local contextual relationships between image patches while 

effectively capturing the global contextual relationships across the entire sequence of image patches. This enables 

the complementary extraction and integration of local fine-grained features and global background features. 

Second, the use of an improved NT-Xent contrastive loss facilitates pixel-wise contrastive learning, supervising 

the extraction of high-level forensic features on an image-by-image basis. This explicitly models the relative 

nature of pristine and forged pixels within a single image—a critical aspect often neglected by existing approaches, 

which often merge forged or pristine regions from different images into a single category, leading to suboptimal 

detection performance. Finally, during the testing phase, IFDMamba employs a K-means clustering algorithm to 

map the extracted high-level forensic features to predicted forgery masks in real-time. This reduces cross-image 

interference and further enhances the model’s generalization capability. 

Table 2. Quantitative comparison of different methods on F1 and IoU metrics 

Method 
Coverage NIST CASIA MISD FF++ 

F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU 

PSCC-Net 0.581 0.177 0.629 0.250 0.751 0.472 0.734 0.402 0.513 0.065 

MVSS-Net 0.687 0.353 0.634 0.252 0.772 0.513 0.761 0.448 0.632 0.239 

IF-OSN 0.653 0.316 0.609 0.226 0.825 0.551 0.767 0.525 0.612 0.223 

CAT-Net 0.617 0.233 0.618 0.227 0.842 0.637 0.663 0.313 0.531 0.093 

TruFor 0.743 0.452 0.687 0.341 0.831 0.623 0.745 0.421 0.817 0.566 

IFDMamba 0.772 0.526 0.715 0.407 0.867 0.711 0.859 0.642 0.844 0.607 

where 𝑇𝑃𝑥, 𝐹𝑃𝑥, and 𝑇𝑁𝑥 denote the true positives, false positives, and true negatives, respectively, for a given 

class x (“pristine” or “forged”). 

 

Qualitative Comparison 

Figure 3 illustrates the forgery detection outcomes for selected representative test images. It is evident that PSCC-

Net, MVSS-Net, and CAT-Net perform poorly on the test data, failing to detect most of the forged regions while 

incorrectly identifying some pristine regions as forged. Similarly, IF-OSN misses a significant portion of forged 

regions. TruFor shows slight improvement in certain cases but still struggles to accurately identify many forged 

regions and exhibits a noticeable number of false positives.  

 

Figure 3. Qualitative comparison of representative image forgery detection 

In contrast, IFDMamba effectively identifies forged regions while substantially minimizing the number of false 

alarms, demonstrating superior performance. The impressive performance of IFDMamba can be attributed to its 

innovative context-aware Mamba encoder, which enhances local contextual relationships between image patches 
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through the GaSC module and effectively captures global contextual information via the bidirectional modeling 

mechanism. Additionally, the improved NT-Xent contrastive loss considers all positive keys, explicitly modeling 

the relative nature of pristine and forged pixels within a single image. This combination of techniques enables 

IFDMamba to accurately localize forged regions in complex backgrounds, improving both detection accuracy and 

robustness. 

Notably, the last row of Figure 3 presents an example from the MISD dataset, which features multi-source spliced 

forgeries. Despite the complexity of these forgeries, IFDMamba achieves commendable detection results. This 

success may stem from IFDMamba’s underlying assumption that all forged regions within a single image exhibit 

similar features, enabling the model to effectively detect multiple types of forgeries simultaneously. 

Ablation Studies 

Impact of context-aware mamba encoder bidirectional modeling and GaSC module 

One distinctive characteristic of the context-aware Mamba encoder is the integration of the GaSC module and the 

introduction of a bidirectional modeling mechanism. To evaluate the effectiveness of these innovative 

components, several variants of the context-aware Mamba encoder were designed and tested across five datasets 

using the F1 score as the evaluation metric. The specific configurations of the variants are as follows: 

Variant a (Unidirectional Mamba + Conv1d): This variant employs the Mamba model with a Conv1d convolution 

layer added before it, processing the image patch sequence in a forward direction only. 

Variant b (Bidirectional Mamba + Conv1d): Building upon Variant a, this variant includes an additional pair of 

Conv1d convolution layers and Mamba models to process the image patch sequence in the backward direction as 

well. 

Variant c (Bidirectional Mamba + GaSC): In this variant, the Conv1d layers in Variant b are replaced with the 

GaSC module. 

The experimental findings in Table 3 reveal several key insights: 

Table 3. Impact of bidirectional modeling mechanism and GaSC module 

Variants 
Testing Datasets (F1 criterion) 

Coverage NIST CASIA MISD FF++ 

a 0.762 0.705 0.862 0.851 0.837 

b 0.769 0.711 0.865 0.856 0.842 

c 0.772 0.715 0.867 0.859 0.844 

 

(1) Variant b outperforms Variant a. This improvement can likely be attributed to the introduction of the 

bidirectional modeling mechanism, which effectively captures the global contextual relationships across the entire 

sequence of image patches. In contrast, unidirectional processing in Variant a only captures forward information, 

failing to comprehensively represent the overall characteristics of forged images. 

(2) Variant c achieves the best performance in the experiments. This result may be due to the incorporation of the 

GaSC module, which enhances the local contextual relationships between image patches. When combined with 

the bidirectional modeling mechanism, this approach enables effective extraction and complementary integration 

of local fine-grained features and global background features in forged images, leading to superior detection 

accuracy. 

Impact of improved NT-Xent contrastive loss 

Contrastive learning is a critical component of IFDMamba. To investigate the impact of the improved NT-Xent 

contrastive loss on model performance, comparative experiments were conducted across five datasets using the 

F1 metric. Detailed outcomes are provided in Table 4. 
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Table 4. Impact of the improved NT-Xent contrastive loss 

Variants 
Testing Datasets (F1 criterion) 

Coverage NIST CASIA MISD FF++ 

NT-Xent 0.768 0.714 0.866 0.852 0.841 

Improved NT-Xent 0.772 0.715 0.867 0.859 0.844 

 

The results indicate that the improved NT-Xent contrastive loss achieves superior detection performance. This 

improvement is likely because the improved NT-Xent loss considers all positive keys during each loss 

computation, rather than matching a single positive key. By calculating the expected value of the dot product 

between the query q and a set of {𝑘𝑖
+}, this approach more comprehensively captures the relative nature of pristine 

and forged pixels within a single image. Consequently, it enhances the accuracy and robustness of detecting forged 

regions. 

 

Figure 4. The impact of different loss functions on training time per epoch 

Additionally, to assess how various loss functions influence training time, we compared the time required for a 

single training epoch. As shown in the experimental results in Figure 4, the improved NT-Xent contrastive loss 

incurs only a marginal increase in computation time, with the additional overhead remaining within an acceptable 

range. Considering both model performance and training time, the model strikes a balanced compromise between 

detection efficiency and precision. 

CONCLUSION 

We propose IFDMamba, a context-aware Mamba-based image forgery detection method. Based on extensive 

experimental validation, the following conclusions can be drawn: 

(1) The proposed context-aware Mamba effectively captures both local contextual relationships between image 

patches and global contextual information by combining the GaSC module and bidirectional modeling 

mechanism. This enables efficient and complementary extraction of local fine-grained features and global 

background features, significantly enhancing the detection capability in complex backgrounds. 

(2) The improved NT-Xent contrastive loss explicitly models the relative nature of pristine and forged pixels 

within a single image through pixel-wise contrastive learning, thereby improving the precision and robustness of 

forgery region detection. 

(3) Experiments on five public datasets—Coverage, NIST, CASIA, MISD, and FF++—demonstrate the superior 

performance of IFDMamba in image forgery detection tasks, outperforming mainstream methods such as TruFor 

and CAT-Net. 

Future research directions include further optimizing the model to enhance its robustness against noise and 

artifacts. Additionally, exploring more efficient feature extraction and clustering methods could further improve 

detection performance and efficiency. 
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