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Abstract: Earthquakes are highly destructive and sudden natural disasters. The primary cause of 

casualties and major economic losses is the collapse of buildings due to ground shaking. Quick 

and accurate assessment and localization of damaged buildings is crucial for the rapid deployment 

of post-earthquake rescue operations and disaster reconstruction tasks. This paper focuses on 

building damage detection, discussing the application and current developments of deep learning 

Convolutional Neural Networks(CNNs) in this field. Based on dual-temporal and single-temporal 

image sources trained by networks, this study compares the characteristics and advantages of 

different network architectures. In terms of single-temporal imagery-based methods, this study 

individually examines the detection performance and application contexts for distinct types of 

detection tasks: semantic segmentation, object detection, and instance segmentation. Furthermore, 

this paper also analyzes and compares the main types of remote sensing data used in earthquake 

building damage detection tasks. Finally, this study summarizes the challenges faced by CNNs in 

the task of automatic building damage detection and the corresponding strategies, aiming to guide 

future improvement directions. This review offers researchers in the field of disaster assessment 

and emergency response post-earthquake a reference for decision-making solutions. 
 

Keywords: CNN; building damage detection; earthquake disaster; remote sensing images; semantic 

segmentation 

 

1. Introduction 

Over the past few years, large-scale natural disasters have become more frequent across the globe. Among 

them, earthquakes are considered one of the most destructive and catastrophic natural disasters [1]. Turkey was

 hit by two powerful earthquakes on February 6, 2023, with magnitudes of 7.8 and 7.5, causing over 50,000 

deaths, significant damage to nearly 430,000 buildings, and economic losses of 1.3 trillion US dollars [2]. A

 powerful 7.6-magnitude earthquake struck the Noto Peninsula in Japan on January 1, 2024, damaging over 

80,000 buildings and leaving 15,920 families displaced [3]. Buildings, being the primary hubs for human

 production and daily life, are also the direct cause of casualties and economic losses when they suffer damage 

or collapse following earthquakes [4]. Rapid and accurate building damage detection and localization are crucial 

for reducing losses, enhancing rescue efficiency, and accelerating post-earthquake recovery and reconstruction 

[5].

Traditional building damage detection methods, such as field surveys and visual interpretation, are reliable, 

detailed, and accurate, but they are labor-intensive and time-consuming, and field investigations often carry 

significant risks [6]. Recently, re-searchers have focused on automating the detection and mapping of building

 damage, aiming to improve technology to match or even exceed the accuracy of manual assessments. Remote 

sensing data has long served as a fast, efficient, and reliable foundation for post-earthquake damage evaluation, 

becoming the preferred data source for such assessments [7]. The continuous advancement of remote sensing

 technology, provides higher-resolution and more accessible data support for disaster relief missions. For 

instance, the number of high-resolution optical satellites globally continues to in-crease [8], and the image

 resolution provided by commercial remote sensing satellite companies has surpassed 0.3 meters [9]. 

In recent years, deep learning (DL) has experienced both vigorous and explosive development, driven by 

the large-scale collection of datasets, iterative advancements in computational processors, the rapid evolution of 

algorithmic techniques, and the continuous refinement of model architectures. There is a growing interest in 

leveraging deep learning as an effective tool to address complex and challenging problems in earthquake 

engineering [10]. Convolutional Neural Networks (CNNs), as a subset of deep learning, are predominantly

 utilized in image processing applications. Due to their powerful automatic feature extraction and nonlinear 

feature mapping capabilities, CNNs have garnered widespread attention and played a significant role in 

numerous remote sensing applications. A large number of studies have shown that deep learning approaches, 

including CNNs, offer superior feature extraction compared to traditional methods. The experiment by Ji et al. 
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(2019) [11] involved extracting gray-level co-occurrence matrix (GLCM) texture features and CNN features

 from the 2010 Haiti earthquake data. Both traditional methods and CNN-based approaches were applied to 

damage detection and mapping tasks using a random forest classifier. The results showed that the CNN method 

achieved higher accuracy compared to the traditional approaches. Based on the data acquisition time, building 

damage detection methods can be classified into pre- and post-earthquake(dual-temporal) methods and post-

earthquake (single-temporal) methods. In the field of dual-temporal studies, this review examines the research 

on Cascade Networks and Siamese Networks [12] from the perspective of CNN network architecture. The post

-earthquake single-temporal approach mainly focuses on feature extraction. We conducted a review of the 

current mainstream networks and their improvements in building damage detection research, categorized 

according to the task types of semantic segmentation, object detection, and instance segmentation. This has 

certain reference significance for post-disaster emergency rescue and damage assessment analysis. However, 

there are still many challenges and limitations when applying CNN to building damage detection tasks. These 

challenges include the scarcity of publicly available datasets, the imbalance in building damage severity 

instances, and the limitations in the applicability of CNN models. These issues hinder the accuracy and 

efficiency of automated building damage detection models to some extent. Therefore, we review the relevant 

strategies to provide useful insights for addressing these challenges. 

Using the Web of Science (WOS) multidisciplinary database, we performed an advanced search of relevant 

literature by titles, keywords, and abstracts. The search string used was as follows: 

TS = ((building AND damage) AND ("deep learning" OR DL OR CNN OR FCN OR RNN OR 

"Deconvolutional Net" OR GAN OR Autoencoder OR "Transfer learning" OR "Supervised learning" OR 

"Unsupervised learning" OR "Reinforcement learning") AND (disaster OR earthquake)) AND LA= (English) 

AND PY= (2003-2024); 

A total of 537 relevant pieces of literature were retrieved. After manual screening, literature meeting the 

following four criteria were excluded: 

1. Not related to earthquake disaster research; 

2. Did not utilize deep learning models; 

3. Not focused on building damage detection; 

4. Not driven by earthquake imagery data; 

After screening, a total of 202 pieces of literature were obtained. Figure 1 shows the annual growth trend in 

research on the application of deep learning models for detecting collapsed and damaged buildings after 

earthquakes. Through word frequency analysis of literature titles, keywords, and abstracts, a word cloud was 

generated (see Figure 2). It can be observed that keywords such as "earthquake", "building damage detection", 

"CNN" and "deep learning" occupy a core position in the related research. 

This review is composed of five main sections: the second section provides a comparative analysis of the 

application of different types of remote sensing datasets in earthquake disasters. The third section summarizes 

the application of CNN methods in dual-temporal studies. The fourth section provides an overview of the 

mainstream networks and their improvements within the context of different CNN task types and summarizes 

the research status of post-earthquake single-temporal studies. The fifth and sixth sections discuss the challenges 

and corresponding strategies encountered in building damage detection tasks caused by earthquakes and offer 

suggestions and prospects for the future application of CNN in this field. 

 

 

Figure. 1 The amount of deep learning literature on post-earthquake building damage detection (2016-2024). 
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Figure. 2 The word cloud visualization of titles, abstracts, and keywords from 202 selected pieces of literature 

on post-earthquake building damage detection. 

 

2. Remote Sensing Datasets for Earthquake Disasters 

Remote sensing data, with its advantages of broad coverage, rapid response, large amounts of disaster-

related information, and minimal impact from disasters on data collection, has been widely used for damage 

assessment in areas affected by cata-strophic events [[13],[14]].With the advancement of remote sensin

g technology and the continuous updates and iterations of sensors, researchers have gained access to high-er-

resolution and higher-quality remote sensing datasets. At the same time, the volume of data being acquired 

continues to increase. In building damage assessment tasks, remote sensing data can be classified based on 

sensor type, such as optical imagery, synthetic aperture radar (SAR), and light detection and ranging (LiDAR), 

and so on. As shown in Figure 3, the statistical distribution of the types of remote sensing imagery used in 

earthquake damage detection research indicates that optical imagery occupies a large proportion, with satellite 

imagery being the most frequently used. 

 

Figure. 3 Statistics on the usage of various types of remote sensing imagery data in earthquake building damage 

detection research. 

 

2.1 Optical imagery 

Optical imagery, a type of passive remote sensing technology, captures imaging in the visible and near-

infrared spectra reflected from the ground using optical sensors. Optical imagery allows for easy extraction of 
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features such as texture, geometry, and spectral reflectance. Compared to remote sensing imagery obtained from 

other sensors, optical imagery is more suitable for damage detection and mapping and is more favored by 

researchers. According to statistics, currently, more than half of the research on building damage detection using 

remote sensing imagery is based on optical imagery [15]. Optical imagery can be categorized into satellite,

 airborne, and low-altitude UAV imagery based on the data collection platform. Table 1 lists the publicly 

available optical imagery earthquake dataset. 

 

2.1.1 Satellite imagery 

Satellites such as GF-1, GF-2, GF-4, HJ-1A/B/C, Jilin-1, SuperView-1, Zhuhai-1, QuickBird, GeoEye-1, 

WorldView-2, WorldView-3, and Pleiades [[6],[16],[17]]are equipped with cameras for capturing optic

al imagery, with a resolution range of 0.5m to 50m. Compared to aerial imagery from aircraft and UAVs, 

satellite optical imagery offers advantages such as wide imaging coverage and higher spatiotemporal resolution, 

making it the most widely used data source for building damage detection [[14],[15],[18]]. 

However, satellite imagery also has some limitations in post-earthquake building damage detection. For 

example, earthquakes are often accompanied by precipitation and secondary disasters such as landslides and 

mudslides, which significantly reduce the availability of optical satellite imagery [16]. Additionally, optical

 satellite remote sensing data typically only provide information on the building's rooftop, lacking details on 

façade damage, which affects the reliability of building damage detection. 

 

2.1.2 Aerial imagery 

Aerial imagery typically has a spatial resolution ranging from 0.1 to 0.3 meters. This higher resolution 

enables the provision of finer spatial details in building damage assessments, which is critical for enhancing the 

accuracy of evaluation results. Addition-ally, aerial remote sensing platforms offer flexible image capture 

angles, allowing for the collection of oblique views that facilitate the assessment of building damage [7]. How

-ever, the acquisition of aerial imagery is costly, and collecting images in remote areas with manned aircraft is 

highly hazardous. 

 

2.1.3 UAV imagery 

Unmanned aerial vehicles (UAVs) typically capture ground imagery while hovering or cruising at low 

altitudes. Equipped with sensors, UAVs can collect exceptionally high-resolution optical imagery, with spatial 

resolution often below 0.1m. In recent years, research on building damage assessment using UAV imagery has 

increased dramatically. This surge is largely due to UAVs' flexibility in site deployment and flight planning, as 

well as their relatively low operational costs. Additionally, the ultra-high resolution of UAV imagery captures 

detailed damage features (such as cracks and de-bris), which are essential for detection tasks. Furthermore, 

compared to airborne aerial imagery, UAV imagery can provide a wider field of view, enabling the capture of 

higher-level building facade details to support high-precision damage assessment. However, the spatial coverage 

of UAV imagery is limited, and in sparsely built areas, a single image typically contains only 2 to 5 building 

instances. 

 

Table 1 The public optical remote sensing imagery used in earthquake building damage detection 

Dataset/Earthquake Platform  Spatial 

Resolution 

URL 

xBD WorldView-2 

WorldView-3 

GeoEye-1 

QuickBird-2 

 

< 0.8m 

https://hyper.ai/datasets/13272 

 

https://xview2.org/dataset 

2010 Haiti 

Earthquake 

Worldview-2  

0.5m 

 

  https://drive.google.com/drive/folders 

    /1Um9poJPwbrVRE1ge01prrKOONot0XfM6 

https://www.haiti-patrimoine.org 

/PROJECTS/2010HAITI/haiti(3)maps.html 

Yushu and Ludian  

datasets 

 

UAV 

 

-0.2,0.1m 

 

https://github.com/city292/build_assessment 

2023 Turkey 

Earthquake 

 

UAV 

 

--- 

  

            

https://www.kaggle.com/datasets/buraktaci/turkiye-

earthquake-2023 

 

2.2 LiDAR 

LiDAR generates images by emitting laser pulses and calculating the time taken for their reflection, 

allowing for the precise acquisition of building height data and the creation of an accurate Digital Surface Model 

(DSM). In damage detection tasks, building height information is of significant value [19]. By comparing the
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 changes in building height before and after the earthquake, the damage to the building can be visually assessed. 

However, research on automatic building damage detection using LiDAR data alone is limited, primarily due to 

the unavailability of pre-disaster LiDAR imagery [17]. Relying solely on post-disaster imagery's spatial and

 height features makes it difficult to effectively distinguish damaged buildings. In building damage detection 

tasks, LiDAR data is typically used to provide additional features (such as height and spatial characteristics) and 

is combined with other types of data (such as optical imagery) to facilitate the detection of building damage 

[[17],[19],[20]

 

2.3 SAR 

SAR (Synthetic Aperture Radar), an active remote sensing technology, offers ad-vantages such as large 

coverage, rapid response, immunity to cloud cover and lighting conditions, and the ability to operate in all 

weather and all-time conditions. Due to these characteristics, researchers consider SAR imagery to be a more 

flexible and reliable data source for damage assessment in the early stages of a disaster [[21],[22]]

Researchers, based on the stability of texture features such as the regularity of building shapes in SAR 

imagery, have distinguished damaged buildings using only features like intensity, coherence, and polarization 

information from SAR data. In the study by Bai et al. (2017) [23], two ALOS2/PALSAR-2 dual-polarization

 SAR images collected from the earthquake-affected area were used to analyze spatial locations with high 

differences in SAR backscatter coefficients and low correlation coefficients to as-sess the damaged regions. In 

another study by Bai et al. (2017) [24], ALOS2/PALSAR-2 SAR images were combined with a machine

 learning framework, applying the k-nearest neighbors (K-NN) method to differentiate the damaged areas by 

analyzing the feature values from the pre-and post-earthquake differential images. In the study by Karimzadeh 

et al. (2017) [25], dual-polarization SAR data from Sentinel-1 (VV, VH) and ALOS-2 (HH, HV) satellites were

 used to analyze intensity, coherence, and polarization measurement information. This data, combined with 

optical image features, was utilized to detect post-earthquake damaged areas. In more recent research, SAR data 

has been used as a supplementary resource to optical imagery, offering its unique ad-vantages in feature 

extraction. Adriano et al. (2021) [16]used dual-temporal SAR data collected from sensors such as TerraSAR-X,

 COSMO-SkyMed, and ALOS-2, complementing optical data sets to create a global multi-temporal, multi-

modal remote sensing dataset for damage detection tasks. 

 

3. Dual-Temporal CNN Method 

The research on building damage based on dual-temporal images involves using pre- and post-earthquake 

imagery as inputs to train deep learning models for accurate prediction of building damage. Recently, 

researchers have designed various automated detection CNNs using dual-temporal imagery as input. These 

networks can be classified based on their network structure into cascade (see Figure 4) and Siamese (see Figure 

5) architectures. Cascade architectures include models like SegDetector [26], while Sia-mese architectures

 primarily include TDA-Net [27], BDA-Net [28], SDCI-Net [4], BD-SKU-Net [29], MS4D-Net [30], and U-

BDD++ [31].

 

3.1 Cascade network architecture 

The cascade network architecture stacks pre- and post-earthquake images as input to the CNN model. A 

simple cascade network consists of basic convolutional layers and fully connected layers. More complex 

cascade networks, however, do not simply stack dual-temporal images as input. Instead, they break the task into 

two main components: identifying building regions and classifying damage levels. The first component focuses 

on assigning semantic labels to each pixel to detect building areas, while the second component labels each 

building with a unique damage level [28], reflecting the extent of the damage. In cascade networks, some

 studies use the same baseline network and fi-ne-tune the network structure based on the differences in the 

localization and classification tasks, while other studies use different networks to achieve more accurate de-

tection. 

 

Figure. 4 Dual-temporal Cascade Network Architecture. 
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Early cascade network architectures typically stacked pre- and post-disaster images as input in a simple 

manner [11]. This approach failed to fully exploit the potential of CNN models to extract the feature differences

 between pre- and post-disaster imagery, limiting the model's performance in building damage detection. Later 

studies focused more on exploring different backbone network models or improving the models to achieve 

higher detection accuracy. Moradi et al. (2020) [32]stacked pre- and post-disaster images as input for the

 cascade network and replaced the max-pooling layer of the Deep Residual U-Net with stride convolution layers 

for training the network model. This method successfully performed building localization and damage classifi-

cation for damaged buildings. Compared to the baseline Deep Residual U-Net, this approach improved the 

overall accuracy by 7.21%. Miyamoto et al. (2021) [33]extended the time dimension in a standard 2-D CNN

 based on the temporal characteristics of dual-temporal imagery, constructing a 3-D CNN with two degrees of 

freedom in the spatial direction and one degree of freedom in the time direction, and used it as the feature 

extraction network in the cascade structure. Additionally, the model incorporated building structural information 

(such as building age and structure type) to build a multimodal cascade network. This network structure 

significantly improved detection accuracy. Recent research has shifted toward a two-stage strategy for building 

assessment: the first stage focuses on building localization, i.e., building image segmentation, while the second 

stage performs damage classification on the segmented results. In this context, we can selectively choose the 

best-performing segmentation and classification CNN models to achieve optimal detection results. Chen (2021) 

[34]designed an image seg-mentation network based on Unet+VGG16_BN for building localization. In the

 damage classification stage, it combined the ResNet18 pre-trained on ImageNet with the U-Net network trained 

in the localization stage. Similarly, Bouchard et al. (2022) [35]used Attention-U-Net as the building localization

 network and Siamese-ResNet architecture as the damage classification network, with both networks combined 

in a cascade manner to jointly complete the building damage classification task. 

 

3.2 Siamese network architecture 

The Siamese network architecture parallelly inputs dual-temporal imagery into two branch networks, which 

separately extract feature representations from pre- and post-earthquake images. Some feature extraction branch 

networks use the same convolutional layer structure and share weights, aiming to bridge the knowledge gap be-

tween localization and classification tasks. This network structure is called a "Siamese" model [36]. Other

 studies have designed completely different localization and damage classification branch networks, which are 

then fused to complete the building damage detection task. This design fully combines the advantages of 

network structures that perform well in localization and classification tasks, significantly improving the overall 

detection accuracy of the model. This is referred to as a "fusion" model [36].

 

 

Figure. 5 Dual-temporal Siamese Network Architecture. 

 

The initial research on dual-temporal building damage detection based on the Siamese network architecture 

primarily focused on integrating the features extracted by the two branch networks. Weber et al. (2020) 

[37]designed a Siamese network architecture where both branches utilized a ResNet50 backbone pre-trained on

 ImageNet with shared weights, combined with a Feature Pyramid Network (FPN) for feature ex-traction. May 

et al.(2022) [38]also adopted the Siamese network architecture and com-pared the performance differences 

between UNetEfficientNet-B0 and UNetEfficient-Net-B5 in building damage assessment tasks. In their 

experiment, the encoder networks are identical and share weights. The outputs from the skip connections are 

generated in parallel, then concatenated and used as input to the decoder. Adriano et al. (2021) [16]used a

 Siamese U-Net architecture with an added attention mechanism. This architecture also shares the weights of the 

encoder networks for both pre- and post-disaster images and connects the corresponding encoder and decoder 

blocks through skip connections to restore the original pixel resolution of the input images, while passing the 

learned information from the encoder to the decoder. Recently, some researchers have leveraged the flexibility 

and scalability of the Siamese network architecture by first training a building localization network using pre-



Computer Fraud and Security  

ISSN (online): 1873-7056 

 

__________________________________________________________________________________________ 

669 Vol: 2025 | Iss: 1 | 2025 

 

disaster images and then fusing the damage classification features extracted by the Siamese network with the 

building localization results to perform building damage detection [[28],[39]]. Zheng et al.(2021) [12]propos

ed a Siamese network architecture based on deep object semantic change detection (ChangeOS), which consists 

of two main parts: the encoder and the multi-task decoder. The encoder is composed of a shared-weight ResNet 

and a task-aware context encoder. The branch decoder, which takes pre-disaster images as input, is responsible 

for building localization. It sends the extracted deep object features, along with features from the post-disaster 

images, to the damage classification decoder. The final detection results undergo an object-based post-

processing stage, and when compared to the xView2 baseline method and the top solution of xView2, 

ChangeOS achieves the highest F1 scores in both localization and classification tasks. 

In dual-temporal CNN-based research methods, these two network architectures each have their 

advantages. In terms of feature extraction efficiency, the Siamese net-work, where pre- and post-event images 

are input separately, has a significant ad-vantage over the cascade network, which stacks the dual-temporal 

images as input. Xu et al. (2019) [40]and Kalantar et al. (2020) [36]compared the performance of the tw

o methods in post-earthquake building damage detection. The findings indicated that the Siamese network 

surpassed the cascade network in both overall accuracy and model robustness, excelling particularly in 

distinguishing undamaged categories from dam-aged details, such as building debris. In the context of splitting 

the earthquake building damage detection task into two stages—localization and damage classification—the 

cascade network is more suitable for emergency rescue situations and assessment tasks [35]. This is because

 cascade networks typically do not require shared weights and can be trained and deployed independently, 

resulting in lower computational costs and faster convergence. On the other hand, the Siamese structure, which 

eliminates the knowledge gap through shared network weights, requires both sub-networks to be trained 

simultaneously to update the weights together. This imposes higher computational resource demands and may 

lead to longer training times. 

 

4. Single-temporal CNN Method 

Single-temporal methods use only post-event images as input to the model, automatically extracting 

building textures, background features, and other detailed in-formation through CNNs for building damage 

detection [22]. With the continuous iteration and improvement of convolutional neural network models, many

 models with higher accuracy and faster detection speeds have been proposed, greatly advancing the 

development of post-earthquake single-temporal research. Depending on the task type, post-earthquake building 

damage detection can be categorized into three main types: semantic segmentation, object detection, and 

instance segmentation. Figure 6 summarizes the CNN models used in earthquake damage detection. 

 

 

Figure. 6 The three main types of convolutional neural network models used for building damage detection 

tasks. 
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4.1 Semantic Segmentation Network 

Semantic segmentation involves assigning a semantic label to each pixel in an image, and it is a 

fundamental task in computer vision. In the research on post-earthquake building damage detection, commonly 

used semantic segmentation models include U-Net [41], SegNet [42], and DeepLab series [43]

 

4.1.1 U-Net 

U-Net, an enhanced version of the Fully Convolutional Network (FCN), addresses the issue of the sliding-

window approach, which requires large patches for training by using a sliding window to provide pixels. This 

also causes redundancy due to overlap-ping patches, resulting in overfitting as the same features are trained 

multiple times. Its network structure is shown in Figure 7. U-Net achieves precise segmentation even with a 

small training dataset, offering advantages such as accurate target localization and fast network speed. On a 

single GPU core, it takes less than one second to segment a 512×512 image. This feature has made U-Net and 

its improved versions widely used in post-earthquake building damage detection. Additionally, the structure has 

a strong ability to extract local information, making it effective for building localization and classification in 

images [44].

 

 

Figure. 7 Basic U-Net Network Structure Diagram. 

 

Due to regional differences in building structures and materials, the characteristics of houses vary, and the 

damage to buildings becomes more complex after an earthquake. The internal feature extraction mechanism of 

U-Net is relatively weak in capturing complex image features, which can lead to the loss of accurate earthquake 

damage information. Khankeshizadeh et al. (2024) [45]designed a U-Net-based model that integrates weighted

 ResNet34, Vgg16, and InceptionV3 model weights to overcome the issue of U-Net losing damage feature 

information and further improve the model's generalization ability. Wang et al. (2021) [46]integrated an Object

 Contextual Attention (OCR) module into the fourth layer shortcut connection of U-Net to consolidate pixel-

level context, thereby enhancing pixel representations. This approach helps the model recover lost damaged 

details of buildings in post-earthquake scenes, where surface features of collapsed, damaged, and intact 

buildings are mixed. 

 

4.1.2 DeepLab 

The DeepLab series of networks has evolved from V1, V2, and V3 to the latest DeepLabV3+. Figure 8 

shows the network structure of DeepLabV3+. Its architecture includes a depthwise separable convolution 

module in the encoder part, an ASPP (Atrous Spatial Pyramid Pooling) module, and a decoder module for 

fusing shallow and deep features. 

 

Figure. 8 DeepLabV3+ Network Structure Diagram. 
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The DeepLab series networks enhance their ability to capture contextual information and effectively 

preserve spatial features by introducing dilated convolutions to expand the receptive field. DeepLabV3+ further 

optimizes the ASPP (Atrous Spatial Pyramid Pooling) module from DeepLabV3 to improve global context 

extraction and incorporate depthwise separable convolutions to boost computational efficiency. It us-es an 

encoder-decoder architecture to fuse low-level features extracted by depthwise separable convolutions with 

high-level features extracted by the ASPP module. The DeepLab network architecture is highly effective in 

capturing detailed damage features in complex post-earthquake scenes. Its powerful multi-scale information 

extraction ability allows it to support mixed training of remote sensing data from various sources in earthquake-

affected areas. 

The large number of parameters in deep neural networks results in higher time and space overheads for the 

DeepLab network compared to other networks. However, earthquake rescue tasks are time-sensitive, and rapid 

building damage detection is crucial for emergency response. Therefore, when applying the DeepLab network 

or its improved versions for post-earthquake building damage detection, it is essential to find a balance between 

time overhead and detection accuracy. In addition, dilated convolutions sample pixels with gaps by skipping, 

which can easily result in a significant loss of boundary information when segmenting buildings. Song et al. 

(2020) [47]proposed a method based on DeepLabV2, incorporating superpixel segmentation (SLIC) to

 accurately extract the regional boundaries of earthquake-damaged buildings. Wang et al. (2021) [46]integrated 

the object context attention (OCR) module into the DeepLabV3+ decoder, after fusing shallow and deep 

features, to enhance the feature representation of object regions. They designed a new boundary enhancement 

loss function (BE Loss) aimed at further refining the boundary segmentation of damaged buildings and reducing 

the loss of boundary information. This method effectively reduced the false detection rate of collapsed buildings 

while significantly improving the extraction of building contours and the accurate localization of boundaries. 

 

4.2 Object Detection Network 

In building damage assessment tasks, object detection models determine the precise location of buildings 

by predicting bounding boxes and labeling the damage level of each building. Object detection models such as 

Faster R-CNN [48], SSD [49]and the YOLO series [50]are widely used in these task

 

4.2.1 Faster R-CNN 

The Faster R-CNN network structure consists of the following components: (1) Backbone: Convolutional 

layers for feature extraction, responsible for generating multi-level feature maps from the image. (2) RPN: 

Generates candidate detection boxes. (3) ROI: Filters candidate regions that may contain the target and extracts 

fixed-size features from the candidate boxes. (4) Classification: Classifies the candidate regions, predicts their 

category, and performs regression on the detection boxes to precisely adjust their positions. 

The classic two-stage object detection network, Faster R-CNN, generates high-quality object region 

proposals through the Region Proposal Network (RPN), which predicts bounding boxes. It performs 

exceptionally well in target localization and classification accuracy. Faster R-CNN can run at near-real-time 

frame rates, which is of significant practical importance for quickly detecting earthquake-damaged buildings. 

Additionally, the backbone network of Faster R-CNN is highly flexible, allowing for the use of various pre-

trained networks as feature extractors, thereby speeding up the training process and saving valuable time in 

earthquake damage assessment tasks [51].

The RPN network of Faster R-CNN is used to generate object region prediction bounding boxes. By 

default, it uses anchors with 3 scales and 3 aspect ratios, producing 9 rectangular object region proposal boxes. 

However, this multi-scale and multi-aspect ratio anchor setting can lead to overlapping issues between the 

candidate boxes. When collapsed or damaged buildings cover a large area with unclear boundaries, it is easy for 

multiple detection boxes to overlap in the target regions. Ding et al. (2020) [52]proposed the Intersection-over

-Object ratio (IPO) to replace the traditional IoU and used this strategy to improve the Non-Maximum 

Suppression (NMS) algorithm. This was applied to Faster R-CNN to accurately and efficiently detect collapsed 

buildings in post-earthquake drone images. Experimental results demonstrate that this approach effectively 

minimizes the occurrence of overlapping bounding boxes. 

 

4.2.2 YOLO Series 

The real-time object detection system YOLO (You Only Look Once) has under-gone continuous iterations 

and optimizations since the release of its first version in 2015, and as of October 2024, it has evolved to 

YOLOv11. With outstanding real-time detection performance and high accuracy, the YOLO series has 

maintained strong momentum in its updates and has become a core mainstream model in the field of object 

detection [53]. As shown in Figure 9, the YOLOv5 network structure consists of four parts: (1) Input: Supports

 data augmentation techniques such as rotation, random cropping, brightness and contrast adjustment, and 

Mosaic to enhance the model's generalization ability. (2) Backbone: Based on the Focus module and 

CSPDarknet53 structure, the backbone network is used to extract deep features. (3) Neck: Uses SPP and 
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FPN+PAN structures to fuse multi-scale features, improving object detection performance. (4) Output: Outputs 

the predicted results, including the confidence score, class probabilities, and anchor box coordinates. 

 

Figure. 9 Yolov5 Network Structure Diagram. 

 

Unlike traditional object detection models that need several evaluations of an im-age to detect objects, 

YOLO series networks use a single-pass detection method, significantly improving detection speed. Due to their 

strong real-time processing and object detection capabilities in dynamic environments, YOLO networks are 

widely used in post-earthquake emergency response and building damage detection research. Wang et al.(2023) 

[54]applied the improved YOLOv5s model to an embedded system for drone imagery, enabling real-time

 detection of damaged building areas. However, in the complex scenarios of post-earthquake areas and multi-

target building damage detection, factors such as significant differences in building sizes and a large number of 

targets present important challenges when applying object detection models. YOLOv3 and its subsequent 

networks, with their Anchor mechanism, global regression methods, and multi-detection head design, exhibit 

outstanding multi-scale and multi-target detection capabilities, giving them a clear advantage over many other 

object detection networks. 

While YOLO prioritizes detection speed and real-time performance, it compromises detection accuracy. 

Despite its fast detection speed, its localization accuracy is lower than two-stage object detection methods, 

particularly in detecting small and densely located damaged buildings in post-earthquake scenarios [55]. In

 earthquake damage detection, optimizing the balance between YOLO's detection accuracy and speed is a key 

direction for improving detection efficiency. Ma et al. (2019) [56]replaced the YOLOv3 backbone feature

 extraction network with the lighter ShuffleNet v2, which improves both detection accuracy and speed. Shi et al. 

(2021) [57]used ResNext as the backbone of YOLOv4, reducing network complexity and improving feature ex

-traction capabilities. They introduced a new Focal_EIOU_loss function to optimize bounding box regression. 

Jing et al. (2022) [58]adopted a bidirectional feature pyramid network (BiFPN), while Wang et al. (2023)

 [54]introduced the BDCAM attention mod-ule to replace the PANet structure in YOLOv5. Both improvements 

significantly reduced the computational complexity of multi-scale feature fusion while effectively balancing 

computational overhead and accuracy. For small object detection, Zou et al. (2024) [59]based their work on the

 YOLOv5s-seg network and introduced the Attention Fusion Sequence (ASF) method, which improves the 
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Neck component to enhance the detection of small building targets in post-earthquake images. Ablation 

experiments showed that the ASF method improved the overall detection accuracy of the model. 

4.3 Instance Segmentation Network 

 

4.3.1 Mask R-CNN 

Instance segmentation tasks can be viewed as a combination of semantic segmentation and object 

detection. The goal is to precisely segment each building instance in an image, locate its position using 

bounding boxes, and assign a damage degree label to each building. Classic instance segmentation models 

commonly used for detecting earthquake-damaged buildings include Mask R-CNN [60]and the Yolo-seg series.

 

Figure. 10 Mask-R-CNN Network Structure Diagram. 

 

Mask R-CNN is an enhanced version of the Faster R-CNN object detection net-work. Its network 

architecture is similar to Faster R-CNN, as shown in Figure 10. Mask R-CNN introduces the RoIAlign layer to 

replace the RoIPool layer in Faster R-CNN, aiming to achieve more precise feature alignment for the candidate 

proposal regions generated by the RPN. In addition, the Mask R-CNN model adds a parallel branch to the 

classification and bounding box prediction branches of Faster R-CNN to predict object masks. 

Mask R-CNN has excelled in instance segmentation tasks and has surpassed the champions of the COCO 

2015 and COCO 2016 Segmentation Challenges since its debut. This model is not only fast and accurate but 

also capable of simultaneously performing both object detection and semantic segmentation tasks, providing 

more comprehensive disaster information for the assessment of damaged buildings, such as the degree of 

damage, the location of the damage, and the area of the damage. Yildirim et al. (2023) [1]used Mask R-CNN to

 identify collapsed buildings in remote sensing data. By optimizing the backbone network and training 

parameter combinations, the best model achieved detection results of AP = 81.28% for intact buildings and AP 

= 69.26% for col-lapsed buildings. Zhan et al.(2022) [61]improved Mask R-CNN by replacing the FPN feature 

pyramid structure with a Path Aggregation Network (PANet), aiming to reduce the loss of useful information in 

multi-scale feature extraction, thereby improving detection accuracy. Additionally, they utilized the NMS 

algorithm to effectively sup-press the generation of overlapping bounding boxes. 

 

5. Challenges and Strategies 

With the rapid development and continuous iteration of CNNs in computer vision and disaster image 

processing, researchers are expected to keep focusing on applying CNN methods to post-earthquake building 

damage detection tasks. However, there are still several unique challenges in this task, such as small dataset 

sizes, low-quality training datasets, class imbalance in classification instances, and the fusion of features from 

images at different scales. Therefore, there remains significant room for improvement in applying CNNs to 

building damage detection tasks. 

 

5.1 Dataset scarcity 

In building damage detection tasks, there is limited availability of publicly accessible image data from 

earthquake-affected areas [62], and labeled image datasets are extremely scarce. The generalization ability and

 robustness of deep learning models are often affected by the diversity and quantity of the training datasets [63]. 

A lack of training data may result in poor CNN model performance and an increased risk of overfitting. Data 

augmentation and transfer learning can help alleviate the problems to some extent, improving the model's 

performance. 

 

5.1.1 Data augmentation 

Data augmentation is an efficient and practical method for expanding datasets. Common techniques include 

simple translations, scaling, rotations, and horizontal or vertical flips applied to the existing training datasets. 
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These operations encourage the network model to learn repeatedly from the limited data, improving the model's 

detection accuracy for buildings and their damaged features. Data augmentation methods such as brightness 

transformations, uniform or non-uniform fogging, and noise reduction can effectively simulate common 

scenarios found in disaster zone imagery, including cloud cover, harsh weather conditions, and extreme lighting 

situations (either too bright or too dim). These methods not only help expand the dataset but also significantly 

enhance the model's exposure robustness under varying lighting conditions, improving its ability to detect in 

complex environments [64]. Moreover, recent innovative data augmentation methods in image classification and

 object detection re-search, such as CutMix [65]—where a random region is cut from one image and pasted into 

a specified location on another image to generate a new image, GridMask [66]—where a set of evenly

 distributed square regions is removed from the original training image, and Random Erasing [67]—where a 

random rectangular region is selected, and its pixel values are replaced with random values or the region's 

average value, offer fresh approaches to address the challenge of limited earthquake image datasets and 

demonstrate promising research and application prospects. 

 

5.1.2 Transfer learning 

Transfer learning seeks to enhance performance or reduce the need for labeled samples in the target domain 

by utilizing knowledge from the source domain [68]. In transfer learning, the use of pre-trained models is the

 most common approach. Utilizing pre-trained models not only saves training time but also significantly 

enhances the model’s generalization ability. On the other hand, fine-tuning with a smaller set of disaster zone 

image data enables the rapid development of an efficient damage detection model, effectively overcoming the 

challenges posed by limited datasets and avoiding the difficulty of training a high-accuracy model due to 

insufficient data. Wu et al. (2019) [69]and Nag et al. (2020) [70]fine-tuned the VGG16 model pre-trained o

n ImageNet with disaster-related images, and the resulting collapsed building detection models showed 

improvements in overall accuracy and classification capability. Yang et al. (2021) [71]fine-tuned the ImageNet

 pre-trained DenseNet121 with the xBD dataset, and the results indicated that the model had strong geographical 

transferability and performed best in detection. This demonstrates the effectiveness of transfer learning in 

addressing challenges such as overfitting and poor generalization caused by limited disaster zone datasets. 

During post-earthquake response, rescue evaluation, and dam-age detection phases, pre-trained models can not 

only help save valuable rescue time but also significantly reduce the workload of damage detection. 

 

5.2 Class imbalance 

In the task of post-earthquake building collapse and damage detection, most datasets are characterized by a 

higher number of intact buildings than damaged ones. This causes the trained models to favor detecting intact 

buildings, leading to significant false positives and reducing the classification accuracy for damaged buildings. 

Common solutions to address the class imbalance problem include data-level methods and algorithm-level 

methods. 

At the data processing level, oversampling strategies can be used to increase the number of damaged 

building instances or undersampling strategies can reduce the number of intact building instances to balance the 

frequency of training on features of buildings with different damage levels. This helps the model better focus on 

the features of damaged buildings, improving both the balance and accuracy of classification. At the algorithmic 

level, cost-sensitive learning assigns different loss weights to different classes in the dataset based on the 

importance or imbalance of the damage categories. This adjustment of the loss function allows damaged and 

collapsed features to contribute more significantly during the network weight update process [[72],[73]]

. Ensemble learning optimizes the model's ability to recognize and detect minority classes by integrating 

multiple base classifiers and combining strategies like resampling and weighting, which can effectively alleviate 

the issue of class imbalance [74]. Learning strategy design methods can also be applied to address class 

imbalance by improving the learning approach and optimizing the learning process [75], aiming to balance the 

training of different class instances input into the model [76]. 

 

5.3 Adaptability of CNN models 

Most mainstream CNNs are not fully adapted for post-earthquake building dam-age detection tasks due to 

the specific nature of the damage features. On one hand, from a size perspective, this is a small object detection 

task. On the other hand, the geometric features of intact buildings are generally more regular and have clear 

boundaries. However, after an earthquake, damaged buildings may exhibit various degrees of de-formation, with 

debris such as broken stones and falling building fragments scattered around undamaged units. By constructing 

CNN models based on the special characteristics of detection tasks and applying improved modules to 

mainstream models, promising results have been achieved, showing great potential for future development. 

To address the irregularity of collapsed buildings, deformable convolution (DCN) can be used to replace 

traditional convolution layers, enhancing the extraction of irregular features from collapsed buildings [52]. The

 attention module shifts the model's focus to the most important regions of the image (damaged buildings), 
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which can effectively improve the detection performance for densely packed and smaller targets. Modules like 

ASPP, SPPF [77], and dilated convolution operations can effectively enlarge the receptive field of the CNN 

model, enhancing its ability to capture multi-scale contextual information in feature maps [43]. In the task of 

detecting damaged buildings, embedding these modules into the network can further improve the model’s ability 

to identify subtle damage features. Particularly in a four-class classification scenario, this method helps to 

enhance the recognition accuracy for the categories of lightly damaged and severely damaged buildings, thus 

improving the overall detection accuracy of the model. 

 

6. Conclusions 

This review provides an overview of the current progress in earthquake-damaged building detection 

research based on CNNs. It systematically reviews aspects such as datasets, models, and methods, while 

highlighting the limitations of CNNs in this task and the various challenges they face. The review also proposes 

strategies to address these challenges, offering important references for future earthquake rescue, disaster area 

assessment, and post-disaster reconstruction efforts. 

With the continuous upgrade of sensor devices and the significant improvement in computing power, deep 

learning CNNs will demonstrate even greater potential in the future. The combination of remote sensing 

imagery and CNNs for earthquake-damaged building detection still has substantial room for improvement. 

Currently, relying solely on 2D information to assess building damage has significant limitations. However, 

the integration of deep learning-based methods such as Multi-View Stereo (MVS) [78], NeRF [79], and 3

D Gaussian Splatting [80], along with low-altitude drone oblique multi-view images and multi-view satellite 

remote sensing imagery for 3D reconstruction in disaster zones, will enable more detailed and com-prehensive 

building damage assessments in the future. This approach will become a key development direction for 

earthquake-damaged building detection. The Vision Trans-former (ViT), based on the self-attention mechanism, 

has proven to surpass traditional CNNs in large-scale training [81]. Its attention modules can completely replace

 convolutional operations. Applying ViT or its attention-based modules to post-earthquake building damage 

detection tasks can offer new insights for the field. Additionally, the self-supervised pre-training phase of ViT on 

large-scale datasets can reduce the work-load of manual annotations and save rescue time [82]. Fine-tuning the

 network on medium and small-sized datasets can also address the challenge of scarce building data in 

earthquake-affected areas. Moreover, the rapid development of large models in areas like natural language 

processing, computer vision, and speech recognition has showcased their strong learning and generalization 

capabilities. These models can accurately predict unseen data and learn complex high-level features from vast 

amounts of data. The construction of large models for disaster prediction, post-disaster rescue, damage 

assessment, and building damage classification detection has broad future development prospects. 
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