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Abstract: With the advancement of information technology, data security and user privacy protection have 

become paramount. To achieve efficient privacy protection in a federated learning environment, a 

differential privacy algorithm is designed using the eXtreme Gradient Boosting (XGBoost) algorithm. This 

algorithm optimizes the privacy protection process by applying differential privacy to the optimal 

segmentation point in a weak classifier. Additionally, to address the multi-party collaboration challenge in 

federated learning, a differential privacy construction scheme based on multi-party collaboration is 

proposed. The results indicate that the running times of differential privacy algorithms based on multi-party 

collaboration, XGBoost, and the traditional differential privacy algorithm were 16.2s, 22.1s, and 29.5s, 

respectively. The optimized approach improved efficiency by 45.08% compared to the traditional algorithm. 

Overall, the differential privacy-based federated learning efficiency optimization algorithm can ensure 

privacy protection while enhancing accuracy and efficiency, providing significant technical support. 

Introduction: This paper proposes a privacy-preserving joint learning efficiency optimization algorithm 

based on differential privacy, and designs a differential privacy-preserving algorithm based on XGBoost 

(DP-XGB). This algorithm enhances privacy preservation by introducing differential privacy at the optimal 

segmentation point in the weak learner, thereby improving both data security and model accuracy. Building 

on this foundation, the research further proposes a differential privacy construction scheme (FDP-XGB) 

based on multi-party collaboration, integrating joint learning techniques to address potential privacy leakage 

during multi-party collaboration. 

Objectives: By applying differential privacy to the optimal splitting point among weak learners, DP-XGB 

optimizes the privacy protection process, thereby enhancing both data security and model accuracy. FDP-

XGB is introduced to safeguard privacy in a joint learning environment, effectively addressing the issue of 

privacy leakage that can occur during multi-party collaboration. 

Methods: We first enhance the original data and obtains weak learners using the XGBoost algorithm. These 

weak learners are then combined to form a strong learner, and a differential privacy protection algorithm is 

constructed. Building on this foundation, the second section develops a multi-party collaborative privacy 

protection algorithm within a federated learning environment. 

Results: The results indicate that the running times of differential privacy algorithms based on multi-party 

collaboration, XGBoost, and the traditional differential privacy algorithm were 16.2s, 22.1s, and 29.5s, 

respectively. The optimized approach improved efficiency by 45.08% compared to the traditional algorithm. 

Overall, the differential privacy-based federated learning efficiency optimization algorithm can ensure 

privacy protection while enhancing accuracy and efficiency, providing significant technical support.  

Conclusions: This study proposes a privacy protection technology that combines the XGBoost differential 

privacy protection algorithm with federated learning to address privacy security and data silos in data 

mining. FDP-XGB demonstrated the highest prediction accuracy when comparing true and predicted data 

values, outperforming DP-XGB. For a data volume of 18×104, the computation times for XGBoost, DP-

XGB, and FDP-XGB were 29.5 seconds, 22.1 seconds, and 16.5 seconds, respectively, with resource 

consumption rates of 48.5%, 24.9%, and 21.1%. 
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INTRODUCTION 

With the rapid development of IoT, cloud computing, and big data technologies, enterprises and users generate a 

large amount of complex and heterogeneous data in their activities. How to reasonably analyze and process these 

data is of great significance to both enterprises and users. In the process of data transmission and processing, 

without effective privacy protection measures, a large amount of sensitive information may face the risk of illegal 

theft and privacy leakage [1]. For instance, enterprises can leverage big data analytics to uncover hidden patterns, 

gain insights into consumer behavior, enhance product development, and improve customer service. Similarly, 

users benefit from personalized services and products tailored to their preferences and needs. Therefore, data 

security and user privacy protection have become the focus of current concerns.  

Differential privacy is a crucial privacy-preserving data analytics technique that extracts valuable insights from 

data by controllably adding noise, preventing the identification of individual records. Federated learning, on the 

other hand, is a distributed machine learning technique that enables efficient data utilization while preserving 

privacy by collaboratively training models across different data sources. Therefore, differential privacy and 

federated learning have become prominent directions in the field of privacy protection, with numerous researchers 

exploring their applications in cybersecurity. In terms of differential privacy, previous studies have proposed 

methods based on the Laplace and Gaussian mechanisms [2]-[5]. These methods ensure privacy protection by 

adding noise to the data distribution process, with the Laplace mechanism commonly used for numerical data and 

the Gaussian mechanism applicable to more complex data types. Additionally, research has explored histogram- 

and clustering-based differential privacy techniques that enhance privacy protection by adding noise to data 

distribution. In the realm of federated learning, previous research has focused on model aggregation and 

improving communication efficiency [9]-[12]. Scholars have proposed model aggregation methods based on 

weighted averages and random selection to address the problem of uneven data distribution. Other studies have 

explored methods to enhance the efficiency of federated learning by reducing communication frequency and 

compressing the amount of transmitted data [13]. These methods not only reduce communication overhead but 

also protect data privacy to a significant extent. Overall, the integration of differential privacy and federated 

learning techniques represents a significant advancement in privacy-preserving data analytics. By leveraging these 

methods, it is possible to achieve secure and efficient data processing, fostering innovation and ensuring 

compliance with privacy regulations. 

Although differential privacy and federated learning techniques have made significant progress in privacy 

protection, they still face numerous challenges in practical applications. First, most existing differential privacy 

techniques are designed for processing and analyzing centralized data and are ineffective for privacy protection 

in distributed data environments. Second, federated learning can lead to privacy leakage during multi-party 

collaboration, as participants must send training parameters to the aggregation server, making it easy to reconstruct 

the original data from these parameters. Finally, differential privacy techniques introduce a certain amount of 

noise to protect privacy, which can affect the accuracy and efficiency of the model. Therefore, achieving efficient 

data use and robust privacy protection in federated learning environments remains an urgent challenge. 

To address the challenges, this paper proposes a privacy-preserving joint learning efficiency optimization 

algorithm based on differential privacy. Specifically, the study selects the Extreme Gradient Boosting (XGBoost) 

algorithm, known for its strong performance in data mining and recommender systems, and designs a differential 

privacy-preserving algorithm based on XGBoost (DP-XGB). This algorithm enhances privacy preservation by 

introducing differential privacy at the optimal segmentation point in the weak learner, thereby improving both 

data security and model accuracy. Building on this foundation, the research further proposes a differential privacy 

construction scheme (FDP-XGB) based on multi-party collaboration, integrating joint learning techniques to 

address potential privacy leakage during multi-party collaboration. The contributions of the paper can be 

summarized as follows. 

 Firstly, a differential privacy protection algorithm based on XGBoost, named DP-XGB, is proposed. By 

applying differential privacy to the optimal splitting point among weak learners, this algorithm optimizes the 

privacy protection process, thereby enhancing both data security and model accuracy. 
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 Secondly, the differential privacy construction scheme based on multi-party collaboration (FDP-XGB) 

is introduced to safeguard privacy in a joint learning environment, effectively addressing the issue of privacy 

leakage that can occur during multi-party collaboration. 

 Thirdly, experimental results demonstrate that the DP-XGB algorithm achieves the lowest fit function 

value across different datasets, with optimal convergence speed and accuracy compared to other algorithms. 

Additionally, when dealing with large data volumes, the FDP-XGB algorithm outperforms the traditional 

XGBoost algorithm in terms of running time, while maintaining an excellent balance between privacy 

preservation and computational efficiency. 

RELATED WORKS  

Differential privacy protection technology is crucial for safeguarding sensitive data by adding controlled noise to 

prevent the extraction of valuable information. Many scholars have conducted in-depth research on this topic. 

Guo P et al. [2] proposed a differential privacy protection protocol based on location entropy for exposure in 

location-based services. They designed an optimal auxiliary user selection strategy for constructing anonymous 

sets and applied smart contracts to assess participant credibility. This protocol effectively resists background 

knowledge attacks and achieves controllable privacy protection for users. Chen et al. [3] explored the impact of 

sensor data correlation on differential privacy in mobile crowd perception systems, examining disturbance 

mechanisms from various perspectives. They used a Bayesian network to model the probability relationships 

between sensor data, derived scale parameters using the classical definition of differential privacy, and proposed 

a new perturbation mechanism to minimize noise introduction while aggregating query functions. Zhang J et al. 

[4] proposed an entropy-driven differential privacy protection scheme based on social graph attributes to protect 

graphic data in social media. This algorithm converts sensitive graph data into uncertain graphs, balancing privacy 

and practicality. Zhang C et al. [5] developed a personalized location privacy protection system to address privacy 

issues in mobile crowdsourcing technology. They introduced an innovative algorithm for calculating the privacy 

level of worker locations, a personalized differential privacy protection algorithm based on exponential 

mechanisms, and a personalized localized differential privacy protection algorithm. This system effectively 

enhances the efficiency and reliability of mobile crowdsourcing systems. Liu et al. [6] proposed models and 

algorithms for differential privacy metaverse data sharing using Wasserstein Generative Adversarial Networks 

(WGANs). Hewage et al. [7] conducted a systematic literature review on privacy-preserving data mining (PPDM) 

and data stream mining (PPDSM) techniques. They categorized PPDM methods into four types and highlighted 

the accuracy-privacy trade-off, noting a lack of solutions in PPDSM. Yang et al. [8] conducted a comprehensive 

survey on local differential privacy (LDP), analyzing its techniques and applications. They discussed the 

challenges and future directions in maintaining model performance while ensuring LDP in machine learning 

model training. 

Federated learning enables the joint development of learning models and provides output results to users, offering 

an effective solution for data privacy protection. Scholars such as Pillutla K [9] proposed a robust joint aggregation 

learning method and developed a robust federated learning algorithm for stochastic learning of least squares 

additive models. Lee Y et al. [10] proposed server-driven and client-driven methods based on greedy algorithms 

to address the statistical heterogeneity in federated learning. Their experimental results indicated that these 

methods could improve federated learning technology and reduce wireless communication costs. Chung W et al. 

[11] introduced a federated feature connection method that accounts for heterogeneous clients. This approach 

involves model splitting and functional connectivity, which offloads some training load from the client to the 

aggregation server. Zhang F et al. [12] proposed a federated unsupervised representation learning method to utilize 

massive unlabeled data on distributed edge devices, aiming to learn a universal representation model without 

supervision while protecting data privacy. Zong et al. [14] discussed strategies to improve communication 

efficiency in decentralized federated learning. Ren et al. [15] provided a position paper on Federated Foundation 

Models (FedFM), outlining the motivations, challenges, and future directions in this emerging field. Shekhar et 

al. [16] study demonstrates the effectiveness of XGBoost in handling complex data and provides a reference for 

combining XGBoost with Particle Swarm Optimization for predicting discharge in compound channels with 

converging and diverging floodplains. Joshi et al. [17] survey the use of synthetic data in human analysis, 

discussing its benefits, applications, and open challenges, including the generation of synthetic data and its impact 

on privacy and model performance. Pan et al. [18] introduce Flagger, an efficient and high-performance federated 
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learning aggregator, which leverages data processing units and computational storage drives to accelerate large-

scale cross-silo federated learning aggregation, significantly reducing aggregation time and improving overall 

training efficiency. Silvi et al. [19] propose FedSeq, a federated learning framework that accelerates training by 

sequentially training groups of heterogeneous clients, reducing communication overhead, and speeding up 

convergence. 

In summary, existing network privacy protection technologies face significant challenges, particularly when 

processing and analyzing distributed and uncleaned datasets. Ensuring data security in these contexts remains an 

unresolved issue. Current methods primarily focus on traditional federated learning and differential privacy for 

computation, without adequately addressing multi-party collaboration. This study takes a novel approach by 

developing an information network privacy protection algorithm based on the XGBoost algorithm, with an 

emphasis on multi-party collaboration. 

EFFICIENCY OPTIMIZATIONS FOR FEDERATED LEARNING ALGORITHM WITH 

DIFFERENTIAL PRIVACY 

To address privacy and security issues in distributed datasets, we present a privacy-preserving joint learning 

efficiency optimization algorithm based on differential privacy. We first enhance the original data and obtains 

weak learners using the XGBoost algorithm. These weak learners are then combined to form a strong learner, and 

a differential privacy protection algorithm is constructed. We further develop a multi-party collaborative privacy 

protection algorithm within a federated learning environment. 

Compared with traditional random forest algorithms, the XGBoost algorithm is an efficient gradient boosting 

decision method that uses the ensemble technique Boosting to combine multiple weak learners into a strong 

learner. By employing multiple decision trees for joint decision-making, each tree contributes to correcting the 

difference between the target and the predicted results of all previous trees, thereby improving overall 

performance. The operating principle of the XGBoost algorithm is illustrated in Figure 1. 

Build initialization 

model

Gradient boosting 

method
Weak learner Linear search method

Best weight
Add new decision tree 

and weights

Reached iteration 

count
Output results

 

Figure 1 The running process of XGBoost algorithm 

As shown in Figure 1, the XGBoost algorithm first constructs an initialization model. Secondly, the gradient 

boosting method iterates to construct a weak learner, and then uses linear search methods to find the optimal 

weights. Subsequently, a new decision tree and weights are added to update the model. Finally, when the algorithm 

has the maximum iteration, the iteration stops and the result is obtained. The target algorithm of XGBoost is 

shown in Equation (1). 

𝑂𝑏𝑗(𝛩) = ∑ 𝑙(𝑦𝑖 , 𝑦̂𝑖) + ∑ 𝛺(𝑓𝑗), 𝑓𝑗 ∈ 𝐹
𝑡
𝑗=1

𝑁
𝑖=1   (1)        

where 𝑦𝑖  represents the real data in dataset 𝐷 , 𝑦̂𝑖  represents the target data, 𝑡  represents a weak learner, 𝑓𝑗 

represents the 𝑗-th weak learner, 𝛺(𝑓𝑗) represents the regularization term, and 𝑙(𝑦𝑖, 𝑦̂𝑖) represents the training 

error function of the model. The objective function can effectively constrain the decision tree’s complexity, as 

shown in Equation (2).  

𝛺(𝑓𝑡) = 𝛾𝑇 +
1

2
𝜆∑ 𝜔𝑗

2𝑇
𝑗=1  (2) 
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where 𝑇 signifies the total leaf nodes in the decision tree, 𝜔 signifies the output score of the leaf nodes in the 

decision tree, 𝜆 and 𝛾 represent constants. The leaf nodes and node scores are unified, as displayed in Equation 

(3). 

𝑓𝑡(𝑥) = 𝜔𝑞(𝑥), 𝜔 ∈ 𝑅𝑇 , 𝑞: 𝑅𝑑 → {1,2, . . . , 𝑇} (3) 

where 𝑥 signifies the sample, 𝑞 signifies the structure of leaf nodes, 𝑞(𝑥) represents the mapping leaf node of 

sample 𝑥 , and 𝜔𝑞(𝑥)  represents the leaf node’s score. The target algorithm 𝑂𝑏𝑗(𝛩)  is subjected to Taylor 

expansion, as illustrated in Equation (4). 

{
 
 

 
 𝑂𝑏𝑗(𝑡) = −

1

2
∑ (

𝐷𝑗
2

𝐻𝑗+𝜆
)𝑇

𝑖=1 + 𝛾𝑇     

𝐺𝑗 = ∑ 𝑔𝑖𝑖∈𝑖𝑗
                        

𝐻𝑗 = ∑ ℎ𝑗𝑖∈𝐼𝑗
                         

  (4) 

where 𝐺𝑗 signifies the sum of the first derivative of all input data mapped to the 𝑗-th leaf node, 𝐻𝑗 represents the 

sum of its second derivative. The sample set of each leaf node 𝑗 is 𝐼𝑗 = {𝑖|𝑞(𝑥_𝑖) = 𝑗}, which can convert the 

traversal form to the traversal based on leaf nodes. There is a dataset 𝐷 with attribute set 𝐸 = {𝐸1, 𝐸2, . . . , 𝐸𝑑 , 𝐸𝑓𝑖𝑛}. 

𝐸1, 𝐸2, . . . , 𝐸𝑑  represents all attributes. 𝐸𝑓𝑖𝑛  represents the classification label. There are 𝑛  different types of 

numerical values for the value of any attribute. The chaos or purity of information entropy can be selected to 

evaluate the currently selected attribute 𝐸𝑑  without dividing points, and the evaluation effect is excellent. 

However, due to privacy protection conditions, it is necessary to select a reasonable utility function for 

partitioning. According to the division of different decision trees, there are mainly information gain utility 

functions based on information entropy, maximum frequency, and utility functions on the ground of information 

gain ratio replacement, and utility functions based on Gini coefficient. The Gini coefficient utility function is 

selected for the XGBoost algorithm, and the Gini coefficient is shown in Equation (5). 

𝐺𝑖𝑛𝑖(𝑝) = ∑ 𝑝𝑘(1 − 𝑝𝑘)
𝑘
𝑘=1   (5) 

where 𝑝𝑘  represents the probability that a sample belongs to class 𝐾 in a dataset with 𝑘 categories. The Gini 

coefficient for binary classification problems is shown in Equation (6). 

{

𝐺𝑖𝑛𝑖(𝑝) = 2𝑝(1 − 𝑝)         

𝐺𝑖𝑛𝑖(𝐷) = 1 −∑
|𝐶𝑘|

2

|𝐷|

𝑘

𝑘=1

  (6) 

where 𝑝 represents the probability of the first class in binary classification, 1 − 𝑝 represents the probability of the 

second type, and 𝐷 represents the dataset. Based on Equation (4), the utility function of XGBoost algorithm is 

shown in Equation (7). 

𝐺𝑎𝑖𝑛 =
1

2
[
𝐺𝐿
2

𝐻𝐿+𝜆
+

𝐺𝑅
2

𝐻𝑅+𝜆
−

(𝐺𝐿+𝐺𝑅)
2

𝐻𝐿+𝐻𝑅+𝜆
] − 𝛾 (7) 

where 𝐺𝐿 represents left leaf node splitting, 𝐺𝑅 represents right leaf node splitting, 
(𝐺𝐿+𝐺𝑅)

2

𝐻𝐿+𝐻𝑅+𝜆
 represents the loss 

value when not splitting,
𝐺𝐿
2

𝐻𝐿+𝜆
 and 

𝐺𝑅
2

𝐻𝑅+𝜆
represent the loss of left and right splitting nodes, respectively. 𝛾 represents 

the threshold, which controls the complexity of the tree. When the loss exceeds the threshold 𝛾, splitting can be 

achieved, and the splitting node can be found by traversing the features. If the splitting can reduce the objective 

function more, the value of the utility function will be larger, which can be used for the characteristic function of 

the exponential mechanism. Based on the above calculations, a Differential Privacy based on XGBoost (DP-XGB) 

is proposed. The Gini function is selected to determine node purity, using the Classification and Regression Tree 

(CART) to build a decision tree. Based on the above calculations, the decision tree construction of the DP-XGB 

algorithm is presented in Figure 2. 
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Figure 2 The decision tree construction process of DP-XGB algorithm 

From Figure 2, the original training dataset, maximum tree depth, and privacy protection budget are first trained. 

Secondly, the input data is processed uniformly. Subsequently, the dataset is separated into training and testing 

datasets in a certain proportion. The optimal attributes of the leaf nodes are selected according to the calculation 

results of the differential privacy index mechanism and the utility function. When the output attribute category of 

a leaf node is the same, or reaches the maximum depth, or the privacy budget is exhausted, noise is added to the 

leaf node to output a single decision tree. Otherwise, the differential privacy index mechanism and utility function 

are recalculated to select the optimal attribute. 

After constructing the differential privacy algorithm DP-XGB based on the XGBoost in the previous section, the 

study further constructs a multi-party collaborative privacy protection model in a federated learning environment 

to effectively address privacy protection during transmission in distributed communication processes. Federated 

learning is a distributed machine learning technology, as shown in Figure 3. 

As shown in Figure 3, data sources, federated learning systems, and users are the three major components of 

federated learning. In a federated learning system, each data source preprocesses user features based on privacy 

protection, and then multiple parties jointly establish a learning model, and feedback the output results to the user. 

In differential privacy protection technology, Laplace Mechanism (LM) and exponential mechanism can 

effectively achieve differential privacy protection. The probability density for Laplace is shown in Equation (8). 

𝑝(𝑥) =
1

2(
𝛥𝑓

𝜀
)
𝑒𝑥𝑝 [−

|𝑥|

(
𝛥𝑓

𝜀
)
] (8) 
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Figure 3 Federated learning architecture 



Computer Fraud and Security  

ISSN (online): 1873-7056 

 

__________________________________________________________________________________________ 

512 
Vol: 2025 | Iss: 01 | 2025 

 

where 𝛥𝑓 represents the function sensitivity and 
𝛥𝑓

𝜀
 represents the scale parameter. In the LM, noise is integrated 

to the function result and the noise satisfies 𝑁𝑜𝑖𝑠𝑒~𝐿𝑎𝑝(
𝛥𝑓

𝜀
). The inverse function of the probability value of each 

result is the noise value. The LM is often used for numerical query data. For non-numerical data, the exponential 

mechanism extracts feature attributes. When the random algorithm satisfies 𝜀 - difference privacy, its calculation 

is shown in Equation (9). 

𝐹(𝐷, 𝑞) = {𝑟|𝑃(𝑟 ∈ 𝑅)} ∝ 𝑒𝑥𝑝(
𝜀𝑞(𝐷,𝑟)

2𝛥𝑞
) (9) 

where 𝐹 represents the random algorithm, 𝐷 represents the dataset, 𝑅 represents the output range of the query 

function, and 𝑟 signifies any entity object within the output range 𝑅, satisfying 𝑟 ∈ 𝑅. 𝑞(𝐷, 𝑟) represents the 

availability function to evaluate the quality of the output value 𝑟. 𝛥𝑞 represents the sensitivity of the function. 

Under this Equation, the random algorithm 𝐹 satisfies 𝜀-differential privacy. The study combines exponential 

mechanism in differential privacy to improve the accuracy of training results, and its enhanced model is presented 

in Figure 4. 

Decision Tree

 

Figure 4 Enhanced model architecture 

In Figure 4, the main body of federated learning is the main program aggregator and the participating builder. The 

federated learning construction has two stages. Firstly, overlapping user features from different participant 

databases are aligned, and privacy protection conditions must be met during the alignment process. In the second 

stage, multiple parties collaborate to achieve parameter learning, and then construct a collaborative model. 

XGBoost, when combined with exponential mechanism, not only satisfies differential privacy, but also reduces 

the number of exponential mechanism calls and privacy budget allocation, prolongs privacy budget depletion 

time, protects data privacy while decentralization, and obtains high accuracy training results. 

According to Equation (7), since 𝛾 represents a threshold, it controls the complexity of the tree. To achieve 

pre-pruning of the decision tree, when 𝐺𝑎𝑖𝑛 is greater than 𝛾, selecting the optimal splitting node can be achieved. 

Therefore, it is necessary to first traverse several features of each node, then arrange each feature value in order, 

and perform linear scanning on the feature values to obtain the optimal splitting feature values. Finally, the optimal 

splitting point is selected from the feature values to maximize the gain after splitting. When the greedy algorithm 

scans a large amount of data globally, an approximation algorithm can be used to determine candidate 

segmentation points. Then the corresponding samples can be placed in the corresponding boxes based on the 

candidate segmentation points, and the boxes can be accumulated. In the implicit budget allocation stage, equal 

distribution, uniform distribution, and proportional distribution are selected for privacy budget allocation. After 

the allocation is completed, the cumulative probability can be calculated using the inverse function based on the 

Laplace probability density in Equation (8). Therefore, the current noise calculation is shown in Equation (10). 

𝑌 = {
𝜇 + 𝑏𝑙𝑛(1 + 2𝑥), 𝑥 > 0
𝜇 − 𝑏𝑙𝑛(1 + 2𝑥), 𝑥 ≤ 0

  (10)                                                             

where 𝑌 represents noise, 𝜇 represents the positional parameter, usually set to 0. 𝑥 ∈ [−0.5,0.5], and 𝑏 represents 

the scale parameter, and 𝑏 =
𝛥𝑓

𝜀
. When sensitivity 𝛥𝑓 is 1, 𝑏 =

1

𝜀
. 𝜀 represents the privacy budget of the current 

layer. In the construction of decision trees, the available privacy budget for the current leaf node is 𝜀, the Laplacian 

noise result is calculated. The privacy budget value is calculated based on the privacy allocation method. At this 

time, the noise to be added is calculated according to Equation (10). Based on the above calculations of the main 

program aggregator and participating builders, the model prediction analysis process trained by the multi-party 



Computer Fraud and Security  

ISSN (online): 1873-7056 

 

__________________________________________________________________________________________ 

513 
Vol: 2025 | Iss: 01 | 2025 

 

collaborative Federated Differential Privacy based on XGBoost (FDP-XGB) is shown in Figure 5 when new data 

appears. 

As shown in Figure 5, the aggregator first queries the data that the current data wants to match, then sends this 

information to the participants and asks for the search direction of the leaf nodes in the next stage. Secondly, when 

the participant receives the information, it is compared with the threshold 𝛾 in the participant's local record. After 

determining the search direction of the leaf node in the next stage, the information is returned to the aggregator. 

Subsequently, when the aggregator receives the information, it selects the determined leaf node. The process is 

repeated until the final node is obtained, and the classification label and weight of the last leaf node are obtained. 

After searching for a single decision tree, all decision trees are searched accordingly based on the above method. 

Finally, the results of all leaf nodes obtained are accumulated with their weights to obtain the final class label. 
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Figure 5 Model prediction analysis process 

RESULTS 

To verify the feasibility of the proposed DP-XGB based on XGBoost and the multi-party collaborative factor 

protection algorithm FDP-XGB in data transmission privacy protection, the first section conducts experimental 

testing on the DP-XGB algorithm. The second section verifies the FDP-XGB. All comparative algorithms in the 

experiment use the same parameters and dataset to ensure the accuracy. 

The research is carried out in a suitable experimental environment, using an 8-core 2.4Hz Intel Core i7 CPU with 

16GB of memory, as well as Python 3.7 programming, and operating system CentOS. The UCI dataset in the 

machine learning benchmark database is adopted, including zoo, glass, haberman, and wdb. The selected dataset 

contains training and testing sets, with a 7:3 partition ratio. The GBDT, RF, Adaptive Boosting algorithm 

(AdaBoost), and the proposed DP-XGB algorithm are compared. Due to the impact of the maximum depth of the 

decision tree, the minimum weight of leaf nodes, and the learning rate on classification accuracy, relevant tests 

are first conducted to determine the above parameter settings, as displayed in Table 1. 

Table 1 Maximum depth of tree, minimum weight of leaf nodes, and learning rate testing 

Parameter Index 

Tree depth 2 4 6 8 10 

Classification accuracy/% 82.53 84.95 89.16 86.57 85.24 

Minimum weight 2 4 6 8 10 

Classification accuracy/% 88.95 86.54 84.97 85.67 84.53 

Learning rate 0.2 0.4 0.6 0.8 1 

Classification accuracy/% 84.66 88.67 87.52 85.47 85.31 

 

According to Table 1, when the maximum depth was 6, the minimum weight of leaf nodes was 4, and the learning 

rate was 0.4, the DP-XGB algorithm had the best classification accuracy. Therefore, the above adjustment 

parameters are used for performance testing in subsequent experiments. Firstly, the trend test results of the fitness 

function values of the four algorithms in different datasets are shown in Figure 6. 
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Figure 6 Trend chart of fitness function values 

 

Figure 6 shows the fitness function curves of four algorithms on the zoo, glass, haberman and wdb datasets. In 

Figure 6 (a), the fitness of the DP-XGB algorithm was 9.760 after 32 iterations, which was the lowest among the 

comparison methods. In Figure 6 (b), when the DP-XGB algorithm iterated 30 times, its fitness function value 

was 9.758. In Figure 6 (c), the fitness function value of DP-XGB algorithm was 9.757 after 33 iterations. In Figure 

6 (d), the DP-XGB algorithm was 9.755 after 26 iterations. As shown in the Figure, in the four datasets, DP-XGB 

can be optimized with the least number of iterations, and its convergence speed and accuracy are both optimal in 

comparison algorithms. Secondly, the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean 

Absolute Percentage Error (MAPE) and R-Square (R2) are compared, as shown in Table 2. 

Table 2 RMSE, MAE, MAPE, R2 values of each algorithm 

Data set Index 
Algorithm 

GBDT RF AdaBoost DP-XGB 

Training set 

RMSE 2.32 2.50 2.61 1.61 

MAE 1.36 1.51 1.97 1.20 

MAPE 0.22 0.31 0.44 0.19 

R2 0.76 0.62 0.54 0.86 

Testing set 

RMSE 2.33 2.60 2.55 1.58 

MAE 1.38 1.67 1.83 1.24 

MAPE 0.25 0.36 0.45 0.21 

R2 0.75 0.59 0.49 0.84 

 

As shown in Table 2, the RMSE refers to the deviation between the predicted and the true values. The MAE 

signifies the deviation between the observed and the mean. The MAPE is used to measure the relative magnitude 

of deviation. The R2 value represents the variation part of the dependent variable. In the two sets, the RMSE, 

MAE and MAPE of the DP-XGB were both the lowest in the comparison algorithms. The R2 value was maximum, 

which was close to 1. It indicates that the algorithm has excellent predictive ability and fitness, indicating the best 

model quality. Finally, the classification accuracy and time consumption test results of the four algorithms are 

shown in Figure 7. 
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Figure 7 Accuracy and time consumption of wdb dataset 

 

From Figure 7, the classification accuracy of the four algorithms in the wdb differed significantly from the 

computation time for the entire dataset. In the two sets, the classification accuracy of the DP-XGB algorithm was 

96.38% and 94.86%, respectively, which was the best among the comparison algorithms and had the best 

prediction stability. The accuracy of RF and AdaBoost was similar, but lower than that of GBDT algorithm. In 

terms of computational time, the total time consumption of GBDT, RF, AdaBoost, and DP-XGB algorithms was 

658s, 289s, 309s, and 272s, respectively. The DP-XGB algorithm has the best classification accuracy and 

computational time. 

After conducting experimental tests on the DP-XGB algorithm, the study further tests the FDP-XGB. The 

experimental environment and parameters for testing are the same as the DP-XGB algorithm in the previous 

section. XGBoost and DP-XGB are used as comparison algorithms. Firstly, the Receiver Operating Characteristic 

curves (ROC) of the three algorithms on the wdb dataset is shown in Figure 8. 
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Figure 8 Statistical results of AUC indicators 

 

Figures 8 (a) and 8 (b) show the ROC curves of the three algorithms. The horizontal axis signifies the false positive 

rate, and the vertical axis signifies the true positive rate. The larger the Area Under the Curve (AUC) enclosed by 

the ROC curve and the horizontal and vertical coordinates, the better the model performance. The ROC curve of 

FDP-XGB was higher than other comparison algorithms in both the training and testing sets. The DP-XGB curve 

was surrounded by the FDP-XGB curve. The XGBoost curve was further surrounded by the curves of DP-XGB 

and FDP-XGB. In the training set, the AUC values of XGBoost, DP-XGB, and FDP-XGB algorithms were 0.57, 

0.75, and 0.79, while the AUC in the testing set was 0.55, 0.73, and 0.78. Secondly, the experimental results of 

the predicted values and actual values of the three algorithms are shown in Figure 9. 
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Figure 9 Comparison between predicted and actual values 
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Figures 9 (a), 9 (b), and 9 (c) show the true and predicted values of XGBoost, DP-XGB and FDP-XGB algorithms. 

As shown in the Figure, the FDP-XGB algorithm had the smallest scatter distribution and was closest to the 𝑦 =

𝑥 function axis. The scatter of XGBoost algorithm had the highest dispersion among the three algorithms, and its 

prediction accuracy was lower than other comparison functions, resulting in poor data prediction performance. 

The dispersion degree of the DP-XGB algorithm was between the two, and the prediction accuracy was in the 

middle. The FDP-XGB algorithm had the highest prediction accuracy and good data prediction performance. 

Finally, the running time is displayed in Table 3. 

Table 3 The running time of three algorithms 

Index Algorithm 
Data volume/104 

3 6 9 12 15 18 

Running time/s 

XGBoost 5.2 13.9 17.6 20.8 25.9 29.5 

DP-XGB 4.9 9.4 10.8 12.9 14.1 22.1 

FDP-XGB 5.1 12.3 15.7 17.6 19.8 16.5 

Resource consumption rate/% 

XGBoost 15.7 22.8 27.9 35.7 42.3 48.5 

DP-XGB       11.4 14.5 17.4 21.0 22.8 24.9 

FDP-XGB       10.4 12.8 14.9 17.4 18.3 21.1 

 

According to Table 3, when the data volume was 3×104, the calculation time of XGBoost, DP-XGB, and FDP-

XGB algorithms was 5.2s, 4.9s, and 5.1s respectively. When the data volume was small, the running time of the 

three algorithms was similar, with only a slight difference. However, when the data volume was 18×104, the 

computation time of XGBoost, DP-XGB, and FDP-XGB algorithms was 29.5s, 22.1s, and 16.5s, respectively. 

The FDP-XGB algorithm allocates privacy budgets to each decision tree, with budget consumption on an 

exponential scale, resulting in a higher total computational time than the DP-XGB algorithm. In the resource 

consumption rate test, as the amount of data increased, the resource consumption rates of the three algorithms 

showed a gradual upward trend, but the growth rate of FDP-XGB was lower than other comparison models. When 

the data volume was 18×104, the resource consumption rates of XGBoost, DP-XGB, and FDP-XGB algorithms 

were 48.5%, 24.9%, and 21.1%, respectively. 

CONCLUSION 

This study proposes a privacy protection technology that combines the XGBoost differential privacy protection 

algorithm with federated learning to address privacy security and data silos in data mining. Performance testing 

of the DP-XGB algorithm showed that optimal recognition accuracy was achieved with a maximum decision tree 

depth of 6, a minimum leaf node weight of 4, and a learning rate of 0.4. The DP-XGB algorithm exhibited the 

lowest iteration count and fitness function values across different datasets. In the training set, the root mean square 

error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and R2 were 1.61, 1.20, 

0.19, and 0.86, respectively, demonstrating superior performance compared to other methods. FDP-XGB 

demonstrated the highest prediction accuracy when comparing true and predicted data values, outperforming DP-

XGB. For a data volume of 18×104, the computation times for XGBoost, DP-XGB, and FDP-XGB were 29.5 

seconds, 22.1 seconds, and 16.5 seconds, respectively, with resource consumption rates of 48.5%, 24.9%, and 

21.1%. However, this study was limited to cleaned data and did not test uncleaned datasets. Future research should 

aim to improve the model's performance on uncleaned data and reduce its reliance on computational resources. 

The FDP-XGB algorithm allocates privacy budgets to each decision tree, with budget consumption on an 

exponential scale, resulting in a higher total computational time than the DP-XGB algorithm. Future research 

should aim to improve the model's performance on uncleaned data and reduce its reliance on computational 

resources. 
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