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Abstract 

The emergence of threshold-based digital comparators has revolutionized mixed-signal circuit systems, 

notably in high-speed ADCs. These comparators generate internal reference voltage autonomously, 

eliminating reliance on external sources. However, different voltages require varied internal logic gate sizes, 

impacting reference voltage accuracy, power, latency, and area. This divergence prevents direct application 

of conventional digital synthesis to these comparators. In this study, EVSR (Extended Variable Self-built 

References) is proposed for automatic sizing optimization. A non-linear programming model is introduced 

to minimize internal voltage error, solved by an efficient single comparator sizing (SCS) algorithm based on 

integer differential evolution and Nelder-Mead mechanisms. Additionally, for multi-bit flash ADCs, the 

comparator is refined for a more uniform distribution of internal voltage. The optimization of both error and 

energy-delay product through optimal SCS and dynamic programming (OPTSCS-DP) is accomplished by 

the multi-comparator sizing algorithm. Experimental results confirm the SCS-based digital comparator 

reaches a step threshold of 10mV. Compared to the best existing solution at the same 55nm process, the 

proposed design reduces power consumption by 72.25% and area by 41.18%. And our proposed OPTSCS-

DP demonstrates a 4 × enhancement in the Figure of Merit (FoM) compared to iterative SCS. (Code is 

available at https://github.com/ucas-xsw/DigitalCompapratorAlgorithm.)  

 

Keywords: Digital comparators, built-in reference model, different evolution, Nelder-Mead method, non-

linear integer programming, multi-comparator sizing algorithm  

 

1  Introduction 

Comparators have significant importance in circuit systems, particularly in the context of mixed-signal designs. 

Traditional analog comparators depend on the knowledge of manual design and are susceptible to fluctuations 

caused by the manufacturing process, which restricts their efficiency in advanced process. As circuit complexity 

continues to grow, the dependence on human expertise for the automation of circuit design becomes inadequate. 

As a result, there is an increasing inclination towards improving comparator designs to possess more digital 

characteristics and be amenable to synthesis. Digital comparators rely on digital logic gates, hence removing the 

need for analog components. The aforementioned method has many advantages, including its ability to be 

compatible with advanced technological nodes, its reduced operating voltage, and its capability to facilitate 

thorough and automated design processes. 

 

 
Figure 1: A traditional high speed computing-in-memory (CIM) macro [1, 2, 3] with 𝑀𝑐 rows and 𝑁𝑐 columns 

arrays, needs 𝑁𝑐 columns flash ADC with at most 𝑁𝑐 × (2𝑤 − 1) comparators. Using analog R2R differential 

comparators(R2RDCMP) will brings extra reference voltage generators (RVG) and drivers (RVD), causing large 
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area and power cost, while using TDCMPs, it can be efficiently avoided. 

 

 
Figure 2: The digital comparator based on threshold can be equivalent to the comparator with the internal 

reference voltage generator. 

 

Among digital comparators, threshold-based digital comparators (TDCMP) [4] have gained significant attention. 

They not only offer these aforementioned advantages but also enable internal reference voltage generation. 

Through continuous adjustment of transistor sizes [5, 6, 7], or discrete manipulation of logic gate numbers [8-10], 

the internal reference voltage in the comparator can be readily modified without external reference voltage sources. 

An illustrative example in Fig. 1 highlights the superior adaptability of TDCMPs. In essence, TDCMPs can be 

considered comparable to comparators with internal reference voltage generators, as depicted in Fig. 2. The focus 

of this work is the optimization of digital comparators via the use of threshold approaches, specifically using 

discrete standard cells. This approach aims to maximize the benefits of the complete standard cell library in order 

to facilitate automated design processes. 

The derivation of the comparator threshold model poses a major difficulty in the design of digital comparators, as 

it has a notable influence on the precision and range of the internally generated reference voltage. Previous 

literature has explored various threshold models. Njinowa et al. [11] propose a simple yet restrictive threshold 

model and circuit structure. This model, based on assumptions, limits the comparator’s threshold range. Khalapure 

et al. [12] introduce an improved digital comparator threshold model, offering more precise threshold step size 

adjustment by enabling the mixing of transistors in series and parallel. However, it is important to acknowledge 

that these concepts and their accompanying designs do include some limits. The focus of their analysis is only on 

variations in the internal configuration of the comparator, while disregarding the potential impact of varying 

amounts of standard cells. In addition, there is a disregard for the quantitative relationship between several 

performance measures of comparators, such as area, power consumption, latency, and the choice of standard cells. 

This oversight is particularly concerning considering the substantial influence that internal cell selection has on 

these metrics. The absence of theoretical reasons for the advantages of various systems applied hinders their 

scalability when addressing a bigger quantity of digital comparators. Furthermore, due to the limitation of the 

required threshold value of the digital comparators, existing research can only use manual sizing methods by 

trying and testing for internal logic gates before implementing digital synthesis, which differs from the direct 

synthesis process for general digital circuits. They overlook the opportunity to fully automate design through the 

exploration of optimization algorithm potential. 

Besides, The optimization of digital comparator automatic sizing presents a significant challenge to overcome. It 

mirrors the conventional discrete gate sizing for combinational circuits in its nature. Many studies have tackled 

discrete gate sizing optimization through diverse methodologies. [13] illustrates that discrete gate sizing poses an 

NP-hard problem. Meanwhile, [14] introduces a convex optimization framework using 0-1 variables to solve gate 

sizing, employing geometric programming to address relaxation forms, ultimately achieving low-latency 

combination circuits. In addressing power consumption, [15] adopts the branch and bound method, specifically 

targeting dynamic power consumption. Others like [16-18] use dynamic programming to optimize power, area, 

and timing violations. Meanwhile, [19] employs a rule-guided genetic algorithm, enhancing the speed of a two-

stage rail-to-rail operational amplifier. Additionally, [20] models discrete cell sizing as a minimum cost flow 

problem, proposing a time-driven discrete cell sizing algorithm, resulting in a 60-fold increase in sizing speed. 

Furthermore, [21] tackles discrete gate sizing and threshold allocation problems using an optimization algorithm 
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based on simulated annealing to minimize leakage power. The lookup table method, as implemented in [22], 

reconstructs the gate delay model. This method employs modified Lagrangian relaxation to attain optimal gate 

sizing solutions, ultimately achieving lower delay and reduced power consumption. Additionally, improved 

Lagrangian-based approaches, as proposed in [23-28], have effectively addressed discrete gate sizing and 

threshold voltage Assignment issues observed in the ISPD 2013 gate sizing contest. These enhancements have 

resulted in notable improvements in both timing and runtime. Nevertheless, these algorithms are primarily tailored 

for linear or separable non-linear integer programming problems. Subsequent modeling reveals the automatic 

sizing problem for digital comparators takes the form of an inseparable constrained non-linear integer 

programming (CNLIP), necessitating more efficient algorithm designs. 

Furthermore, prior studies mainly focused on singular objectives like power consumption or delay [14,20-22] or 

a linear combination of both [15,28,29]. Different from the above research, when building a single digital 

comparator, accuracy of the self-built voltage should be taken into consideration in addition to power consumption, 

area, and latency. In the case of multi-bit flash ADCs, it is necessary to take into account the nonlinear error 

between the comparators. 

To cope with these issues, this work presents the important contributions as follows: 

1) An improved threshold model is introduced, allowing for structural adjustment and discrete cell number 

selection. Additionally, a threshold error square index is designed to measure the discrepancy between the actual 

comparator threshold and the theoretical value. 

2) Theoretical analyses are conducted on various performance indicators of digital comparators, including delay, 

power consumption, area, and EDP. Quantitative relationships between these indicators and the decision variables 

(the number of different standard cells) are derived. 

3) A non-linear integer programming model is formulated to describe the single comparator sizing (SCS) problem. 

To obtain the optimal internal structure and standard cell selection scheme, an SCS algorithm is developed, 

employing a combination of differential evolution and discrete Nelder-Mead hybrid methods. 

4) For the multiple digital comparators jointly sizing problem, it is decomposed into two stages of optimization, 

including optimization inside the comparators and joint optimization between comparators. Furthermore, a two-

stage algorithm is proposed. In the first stage, a modified SCS algorithm is implemented for each comparator to 

obtain a group of approximate solution sets. In the second stage, based on the full connected network (FCN), a 

dynamic programming approach is utilized to search out the optimal solution path. 

 

2  Threshold based Comparator Sizing Optimization 

 The proposed comparator structure is primarily composed of different types of NAND gates, inverters (INV), 

and NOR gates. An improved threshold model, incorporating a discrete cell vector, is initially introduced. The 

predetermined threshold values in comparators impose limitations on the number of transistors that can be utilized. 

Subsequently, significant comparator performance metrics, including delay, power consumption, and area, are 

derived, establishing constraints for gate sizing optimization. An integer programming-based gate sizing model 

for a single threshold-based comparator is then developed. Finally, an algorithm is proposed to attain the optimal 

gate combination. Detailed explanations of these steps for designing threshold-based digital comparators are 

provided in the following sections.  

 

 
Figure  3: The improved digital comparator structure with more flexible configration of gates 
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2.1  Threshold based Self-built Reference Voltage Model  

 The limitations regarding the number and type of gates, as well as the internal structure of the digital comparators 

depicted in Fig. 3, are relaxed, broadening the search scope within the standard cell library for potential expansion. 

Defining the variable 𝑚 as the maximum count of standard cell types with varying fan-in, spanning from 𝑘1 to 

𝑘𝑚 . Two vectors, 𝐾𝑢  and 𝐾𝑑 , each with dimensions of (2𝑚 + 1) × 1 , collect equivalent width expansion 

factors for specific gate types in the PMOS network (P-NET) and NMOS network (N-NET), respectively. 

The vector 𝑥, with dimensions of (2𝑚 + 1) × 1, comprises 𝑚 integers, from 𝑥1
𝑛𝑎𝑛𝑑 to 𝑥𝑚

𝑛𝑎𝑛𝑑, representing 

the count of NAND gates with varying fan-in from 𝑘1 to 𝑘𝑚. 𝑥𝑖𝑛𝑣 denotes the quantity of inverters, while the 

𝑚 integers from 𝑥1
𝑛𝑜𝑟 to 𝑥𝑚

𝑛𝑜𝑟 indicate the count of NOR gates with differing fan-in. Consequently, the 2𝑚 +

1 variables are integers, encapsulating the quantities of NAND, inverter, and NOR gates with various fan-in from 

the standard cell library. The pursuit is to determine the optimal 𝑥 and gate sizing scheme. For a fundamental 

inverter gate, the overdrive voltages of the PMOS and NMOS transistors can be defined and calculated as follows 

table 1.  

 

Table 1: Vector Definitions 

  Vector expression   Meaning  

 𝑥  [{𝑥𝑗
𝑛𝑎𝑛𝑑}𝑗=1

𝑗=𝑚
, 𝑥𝑖𝑛𝑣 , {𝑥𝑗

𝑛𝑜𝑟}𝑗=1
𝑗=𝑚]

𝑇
  Gate Number 

𝐾𝑢  [{𝐾𝑗
−1}𝑗=1

𝑗=𝑚
, 1, {𝐾𝑗}𝑗=1

𝑗=𝑚]
𝑇
   Width expansion (P)*  

𝐾𝑑  [{𝐾𝑗}𝑗=1
𝑗=𝑚

, 1, {𝐾𝑗
−1}𝑗=1

𝑗=𝑚]
𝑇
   Width expansion (N)**  

𝐺𝑝𝑢  [{𝑔𝑝𝑢,𝑗
𝑛𝑎𝑛𝑑}𝑗=1

𝑗=𝑚
, 𝐺𝑝𝑢

𝑖𝑛𝑣 , {𝑔𝑝𝑢,𝑖𝑛𝑜𝑟}𝑗=1
𝑗=𝑚]

𝑇
   Conductence (P)  

𝐺𝑛𝑑  [{𝑔𝑛𝑑,𝑗
𝑛𝑎𝑛𝑑}𝑗=1

𝑗=𝑚
, 𝐺𝑛𝑑

𝑖𝑛𝑣 , {𝑔𝑛𝑑,𝑖𝑛𝑜𝑟}𝑗=1
𝑗=𝑚

]
𝑇
   Conductence (N)  

𝐶𝑝𝑢  [{𝑐𝑝𝑢,𝑗
𝑛𝑎𝑛𝑑}𝑗=1

𝑗=𝑚
, 𝑐𝑝𝑢

𝑖𝑛𝑣 , {𝑐𝑝𝑢,𝑖𝑛𝑜𝑟}𝑗=1
𝑗=𝑚]

𝑇
   Capacitence (P)  

𝐶𝑛𝑑  [{𝑐𝑛𝑑,𝑗
𝑛𝑎𝑛𝑑}𝑗=1

𝑗=𝑚
, 𝐶𝑛𝑑

𝑖𝑛𝑣 , {𝑐𝑛𝑑,𝑖𝑛𝑜𝑟}𝑗=1
𝑗=𝑚]

𝑇
   Capacitence (N)  

𝑃𝑔  [{𝑝𝑔,𝑗
𝑛𝑎𝑛𝑑}𝑗=1

𝑗=𝑚
, 𝑝𝑔

𝑖𝑛𝑣 , {𝑝𝑔,𝑖𝑛𝑜𝑟}𝑗=1
𝑗=𝑚]

𝑇
   Logic gate power  

𝑃𝑠𝑡  [{𝑝𝑠𝑡,𝑗
𝑛𝑎𝑛𝑑}𝑗=1

𝑗=𝑚
, 𝑝𝑠𝑡

𝑖𝑛𝑣 , {𝑝𝑠𝑡,𝑖𝑛𝑜𝑟}𝑗=1
𝑗=𝑚]

𝑇
   Static power  

𝑃𝑑𝑝  [{𝑝𝑑𝑝,𝑗
𝑛𝑎𝑛𝑑}𝑗=1

𝑗=𝑚
, 𝑝𝑑𝑝

𝑖𝑛𝑣 , {𝑝𝑑𝑝,𝑖𝑛𝑜𝑟}𝑗=1
𝑗=𝑚]

𝑇
   Dynamic power  

𝐴𝑔  [{𝑎𝑔,𝑗
𝑛𝑎𝑛𝑑}𝑗=1

𝑗=𝑚
, 𝑎𝑔

𝑖𝑛𝑣 , {𝑎𝑔,𝑖𝑛𝑜𝑟}𝑗=1
𝑗=𝑚]

𝑇
   Area  

 

[*] indicates PMOS type. [**] indicates NMOS type. 

 

 𝑉𝑜𝑣,𝑝 = 𝑉𝑠𝑔 − 𝑉𝑡ℎ = 𝑉𝑑𝑑 − 𝑉𝑔 − 𝑉𝑡ℎ , (1) 

 𝑉𝑜𝑣,𝑛 = 𝑉𝑔𝑠 − 𝑉𝑡ℎ = 𝑉𝑔 − 𝑉𝑡ℎ . (2) 

Then we can derive the mathematical expressions of the saturation current 𝐼𝑑𝑝 in the P-NET and 𝐼𝑛𝑑 in the N-

NET seperately[30]:  

 𝐼𝑑𝑝(𝑥) = 𝐾𝑝𝑉𝑜𝑣,𝑝
2 𝐾𝑢

𝑇𝑥, (3) 

 𝐼𝑑𝑛(𝑥) = 𝐾𝑛𝑉𝑜𝑣,𝑛
2 𝐾𝑑

𝑇𝑥. (4) 

And the coeffients above 𝐾𝑝 and 𝐾𝑛 are shown:  

 𝐾𝑝 =
1

2
𝜇𝑝𝐶𝑜𝑥 (

𝑊

𝐿
)

𝑝
, 𝐾𝑛 =

1

2
𝜇𝑛𝐶𝑜𝑥 (

𝑊

𝐿
)

𝑛
, (5) 

where 𝜇𝑝, 𝜇𝑛 and 𝐶𝑜𝑥 are transistor parameters that can be seen as constants. 𝑊 and 𝐿 seperately represent 

the least width and length of the transistors in the standard cell library. In general, it is reasonable to assume that 

𝜇𝑝 = 𝜇𝑛, (
𝑊

𝐿
)

𝑃
= 𝛽 (

𝑊

𝐿
)

𝑁
, so 𝐾𝑝 = 𝛽𝐾𝑛. When the input voltage 𝑉𝑖𝑛 of the comparator is equal to the threshold 

of the comparator, the transistors in P-NET and N-NET are all saturated, so 𝐼𝑑𝑝(𝑥) = 𝐼𝑑𝑛(𝑥) . We have the 

following derivation:  

 𝐼𝑑𝑝(𝑥) = 𝐼𝑑𝑛(𝑥), 𝐾𝑝 = 𝛽𝐾𝑛 , 
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 ⇒ 𝛽𝑉𝑜𝑣,𝑝
2 𝐾𝑢

𝑇𝑥 = 𝑉𝑜𝑣,𝑛
2 𝐾𝑑

𝑇𝑥. (6) 

 We define the real comparator threshold value based on 𝑥 as 𝑉𝑔𝑡ℎ
𝑟𝑒 (𝑥) which is solved by (6). (7) is deduced 

by substituting (1) and (2) to (6) as follows:  

 𝑉𝑔𝑡ℎ
𝑟𝑒 (𝑥) =

𝑉𝑑𝑑−𝑉𝑡ℎ+𝑉𝑡ℎ⋅𝑚𝑓
𝑟𝑒(𝑥)

𝑚𝑓
𝑟𝑒(𝑥)

, (7) 

 𝑚𝑓
𝑟𝑒(𝑥) = √𝛽 ⋅

𝐾𝑢
𝑇𝑥

𝐾𝑑
𝑇𝑥

, (8) 

where 𝑚𝑓
𝑟𝑒(𝑥)  represents the overall equivalent width expansion factor based on 𝑥 . Fig. 1  illustrates the 

relationship between the single comparator’s ideal threshold voltage 𝑉𝑔𝑡ℎ
𝑖𝑑  and 𝛽 across various supply powers 

𝑉𝑑𝑑  and gate sizes. When 𝑉𝑑𝑑  is reduced to 0.4V in Fig. 1, the impact of 𝛽 on 𝑉𝑔𝑡ℎ
𝑟𝑒  may diminish. 

Figure 4: (a) 𝑚𝑓
𝑟𝑒 versus 𝛽 with different size value of nand, nor and inverter gates (b) 𝑉𝑔𝑡ℎ

𝑟𝑒  versus 𝛽(𝑤𝑝/𝑤𝑛) 

with different supply values (c) 𝑉𝑔𝑡ℎ
𝑟𝑒  versus 𝛽(𝑤𝑝/𝑤𝑛) with different size value of nand, nor and inverter gates 

(d) Propagartion delay versus the total equivalent width of nand or nor gates (e) Power versus the total equivalent 

width of nand or nor gates with different supply values 

 

Typically, the ideal comparator threshold values (also indicating the ideal reference voltage), labeled as 𝑉𝑔𝑡ℎ
𝑖𝑑 , are 

predetermined. They serve as inputs for the threshold model to ascertain the sizing of the digital comparators. 

Subsequently, the conversion of (8) is conducted to yield the following form:  

 [(𝑚𝑓
𝑖𝑑)2𝐾𝑑

𝑇 − 𝛽𝐾𝑢
𝑇]𝑥𝑖𝑑 = 0, (9) 

 where 𝑚𝑓
𝑖𝑑  is a constant and computed based on 𝑉𝑔𝑡ℎ

𝑖𝑑 :  

                                     𝑚𝑓
𝑖𝑑 =

𝑉𝑑𝑑−𝑉𝑡ℎ

𝑉𝑔𝑡ℎ
𝑖𝑑 −𝑉𝑡ℎ

.                                     (10)  

The vector 𝑥𝑖𝑑 represents a solution derived from (9). Our objective is to identify a suitable 𝑥 that minimizes 

the difference between 𝑉𝑔𝑡ℎ
𝑟𝑒 (𝑥) and the ideal comparator threshold 𝑉𝑔𝑡ℎ

𝑖𝑑 . This necessitates measuring the gap 

between 𝑉𝑔𝑡ℎ
𝑖𝑑  and 𝑉𝑔𝑡ℎ

𝑟𝑒 (𝑥), referred to as the comparator threshold accuracy 𝜂. Similar to [9], we adopt an error-

squared criterion to define the error loss function:  

 𝜂 = 𝜂(𝑥) = [𝑉𝑔𝑡ℎ
𝑟𝑒 (𝑥) − 𝑉𝑔𝑡ℎ

𝑖𝑑 ]
2
. (11) 

A lower value of 𝜂 indicates higher comparator threshold accuracy, prompting us to minimize 𝜂 considerably. 

Nevertheless, (9) often offers an infinite array of solutions, each corresponding to distinct gate sizing schemes. 
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Additionally, 𝑥𝑟𝑒  might not exclusively contain integer-type elements. To address this, we require 

supplementary performance metrics as constraints, thereby constructing an optimization model. This model aims 

to derive the optimal 𝑥 and gate sizing scheme for a single comparator.  

2.2  Propagation Delay 

An essential performance metric for digital comparators is the propagation delay 𝑇𝑝. Our goal is to establish the 

relationship between 𝑇𝑝 and 𝑥. 𝑇𝑝 doesn’t solely equate to the average of the rising time 𝑇𝑝𝑙ℎ and falling time 

𝑇𝑝ℎ𝑙  but is also proportionate to the product of the equivalent resistance 𝑅𝑒𝑞  and capacitance 𝐶𝑒𝑞 , as 

demonstrated in [30]:  

 𝑇𝑝(𝑥) =
𝑇𝑝ℎ𝑙(𝑥)+𝑇𝑝𝑙ℎ(𝑥)

2
= 𝐾𝑡𝑝𝑅𝑒𝑞(𝑥)𝐶𝑒𝑞(𝑥) 

 = 𝐾𝑡𝑝[𝑅𝑒𝑞,𝑛(𝑥) + 𝑅𝑒𝑞,𝑝(𝑥)]𝐶𝑒𝑞(𝑥), (12) 

 where 𝑅𝑒𝑞,𝑝 and 𝑅𝑒𝑞,𝑛 denote the equivalent resistance of P-NET and N-NET respectively. As all gates within 

the comparator are connected in parallel, the computation actually involves the determination of the equivalent 

conductance 𝐺𝑒𝑞,𝑛 and 𝐺𝑒𝑞,𝑝, which are inverses of 𝑅𝑒𝑞,𝑝 and 𝑅𝑒𝑞,𝑛 respectively.  

 𝑅𝑒𝑞,𝑛(𝑥) = 𝐺𝑒𝑞.𝑛(𝑥)−1, 𝑅𝑒𝑞,𝑝(𝑥) = 𝐺𝑒𝑞.𝑝(𝑥)−1. (13) 

 𝐺𝑒𝑞,𝑝 and 𝐺𝑒𝑞,𝑛 can be seperately expressed by the cumulative sum of each branch equivalent conductance in 

the P-NET and N-NET as follows:  

 𝐺𝑒𝑞,𝑝(𝑥) = 𝐺𝑝𝑢
𝑇 𝑥, 𝐺𝑒𝑞,𝑛(𝑥) = 𝐺𝑛𝑑

𝑇 𝑥. (14) 

 Therefore, the relation between 𝑅𝑒𝑞 and 𝑥 can be further deduced below:  

 𝑅𝑒𝑞(𝑥) = (𝐺𝑝𝑢
𝑇 𝑥)

−1
+ (𝐺𝑛𝑑

𝑇 𝑥)−1, (15) 

 in whcih, the value of 𝑅𝑒𝑞 is affected by the selection of the vector 𝑥. As for the equivalant capacitance 𝐶𝑒𝑞, 

it can be divided to two parts: intrinsic capacitence 𝐶i𝑛𝑡  from the P-NET (𝐶i𝑛𝑡 ,𝑝) and N-NET (𝐶i𝑛𝑡 ,𝑛), and 

external capacitence which is mainly wire capacitence 𝐶𝑤 from the P-NET (𝐶𝑤,𝑝) and N-NET (𝐶𝑤,𝑛).  

 𝐶𝑒𝑞(𝑥) = 𝐶i𝑛𝑡(𝑥) + 𝐶𝑤 = 𝐶𝑒𝑞,𝑝(𝑥) + 𝐶𝑒𝑞,𝑛(𝑥) (16) 

 = 𝐶i𝑛𝑡,𝑝(𝑥) + 𝐶i𝑛𝑡,𝑛(𝑥) + 𝐶𝑤,𝑝(𝑥) + 𝐶𝑤,𝑛(𝑥). 

 Subsequently, the computing formulas for the total equivalent capacitance in the P-NET (𝐶𝑒𝑞,𝑝) and N-NET 

(𝐶𝑒𝑞,𝑛) can be derived:  

 𝐶𝑒𝑞,𝑝(𝑥) = 𝐶i𝑛𝑡,𝑝(𝑥) + 𝐶𝑤,𝑝(𝑥) = 𝐶𝑝𝑢
𝑇 𝑥, (17) 

 𝐶𝑒𝑞,𝑛(𝑥) = 𝐶i𝑛𝑡,𝑛(𝑥) + 𝐶𝑤,𝑛(𝑥) = 𝐶𝑛𝑑
𝑇 𝑥. (18) 

 The relation between 𝐶𝑒𝑞 and 𝑥 is represented concisely as:  

 𝐶𝑒𝑞(𝑥) = (𝐶𝑝𝑢
𝑇 + 𝐶𝑛𝑑

𝑇 )𝑥. (19) 

 Since we have known how to express 𝑅𝑒𝑞 and 𝐶𝑒𝑞, we deduce the final formulars of 𝑇𝑝, 𝑇𝑝𝑙ℎ and 𝑇𝑝ℎ𝑙 about 

𝑥:  

 𝑇𝑝(𝑥) = (20) 

 𝐾𝑡𝑝(𝐶𝑝𝑢
𝑇 + 𝐶𝑛𝑑

𝑇 )𝑥 [(𝐺𝑝𝑢
𝑇 𝑥)

−1
+ (𝐺𝑛𝑑

𝑇 𝑥)−1], 

 𝑇𝑝𝑙ℎ(𝑥) = 𝐾𝑡𝑝(𝐶𝑝𝑢
𝑇 + 𝐶𝑛𝑑

𝑇 )𝑥(𝐺𝑝𝑢
𝑇 𝑥)

−1
, (21) 

 𝑇𝑝ℎ𝑙(𝑥) = 𝐾𝑡𝑝(𝐶𝑝𝑢
𝑇 + 𝐶𝑛𝑑

𝑇 )𝑥(𝐺𝑛𝑑
𝑇 𝑥)−1. (22) 

  

2.3  Dynamic and Static Power 

 Power stands as another crucial metric for the digital comparator. Typically, the total power 𝑃 within stems 

from the cumulative sum of all gate powers. The logic gate power vector 𝑃𝑔, with dimensions (2𝑚 + 1) × 1, 

encompasses the total power of each logic gate type with differing fan-in values sourced from the standard cell 

library. The power of each gate comprises three components as outlined in [30, 31]: static power, short-circuit 

power, and dynamic power from switching. Lower supply-voltage values (𝑉𝑑𝑑 < 2𝑉𝑡ℎ) can eliminate short-circuit 

power. Hence, we arrive at the following expression for the gate power vector:  

 𝑃𝑔 = 𝑃𝑑𝑝 + 𝑃𝑠𝑡, (23) 

 𝑃𝑑𝑝 = 𝛼𝑉𝑑𝑑
2 𝑓𝑐𝑙𝑘𝐶𝑒𝑞 = 𝐾𝑑𝑝𝐶𝑒𝑞 , (24) 
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 𝑃𝑠𝑡 = (1 − 𝛼)𝑉𝑑𝑑𝐼𝑙𝑒𝑎𝑘, (25) 

 = (1 − 𝛼)𝑉𝑑𝑑𝑒
−𝑞𝑐𝑉𝑡ℎ
𝜍𝐾𝑏𝑇 (𝐼0,𝑝𝐾𝑢 + 𝐼0,𝑛𝐾𝑑) (26) 

 = 𝐾𝑠𝑡,𝑝𝐾𝑢 + 𝐾𝑠𝑡,𝑛𝐾𝑑, (27) 

 where the static power vector 𝑃𝑠𝑡 and the switching power vector 𝑃𝑑𝑝 are further expressed as [32]:  

 𝐼0,𝑝(𝑛) = (𝜍 − 1) (
𝑊

𝐿
)

𝑝(𝑛)
𝜇𝑝(𝑛)𝐶𝑜𝑥 (

𝐾𝑏𝑇

𝑞𝑐
)
2

. (28) 

 Here, we deduce the final mathematical relation between 𝑃 and 𝑥:  

 𝑃(𝑥) = 𝑃𝑔
𝑇𝑥 = (𝑃𝑑𝑝 + 𝑃𝑠𝑡)

𝑇
𝑥 (29) 

 = 𝐾𝑑𝑝𝐶𝑒𝑞
𝑇𝑥 + 𝐾𝑠𝑡,𝑝𝐾𝑢

𝑇𝑥 + 𝐾𝑠𝑡,𝑛𝐾𝑑
𝑇𝑥. 

  

2.4  Area 

 The comparator’s area holds significance as it directly impacts manufacturing costs, because a smaller area 

implies reduced expenses. Let 𝐴 denote the total area occupied by all gates within the comparator:  

 𝐴(𝑥) = 𝐴𝑔
𝑇𝑥 (30) 

 

2.5  Problem Formulation 

 With the systematic derivation and analysis of the expressions for the comparator threshold vector model and 

other performance metrics, a comparator sizing normalization model for the threshold-based comparator is 

constructed:  

 2𝑥∗ = argmin
𝑥

    [𝑉𝑔𝑡ℎ
𝑟𝑒 (𝑥) − 𝑉𝑔𝑡ℎ

𝑖𝑑 ]
2
 (31) 

  𝑠. 𝑡.     𝑇𝑝ℎ𝑙(𝑥) ≤ 𝜏𝑚𝑎𝑥 , (32) 

 𝑇𝑝𝑙ℎ(𝑥) ≤ 𝜏𝑚𝑎𝑥 , (33) 

 𝑃(𝑥) ≤ 𝑃𝑚𝑎𝑥 , (34) 

 𝐴(𝑥) ≤ 𝐴𝑚𝑎𝑥 , (35) 

 𝑚,𝑥𝑗
𝑛𝑎𝑛𝑑, 𝑥𝑗

𝑛𝑜𝑟, 𝑥𝑖𝑛𝑣 ∈ 𝑁𝑝, 𝑗 ∈ [1,𝑚] (36) 

 where the objective is to minimize the error loss function while considering constraints derived from the 

performance metrics. 𝑥∗ denotes the optimal solution of 𝑥 that simultaneously satisfies the objective and all 

constraints. Constants 𝜏𝑚𝑎𝑥 , 𝑃𝑚𝑎𝑥 , and 𝐴𝑚𝑎𝑥  represent the extremities of the performance metrics, 

predetermined prior to the design process. Among the aforementioned constraints, (34) and (35) constitute linear 

inequalities, whereas (32) and (33) do not. The conversion of (32) and (33) into linear forms yields (37) and (38) 

respectively:  

 [𝐾𝑡𝑝(𝐶𝑝𝑢
𝑇 + 𝐶𝑛𝑑

𝑇 ) − 𝜏max𝐺𝑝𝑢
𝑇 ]𝑥 ≤ 0, (37) 

 [𝐾𝑡𝑝(𝐶𝑝𝑢
𝑇 + 𝐶𝑛𝑑

𝑇 ) − 𝜏max𝐺𝑛𝑑
𝑇 ]𝑥 ≤ 0. (38) 

 Upon observation, the entire model can be summarized into the following inseparable constrained non-linear 

integer programming (CNLIP) problem, as noted in [33], which is NP-hard. Therefore, the development of 

efficient algorithms is imperative to attain the optimal solution. 

 

3  Differential evolution and Nelder-Mead hybrid method based Discrete Gate Sizing Algorithm for the 

Single Comparator  

 In this section, the aim is to acquire the best discrete global optimal solution. To achieve this, the evolutionary 

algorithm, renowned for its effectiveness in handling complex programming problems [34], is employed. 

Specifically, the gate sizing algorithm for the single comparator is designed using the differential evolution 

algorithm in conjunction with the Nelder-Mead method. The specifics of the gate sizing algorithm are now 

explored in the following delineation.  

3.1  𝜶-Constrained Discrete Differential Evolution (𝜶-𝑪𝑫𝑫𝑬) 

 The proposed model is initially solved under an unconstrained condition by employing the differential evolution 

method with continuous relaxation to generate 𝑁  non-integer solutions after 𝑁  generations. This process 

comprises four critical operations: population initialization, mutation, crossover, and individual selection for the 

subsequent generation, which are introduced as follows.  
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3.1.1  Population Initialization 

 The 𝑛𝑝-th individual vector in the 𝑔𝑒-th generation is defined as follows:  

 𝑥𝑛𝑝
𝑔

= [{𝑥𝑖,𝑛𝑝,𝑔
𝑛𝑎𝑛𝑑}𝑖=1

𝑖=𝑚 , 𝑥𝑛𝑝,𝑔
𝑖𝑛𝑣 , {𝑥𝑗,𝑛𝑝,𝑔

𝑛𝑜𝑟 }𝑗=1
𝑗=𝑚]

𝑇
, (39) 

 where 𝑔𝑒 = 1,2, . . . , 𝐺𝐸𝑚𝑎𝑥  and 𝑛𝑝 = 1,2, . . . , 𝑁𝑃𝑚𝑎𝑥 . Each individuals in the population are randomly 

initialized by following function:  

 𝑥𝑛𝑝
𝑔

= initialization(𝑥𝑛𝑝
𝑔

[min], 𝑥𝑛𝑝
𝑔

[max]), (40) 

 𝑥𝑛𝑝
𝑔

[𝑙] = 𝑥𝑛𝑝
𝑔

[min] + rnd[0,1] ⋅ (𝑥𝑛𝑝
𝑔

[max] − 𝑥𝑛𝑝
𝑔

[min]), 

 where 𝑙 = 1,2, . . ,2𝑚 + 1, and 𝑥𝑛𝑝
𝑔

[min], 𝑥𝑛𝑝
𝑔

[max] separately represent the lower and upper bound of 𝑥𝑛𝑝
𝑔

[𝑙].  

3.1.2  Mutation 

 Mutation denotes a change occurring at the individual level. Utilizing a ring topology [35], two individuals 

𝑥𝑟𝑑1
𝑔

, 𝑥𝑟𝑑2
𝑔

, are selected from the neighborhood of the 𝑛𝑝-th individual. A differential linear combination is then 

constructed to execute the mutation:  

 𝑣𝑛𝑝
𝑔

= mutation(𝑥𝑛𝑝
𝑔

, 𝑥𝑟𝑑1
𝑔

, 𝑥𝑟𝑑2
𝑔

) (41) 

 = 𝑥𝑛𝑝
𝑔

+ 𝜆1(𝑥𝑛𝑝,𝑜𝑝𝑡
𝑔

− 𝑥𝑛𝑝
𝑔 ) + 𝜆2(𝑥𝑟𝑑1

𝑔
− 𝑥𝑟𝑑2

𝑔 ), 

 where 𝑥𝑛𝑝,𝑜𝑝𝑡
𝑔

 is the optimal individual in the neighborhood.  

3.1.3  Crossover 

 Crossover, another transformative process occurring at the inner element level, aids in enhancing individual 

diversity. It is implemented by exchanging inner elements between 𝑥𝑛𝑝𝑔 and 𝑣𝑛𝑝𝑔.  

 𝑢𝑛𝑝
𝑔

= crossover(𝑣𝑛𝑝
𝑔

, 𝑥𝑛𝑝
𝑔

),     

  

 𝑢𝑛𝑝
𝑔

[𝑙] = {
𝑣𝑛𝑝

𝑔
[𝑙], if  𝑢0[1] ≤ 𝑐𝑜𝑟, or𝑙 = 𝑙𝑟𝑎𝑛𝑑

𝑥𝑛𝑝
𝑔

[𝑙], otherwise.
 (42) 

 where the crossover ratio 𝑐𝑜𝑟 determines whether the element exchanges happen.  

3.1.4  Individual Selection 

Following the mutation and crossover, the current optimal individuals are selected for the subsequent 

generation:  

 𝑥𝑛𝑝
𝑔

= selection(𝑢𝑛𝑝
𝑔

, 𝑥𝑛𝑝
𝑔

), 

  

 𝑥𝑛𝑝
𝑔

= {
𝑢𝑛𝑝

𝑔
, 𝑢𝑛𝑝

𝑔
isbetterthan𝑥𝑛𝑝

𝑔

𝑥𝑛𝑝
𝑔

otherwise.
 (43) 

 The complete algorithm procedure is shown in Algorithm 1. 

 
 

3.2  𝜶-Constrained Discrete Nelder Mead (𝜶-CDNM) 

 The Nelder-Mead method (NM) [36] is instrumental in solving the unconstrained non-linear minimization 

function OBJ(∗). In this subsection, akin to [37], the application of the discrete Nelder-Mead method [38] to solve 

the unconstrained non-linear integer problem is demonstrated. A 𝑁𝑝-dimensional space is considered, requiring 

𝑁𝑝 + 1 discrete test points within it. The 𝑁𝑝 optimal solutions obtained after 𝑁𝑝 runs of DE serve as the initial 

input variables for NM. NM primarily comprises four types of operations: reflection, expansion, contraction, and 

shrinkage. The central idea of NM revolves around iteratively finding superior test points to replace previous ones. 

Specifically, the reflection point 𝑝𝑟𝑒𝑓 of the centroid 𝑝𝑎𝑣𝑔 (the average of the previous 𝑁𝑝 points) is computed. 

If the reflection point outperforms the current point 𝑝𝑜𝑖𝑛𝑡𝑖  (𝑖 = 1,2, . . , 𝑁𝑝 ), exploration along the expanded 
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direction takes place, resulting in expansion points 𝑝𝑒𝑥𝑝. Conversely, if the reflection point is inferior, all points 

are contracted towards a better direction, referred to as contraction points 𝑝𝑐𝑜𝑛. If these operations fail to yield 

improved test points, a shrinkage operation is employed. Refer to Algorithm 2 for detailed algorithmic steps.  

 

 

The integer coefficients of reflection, expansion, and contraction, denoted as 𝐾𝛼, 𝐾𝛾, and 𝐾𝜒 respectively, are 

involved in the operations. Additionally, the coefficient 𝐾𝛽 signifies the distance, rounded to the next integer, 

between the centroid and the current best test point 𝑝𝑏𝑠𝑡  with respect to OBJ(∗) . The function sign(∗) 

represents the signed symbol function. 

 

3.3  𝜶-Constrained Discrete Differential Evolution and Nelder Mead Method (𝜶-CDDENM) 

 The differential evolution algorithm is well-suited for handling non-linear, multi-peak, and high-dimensional 

problems, offering a higher level of solution accuracy. However, this algorithm tends to consume considerable 

computational resources. Conversely, the Nelder-Mead algorithm excels in addressing high-dimensional 

problems with remarkable convergence speed but falls short in solution accuracy. 

In a previous study [37], a combination of the two algorithms was explored. This hybrid approach utilized the 

differential evolution algorithm to construct the initial simplicity of the vertex, followed by employing the Nelder-

Mead algorithm for further optimization. The goal was to enhance search efficiency and convergence speed. 

However, this method faced a trade-off: while the Nelder-Mead algorithm prioritized solution accuracy, the 

differential evolution algorithm focused on solution time. Consequently, the approach in [37] required extended 

computational time to obtain an approximate solution and failed to effectively enhance both accuracy and speed 

simultaneously. 

In light of this, an improved alternative hybrid method is proposed. Initially, the Nelder-Mead algorithm 

efficiently obtains an approximate solution. Subsequently, this approximate solution serves as the initial solution 

for the differential evolution algorithm, leading to significantly improved accuracy within a shorter runtime. The 

specific flow of this hybrid algorithm is detailed in 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚3.3 . Within this algorithm, 𝑓  represents the 

objective function to be optimized, 𝑥0  denotes the initial solution, 𝛿  indicates the step size during simplex 

initialization, tol signifies the convergence accuracy, maxiter represents the maximum number of iterations, 𝑁𝑝 

defines the population size, 𝐹 and 𝐶𝑅 denote the scaling factor and intersection probability for the differential 
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evolution algorithm, respectively. Additionally, 𝑆 denotes the simplex vertices initialized using the Initialize-

Simplex-Vertices function, while 𝑥𝑛𝑚 and 𝑓(𝑥𝑛𝑚) refer to the initial approximate solution and approximate 

target value obtained through the Nelder-Mead algorithm. Lastly, 𝑥∗  and 𝑓∗  represent the final solution 

obtained using the differential evolution algorithm and the corresponding target value.   

 

 
   Within the algorithmic framework, the first step involves the utilization of the Initialize-Simplex-Vertices 

function to initialize the simplex vertices. Subsequently, these vertices are used by the Nelder-Mead algorithm, 

generating an initial approximate solution and approximate target value. These outputs are then passed as inputs 

to the differential evolution algorithm, which iteratively optimizes to produce the final solution and target value. 

This approach presents a notable advantage: by leveraging the Nelder-Mead algorithm to obtain the initial 

approximate solution and approximate target value and employing simplex vertex initialization, the algorithm’s 

global search capability is enhanced. Consequently, this results in significant improvements in both the efficiency 

and accuracy of the algorithm.  

 

3.4  Violation Check of Constraints and Stop Condition 

Upon completion of the unconstrained non-linear integer optimization, a set of candidate optimal solutions 

is obtained. Subsequently, in this subsection, the verification of whether these solutions violate the specified set 

of constraints is carried out. To streamline this process, a violation level function is defined as follows:  

 𝑣𝑖𝑜(𝑥, 𝑔𝑖 , 𝑏𝑖) = {

1 if  𝑔𝑖(𝑥) ≤ 0

1 −
𝑔𝑖(𝑥)

𝑏𝑖
, if  0 ≤ 𝑔𝑖(𝑥) ≤ 𝑏

0, otherwise.  

 

 where each contraint {𝑔𝑖, 𝑏𝑖} will be checked individually. If the violation happens, 𝑣𝑖𝑜(𝑥, 𝑔𝑖, 𝑏𝑖) will be reset 

to 0. 

Subsequently, the combination of all test results is achieved using the min operator:  

 𝑣𝑖𝑜(𝑥) = min
𝑖

{𝑣𝑖𝑜(𝑥, 𝑔𝑖, 𝑏𝑖)}. 

 Ultimately, a comparison between all candidate solutions based on fitness 𝑜𝑏𝑗(∗) and violation level 𝑣𝑖𝑜(𝑥) 

is conducted, thereby selecting the optimal solution to proceed to the subsequent cycle. For any two groups 

𝑥1, 𝑜𝑏𝑗1, 𝑣𝑖𝑜1 and 𝑥2, 𝑜𝑏𝑗2, 𝑣𝑖𝑜2, the comparison function is defined as follows:  

 𝑐𝑚𝑝(𝑥1, 𝑥2) = 𝑥1 ⇔ {

𝑜𝑏𝑗1 < 𝑜𝑏𝑗2 if  𝑣𝑖𝑜1, 𝑣𝑖𝑜2 ≥ 𝛼𝑠

𝑜𝑏𝑗1 < 𝑜𝑏𝑗2 if  𝑣𝑖𝑜1 = 𝑣𝑖𝑜2

𝑣𝑖𝑜1 ≥ 𝑣𝑖𝑜2 otherwise.
 (44) 

   

4  Multiple Comparators Sizing Optimization with Incremental Thresholds 

In this section, emphasis is placed on the design of gate sizing optimization for multiple comparators with 

incremental thresholds. Firstly, a model is proposed, utilizing an incremental thresholds vector to cater to scenarios 

involving multiple comparators. Expressions related to performance metrics, including propagation delay, power, 

and area, are extended to vector forms. Moreover, the previous design variable 𝑥 undergoes an extension to a 

two-dimensional matrix representation. Additionally, non-linear error analysis and computation, such as 

differential non-linearity (DNL) and integral non-linearity (INL), are incorporated. Addressing scenarios 

involving multiple comparators involves the construction of a non-linear integer programming-based gate sizing 

model. Finally, an algorithm is presented, aiming to enhance runtime and memory usage efficiency. Detailed 

explanations of these steps are provided in the subsequent sections.  
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    Table 2: Extension of the design variable and the metrics 1.15in 

  Vector expression   Dimensions   Meaning  

𝑉𝑔𝑡ℎ
𝑖𝑑   [𝑉𝑔𝑡ℎ,𝑖

𝑖𝑑 ]
1≤𝑖≤2𝑤−1

   1 × (2𝑤 − 1)   Thesholds (I)* 

𝑉𝑔𝑡ℎ
𝑟𝑒   [𝑉𝑔𝑡ℎ,𝑖

𝑟𝑒 ]
1≤𝑖≤2𝑤−1

   1 × (2𝑤 − 1)   Thesholds (R)** 

𝑥𝑖𝑑   [𝑥𝑖𝑑,𝑖]1≤𝑖≤2𝑤−1
   (2𝑚 + 1) × (2𝑤 − 1)   Cell size (I) 

𝑥   [𝑥𝑖]1≤𝑖≤2𝑤−1   (2𝑚 + 1) × (2𝑤 − 1)   Cell size (R) 

𝐷𝑁𝐿(𝑥)   [𝐷𝑁𝐿𝑖]1≤𝑖≤2𝑤−2   1 × (2𝑤 − 2)   DNL  

𝐼𝑁𝐿(𝑥)   [𝐼𝑁𝐿𝑖]1≤𝑖≤2𝑤−2   1 × (2𝑤 − 2)   INL  

𝑇𝑝(𝑥)   [𝑇𝑃,𝑖]1≤𝑖≤2𝑤−1
   1 × (2𝑤 − 1)  Delay  

𝑃(𝑥)   [𝑃𝑖]1≤𝑖≤2𝑤−1   1 × (2𝑤 − 1)   Power  

𝐴(𝑥)   [𝐴𝑖]1≤𝑖≤2𝑤−1   1 × (2𝑤 − 1)  Area  

𝐸𝐷𝑃(𝑥)   [𝐸𝐷𝑃𝑖]1≤𝑖≤2𝑤−1   1 × (2𝑤 − 1)  EDP  

[*] ’I’ means the ideal value. [**] ’R’ means the real value.      

 

4.1  Incremental Comparator Thresholds based Reference Model (ICTRM) 

In the context of applying threshold-based digital comparators to design a 𝑤 bit flash ADC, it involves 

dealing with a maximum of 2𝑤 − 1 comparator thresholds. This encompasses defining the step threshold voltage 

between adjacent comparator thresholds:  

 𝑉𝑠𝑡𝑒𝑝 =
𝑉𝑔𝑡ℎ,𝑚𝑠𝑏

𝑖𝑑 −𝑉𝑔𝑡ℎ,𝑙𝑠𝑏
𝑖𝑑

2𝑤−2
 (45) 

 = 𝑉𝑔𝑡ℎ,𝑖
𝑖𝑑 − 𝑉𝑔𝑡ℎ,𝑖−1

𝑖𝑑 (𝑖 = 2, . . . , 2𝑤 − 1), 

where 𝑉𝑔𝑡ℎ,𝑚𝑠𝑏
𝑖𝑑  and 𝑉𝑔𝑡ℎ,𝑙𝑠𝑏

𝑖𝑑  are associated with the maximum and minimum values among the 2𝑤 − 1 ideal 

comparator thresholds, respectively. Given that all the ideal 𝑉𝑔𝑡ℎ,𝑖
𝑖𝑑   values, as the self-built reference, are 

determined prior to the design process, it follows that 𝑉𝑠𝑡𝑒𝑝  should also be regarded as a known constant. 

In response to the growing number of comparators, the dimensions of both the design variable and 

performance metrics presented in Table 2 are expanded. Furthermore, the ideal overall width extension factor is 

redefined in the form of a diagonal matrix 𝑚𝑓
𝑖𝑑:  

 𝑚𝑓
𝑖𝑑 =

[
 
 
 
 
 
𝑚𝑓,1

𝑖𝑑 0 ⋯  0

0 𝑚𝑓,2
𝑖𝑑 ⋯  0

⋮ ⋮ ⋱ ⋮

0 0 ⋯  𝑚𝑓,2𝑤−1
𝑖𝑑 ,

]
 
 
 
 
 

 (46) 

 Building upon the preceding definitions, the incremental threshold vector-based model is proposed:  

 [(𝑚𝑓
𝑖𝑑)2𝐾𝑑

𝑇 − 𝐾𝑢
𝑇]𝑥𝑖𝑑 = 01×(2𝑤−1), (47) 

 where the matrix 𝑚𝑓
𝑖𝑑 can be solved by the following equation:  

 (𝑉𝑔𝑡ℎ − 𝑉𝑡ℎ ⋅ 11×(2𝑤−1))𝑚𝑓
𝑖𝑑 = (𝑉𝑑𝑑 − 𝑉𝑡ℎ)11×(2𝑤−1), 

 (47) generates multiple solutions for 𝑥𝑖𝑑, and the number of solutions increases exponentially with the number 

of bits in the flash ADC. Therefore, determining the optimal 𝑥  necessitates additional crucial performance 

metrics.  

4.2  Extended Propagation Delay, Total Power and Total Area 

For the multiple comparators, the performance metrics, such as propagation delay, power, area, and EDP, 

are extended to vector forms with a length of 2𝑤 − 1, as displayed in Table 2. The values for 𝑇𝑝,𝑖, 𝑃𝑖, 𝐴𝑖, and 

𝐸𝐷𝑃𝑖 can be separately computed using expressions (20), (29), (30), and (32), respectively.  

4.3  Non-linear Error 

In the design of multiple comparators, two primary types of non-linear errors are Differential non-linear Error 

(DNL) and Integral non-linear Error (INL) [9]. We represent these errors using vectors 𝐷𝑁𝐿 and 𝐼𝑁𝐿, each with 

a length of (2𝑤 − 2), as detailed in Table 2. The elements 𝐷𝑁𝐿𝑖 and 𝐼𝑁𝐿𝑖 are computed as follows:  

 𝐷𝑁𝐿𝑖 = 𝐷𝑁𝐿(𝑥𝑖, 𝑥𝑖−1) =
𝑉𝑔𝑡ℎ

𝑟𝑒 (𝑥𝑖)−𝑉𝑔𝑡ℎ
𝑟𝑒 (𝑥𝑖−1)

𝑉𝑠𝑡𝑒𝑝
− 1, 
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 𝐼𝑁𝐿𝑖 = 𝐼𝑁𝐿(𝑥𝑖) = ∑𝑖
𝑘=1 𝐷𝑁𝐿𝑘, (48) 

where the expression for 𝑉𝑔𝑡ℎ
𝑟𝑒 (𝑥𝑖) is derived from (7). In the algorithm design to follow [5], our primary focus 

is on optimizing the Differential non-linear Error (DNL), which is the source of Integral non-linear Error (INL).  

 

4.4  Energy-Delay Product (EDP) 

Optimizing the Energy-Delay Product (EDP) provides a superior balance between high speed and low energy 

consumption compared to single metric-based performance optimization like minimizing delay alone. To establish 

the relationship between energy cost and 𝑥, the following equation is derived:  

 𝐸(𝑥) = 𝑓𝑐𝑙𝑘
−1𝑃(𝑥) = 𝑓𝑐𝑙𝑘

−1𝑃𝑑𝑝
𝑇 𝑥 + 𝑓𝑐𝑙𝑘

−1𝑃𝑆𝑇
𝑇 𝑥 (49) 

 = 𝐾𝑑𝑝′𝐶𝑒𝑞
𝑇 𝑥 + 𝐾𝑠𝑡,𝑝′𝐾𝑢

𝑇𝑥 + 𝐾𝑠𝑡,𝑛′𝐾𝑑
𝑇𝑥, 

where 𝐾𝑑𝑝′ = 𝑓𝑐𝑙𝑘
−1𝐾𝑑𝑝, 𝐾𝑠𝑡,𝑝′ = 𝑓𝑐𝑙𝑘

−1𝐾𝑠𝑡,𝑝′, and 𝐾𝑠𝑡,𝑛′ = 𝑓𝑐𝑙𝑘
−1𝐾𝑠𝑡,𝑛′. Then, combined (49) with (20), we have the 

relationship between EDP and 𝑥 as follows:  

 𝐸𝐷𝑃(𝑥) = 𝐸(𝑥) ⋅ 𝑇𝑝(𝑥) (50) 

 = 𝐾𝑑𝑝′′
𝑥𝑇(𝐶𝑒𝑞𝐶𝑒𝑞

𝑇 )𝑥

𝐺𝑝𝑢
𝑇 𝑥

+ 𝐾𝑑𝑝′′
𝑥𝑇(𝐶𝑒𝑞𝐶𝑒𝑞

𝑇 )𝑥

𝐺𝑛𝑑
𝑇 𝑥

 

 +𝐾𝑠𝑡,𝑝′′
𝑥𝑇(𝐾𝑢𝐶𝑒𝑞

𝑇 )𝑥

𝐺𝑝𝑢
𝑇 𝑥

+ 𝐾𝑠𝑡,𝑛′′
𝑥𝑇(𝐾𝑑𝐶𝑒𝑞

𝑇 )𝑥

𝐺𝑛𝑑
𝑇 𝑥

. 

where  

 𝐾𝑑𝑝
′′ = 𝑓−1𝐾𝑑𝑝 ⋅ 𝐾𝑡𝑝 (51) 

 𝐾𝑠𝑡,𝑝
′′ = 𝑓−1𝐾𝑠𝑡,𝑝 ⋅ 𝐾𝑡𝑝 (52) 

 𝐾𝑠𝑡,𝑛
′′

𝑠𝑡,𝑝

′′ = 𝑓−1𝐾𝑠𝑡,𝑛 ⋅ 𝐾𝑡𝑝. (53) 

 

We need to find the optimal vector 𝑥 to minimize EDP, so that the delay and energy can be both decreased.   

 

4.5  Problem Formulation 

The indicators like power and delay between two comparators have no correlation with each other. However, 

as per the definition of 𝐷𝑁𝐿, each 𝐷𝑁𝐿𝑖 (𝑖 = 2,3, . . . , 2𝑤 − 2) is influenced by the preceding comparator 𝑖 −

1. If Algorithm 3.3 is directly applied to each comparator, achieving local optimal non-linear error is possible, 

but global optimization is not. To avoid this narrow focus, the multiple comparator sizing problem is decomposed 

into a two-stage optimization process, which involves optimizing EDP within the comparator and performing joint 

EDP-DNL optimization between comparators. 

In the initial stage, for each comparator 𝑖 , the top 𝑞  best solutions are selected based on a modified single 

comparator sizing model. These selected solutions become candidates for the subsequent optimization between 

comparators. Form 𝑆𝑖 = {𝐸𝐷𝑃1, . . . , 𝐸𝐷𝑃𝑞|𝐸𝐷𝑃1 < 𝐸𝐷𝑃2, . . . , < 𝐸𝐷𝑃𝑞 , 𝑞 ∈ ℕ+}  and the solution set Ω𝑖 =

{𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝑞}, the modified single comparator sizing model is as follows:  

 Ω𝑖
∗ = argmin

Ω𝑖

    𝑆𝑖 (54) 

  𝑠. 𝑡.     𝜂𝑖(𝑥) ≤ 𝜂𝑚𝑎𝑥 , (55) 

 𝑇𝑝ℎ𝑙,𝑖(𝑥) ≤ 𝜏𝑚𝑎𝑥 , (56) 

 𝑇𝑝𝑙ℎ,𝑖(𝑥) ≤ 𝜏𝑚𝑎𝑥 , (57) 

 𝑃𝑖(𝑥) ≤ 𝑃𝑚𝑎𝑥 , (58) 

 𝐴𝑖(𝑥) ≤ 𝐴𝑚𝑎𝑥 , (59) 

 𝑚,𝑥𝑗
𝑛𝑎𝑛𝑑, 𝑥𝑗

𝑛𝑜𝑟, 𝑥𝑖𝑛𝑣 ∈ 𝑁𝑝, 𝑗 ∈ [1,𝑚], (60) 

 𝑖 = 1,2, . . . , 2𝑤 − 1. 

 For the second stage, we propose the following normalization model:  

 𝑥∗ = argmin
𝑥

∑2𝑤−1
𝑖=1 𝛾𝐸𝐷𝑃𝑖 + (1 − 𝛾)𝐷𝑁𝐿𝑖, (61) 

  𝑠. 𝑡.     𝑥𝑖 ∈ Ω𝑖
∗, 𝑖 = 1,2, . . . , 2𝑤 − 1,0 < 𝛾 ≤ 1. 

When 𝛾 = 1, solving the multiple comparator sizing problem involves running the single comparator sizing 

algorithm 2𝑤 − 1 times, which doesn’t globally improve DNL. To achieve better DNL, we solve the model in 

cases where 1 < 𝛾 ≤ 1.   
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5  Two stage multiple Comparators sizing algorithms Design 

In this section, the sizing problem of multiple comparators is addressed through a two-stage algorithm. In 

the first stage, a modified single comparator algorithm is employed across all comparators to derive a group of 

approximate solution sets. For the second stage, a dynamic programming (DP) approach is utilized to solve (61) 

and determine the optimal solution path. DP is chosen for its efficiency in avoiding redundant calculations and 

effectiveness in multi-layer optimization scenarios. To aid comprehension of the proposed algorithms, a weighted, 

fully connected, and directed network (FCN) denoted as 𝐺 is developed, featuring a virtual source and a virtual 

sink. The network’s structure is depicted in Fig. 4.  

 

5.1  Network Model 

Fig. 4 illustrates the directed network 𝐺 , which contains:   

    • (2𝑤 − 1)𝑞  ordinary nodes (not including virtual nodes), each of which represents a candidate 

solution,denoted by 𝑥𝑖,𝑗 (𝑖 = 1, . . . , 2𝑤 − 1, 𝑗 = 1, . . . , 𝑞).  

    • 2𝑤 − 1 layers, which is equal to the solution set Ω = {Ω1, Ω2, . . . , Ω2𝑤−1}.  

    • (2𝑤 − 2)𝑞2 weighted directed connects, denoted by H. The weight of the connect between any ordering 

pair of nodes 𝑥𝑖,𝑗1 and 𝑥𝑖+1,𝑗2, is denoted by 𝑊(𝑥𝑖−1,𝑗1 , 𝑥𝑖,𝑗2) = 𝛾𝐸𝐷𝑃(𝑥𝑖−1,𝑗1) + (1 − 𝛾)𝐷𝑁𝐿(𝑥𝑖,𝑗1 , 𝑥𝑖−1,𝑗2).  

    • Two virtual nodes: a souce node 𝑠 ∈ Ω0 and a sink node 𝑑 ∈ Ω2𝑤. we define the weight of virtual connects 

from the source or pointed to the sink as 0: 𝑊(𝑠, 𝑥1) = 𝑊(𝑥2𝑤−1, 𝑑) = 0, 𝑥1 ∈ Ω1, 𝑥2𝑤−1 ∈ Ω2𝑤−1. They make 

the system become a standard network flow model.  

    • A set of paths based on the source node, denoted by the node set 𝑝𝑎𝑡ℎ(𝑠, 𝑥𝑖,𝑗𝑖
) = {𝑠, 𝑥1,𝑗1 , 𝑥2,𝑗2 , . . , }, 𝑥𝑖,𝑗𝑖

∈

Ω𝑖. The path length is represented as 𝐿(𝑠, 𝑥𝑖,𝑗𝑖
) = ∑𝑖−1

𝑘=1 𝑊(𝑥𝑘,𝑗𝑘
, 𝑥𝑘+1,𝑗𝑘+1

). In addition, the shortest path and 

path length are separately marked as 𝑝𝑎𝑡ℎ(𝑠,𝑥𝑖,𝑗𝑖
)

∗  and 𝐿(𝑠,𝑥𝑖,𝑗𝑖
)

∗ .  

Therefore, the first problem, represented by (54)∼(60), involves determining the optimal selection of nodes 

and constructing each layer of the network. Similarly, the second problem, characterized by (61), corresponds to 

finding the shortest path from the source to the sink within the network. Essentially, the first problem equates to 

deciding how to select the nodes and construct each layer of the network. Moreover, the second problem involves 

identifying the shortest path from the source to the sink. Network model can be seen in Figure 5. 

 

 
Figure 5: Network model 

     

5.2  Layer Construction by Modified Single Comparator Sizing Algorithm 

For the selection of the top 𝑞 best nodes for each layer 𝑖, the following two modifications are made to 

Algorithm 5.4 for each layer 𝑖:   

    • For DE, adjust the best individual selection function (43) to select and save top 𝑞1 the best individuals.  

    • For DNM, the number of input points is expanded to a maximum of (𝑁 + 1)𝑞1, which must meet the 

condition (𝑁 + 1)𝑞1 ≥ 𝑞. Throughout the execution of DNM, the set Ω𝑖
∗ is updated, retaining the top 𝑞 best 

solutions at each iteration. The algorithm stops when Ω𝑖
∗ no longer changes as the iterations progress.  

5.3  Find the Shortest Path Using Forward Dynamic Programming (FDP) Method 

In the second stage, the forward dynamic programming method is utilized to determine the connections 
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between the layers in order to find the optimal path from the source to the sink. The aim is to minimize the total 

path length from the source to the sink. This process reveals a nesting property where the shortest path 𝐿(𝑠,𝑥𝑖+1,𝑗1)
∗  

(𝑖 = 1,2, . . . , 2𝑤 − 2) can be derived from 𝐿(𝑠,𝑥𝑖,𝑗2)
∗  via FDP recursion:  

 𝐿(𝑠,𝑥𝑖+1,𝑗2)
∗ = 𝑚𝑖𝑛

𝑥𝑖,𝑗1∈𝐵𝑖

{𝐿(𝑠,𝑥𝑖,𝑗1)
∗ + 𝑊(𝑥𝑖+1,𝑗2 , 𝑥𝑖,𝑗1)} (62) 

 where 𝐵𝑖 = {𝑥𝑖,𝑗1|𝑥𝑖,𝑗1 ∈ Ω𝑖, 𝑊(𝑥𝑖,𝑗1, 𝑥𝑖+1,𝑗2) ≠ 0} is the set of predecessor nodes of 𝑥𝑖+1,𝑗2. Due to the full 

connected structure, here 𝐵𝑖 = Ω𝑖. The initial condition of (62) is 𝐿(𝑠,𝑥1,𝑗1)
∗ = 0.   

 

5.4  Proposed Multiple Comparators Sizing Algorithm 

 Upon the earlier described process of layer construction and path finding, the EVSR has been devised for sizing 

multiple comparators. 

  
6  Experimental Results 

 In this section, simulations are conducted to validate the proposed model and algorithms using HSPICE 

simulator[39] and MATLAB with SMIC-55nm digital CMOS technology. The comparator, relying on standard 

cell (STC) and featuring a single-ended (SE) input, employs inner gates selected from the standard cells library. 

Utilizing six types of transistors with different thresholds, the simulation of comparator indicators necessitates 

defining the basic parameters. The Table 3 is obtained from the foundry’s datasheet. 

 

Table  3: Experiment Setup 

Parameter Value 

Structure SE+STC 

𝑉𝑑𝑑  (V) 0.4 ∼ 1 

𝛽 1.4 

Transistor type P-type HVT, N-type HVT, P-type RVT, 

 N-type RVT, P-type LVT, N-type LVT 

𝑉𝑡ℎ  (V) 0.175,0.321,0.4477, 0.264,-0.348,-0.559 

Fan-in 1∼4 

Gate type NAND, NOR, INV 

   

6.1  Case 1: Threshold based Single Comparator Design 

6.1.1  Algorithm Comparision 

 
Figure 6: Design diagram of threshold based single digital comparator sizing optimization 
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The design diagram illustrating threshold-based single digital comparator sizing optimization is depicted in 

Fig. 6. The SCS algorithms are simulated using Matlab 2018b. Fig. 7 demonstrates the use of the built-in reference 

voltage value 𝑉𝑔𝑡ℎ
𝑟𝑒  as an input parameter in the loss function. The voltage range spans from 0.2V to 0.6V with a 

step size of 0.1V, while four algorithms including MC (baseline), 𝛼-CDNM, 𝛼-CDDE, and 𝛼-CDDENM are 

employed to obtain the optimal loss value. 

 
Figure 7: Loss function value versus 𝑉𝑔𝑡ℎ

𝑟𝑒  

 

The loss value indicates the discrepancy between the desired reference voltage value required by the design, 

𝑉𝑔𝑡ℎ
𝑟𝑒 , and the approximate solution obtained by the algorithm, 𝑉𝑔𝑡ℎ

𝑖𝑑 . The figure illustrates a quadratic relationship 

between the optimal loss value and the variation in 𝑉𝑔𝑡ℎ
𝑟𝑒 . Specifically, at 𝑉𝑔𝑡ℎ

𝑟𝑒  of 0.4V, the loss value reaches a 

minimum of 0.05. At this point, the absolute error between the theoretical and actual values of the built-in 

reference voltage reaches √0.05 = 0.22𝑉. This indicates that if the design target is 0.4V, the built-in reference 

voltage, 𝑉𝑔𝑡ℎ
𝑖𝑑 , may be 0.18V or 0.62V, which is unacceptable in engineering applications. Conversely, the loss 

values obtained by the three proposed algorithms approach 0 as 𝑉𝑔𝑡ℎ
𝑟𝑒  increases. 

To further validate the accuracy of the loss values, we present Fig. 9, illustrating the distinct loss values for 

the three algorithms. In Fig. 8, the observed loss values for the three algorithms fall within the interval [0, 5e-5], 

corresponding to absolute errors in the range of [-7e-3, 7e-3]. Among these, 𝛼-CDDE records the lowest loss 

value, while 𝛼-CDDENM falls between 𝛼-CDDE and 𝛼-CDNM in terms of effectiveness. 

Furthermore, Fig. 9 showcases the normalized values (ranging between 0 and 1) of the comparator 

propagation delay, 𝑇𝑝(𝑥), for the four algorithms, each reaching its respective optimal loss value as displayed in 

Fig. 9. When compared to the MC algorithm, the three proposed algorithms generally achieve lower delays, 

notably 𝛼-CDNM, which exhibits the lowest delay. Remarkably, the delay obtained by 𝛼-CDDENM closely 

approximates 𝛼-CDNM. 

 

  Figure 8: Normalized delay versus 𝑉𝑔𝑡ℎ
𝑟𝑒  
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Additionally, Fig. 9 illustrates the normalized total power consumption of the comparator for the four 

algorithms, each attaining its optimal loss value as shown in Fig. 10. As 𝑉𝑔𝑡ℎ
𝑟𝑒  increases, the power consumption 

by the MC algorithm initially decreases and then increases, while for the three proposed algorithms, it initially 

increases and then decreases. This trend indicates clear power consumption advantages for the proposed 

algorithms when 𝑉𝑔𝑡ℎ
𝑟𝑒  is below 0.45 or above 0.48. 

 

Figure 9: Normalized total power versus 𝑉𝑔𝑡ℎ
𝑟𝑒  

 

Among the three algorithms, 𝛼-CDNM achieves the most optimal power consumption. When 𝑉𝑔𝑡ℎ
𝑟𝑒  is below 

0.45, the power consumption of 𝛼 -CDDENM approximates the average value of 𝛼 -CDNM and 𝛼 -CDDE. 

Conversely, when 𝑉𝑔𝑡ℎ
𝑟𝑒  exceeds 0.48, the power consumption of 𝛼-CDDENM closely aligns with that of 𝛼-

CDNM.  

6.1.2  Perfomance Comparision 

Table 4 presents comparator designs referenced from literature [12, 40-43], and the design proposed in this 

paper. They are all based on digital standard cells. Notably, employing digital standard cells enables the full 

utilization of digital synthesis, enhancing design automation compared to traditional analog R2R structures, like 

in [40]. 

Unlike prior designs requiring an additional reference voltage due to the R2R structure [12, 40-43], and our 

design opt for single-ended methods and employ built-in reference voltages (comparator thresholds), negating the 

need for external reference voltage sources. 

However, despite these advancements [12] largely relies on trial and error for sizing to ensure built-in 

reference voltage accuracy before digital synthesis due to comparator threshold constraints. In contrast, our 

approach achieves automation from setting internal reference voltage to digital synthesis via the design of single 

and multi-comparator sizing algorithms. 

Normalized to 55nm and compared against existing optimal power consumption [41] (reduced by 72.25%) 

and area reduction in [40] (decreased by 41.18%), our design showcases the advantages: supporting digital 

synthesis, eliminating the need for external voltage, automating the entire process, and significantly reducing both 

area and power consumption.  

Table 4: Comparision of different comparators 

  TVLSI2014   TCASII2021   ISCAS2018   ISVLSI2017   ISCAS2022  Proposed 

 [40]  [41]   [42]   [12]   [43]  

Synthesizable   No   Yes   Yes   Yes  Yes   Yes  

Structure   R2R   R2R+STC   R2R+STC   SE+STC  R2R+STC   SE+STC  

Eeference 

source  

 External   External   External   Built-in  External   Built-in  
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Built-in 

reference 

range(mV)  

-  -  -   ±400  -   0∼600  

Built-in 

reference 

accuracy(mV) 

-  -  -   25  -   10  

Transistor 

sizing  

 Manual   Semi-

automatic  

 Semi-

automatic  

 Semi-

automatic  

 Semi-

automatic  

 Fully 

automatic  

Technology   180nm   180 nm   40nm   180 nm  28nm   55nm  

𝑉DD,min (V)   0.8   0.3∼0.9   0.3∼0.9   1.8  0.9   0.4∼1.2  

Max sampling 

frequency(MH

z)  

 2400   1000     1.95  -   500  

Max number of 

transistors  

 15   46   42   26  16   38∼44  

 Input 

offset(mV)  

 7.8   28∼49   28∼60   0  8   0  

Max 

Normalized 

Delay@55nm  

 0.33   9.29   269.5   -  0.53   1  

Normalized 

Area @55nm  

1.7   -  5.45  -  -   1  

Max 

Normalized 

Power @55nm  

 219   3.67   538.83   54.34   38.2  1  

6.2 Case2: Multiple Comparators Co-design with Incremental Thresholds 

The diagram illustrating the optimization of multiple digital comparators is depicted in Fig. 10. Fig. 11 

presents a comparative analysis between the MC-based multi-comparator sizing algorithm (MCMSC, baseline) 

and the proposed algorithm when applied to flash ADCs with varying bit sizes (N=2,3,4,5). All utilize the multi-

comparator sizing algorithm framework detailed in this paper, integrating dynamic programming. For the joint 

optimization of DNL and EDP, the FoM (Figure of Merit) indicator is employed, calculated as FoM = 𝛾DNL +

(1 − 𝛾)EDP (where 𝛾 = 0,0.2,0.4,0.6). A smaller FoM value signifies superior performance. Comparatively, 

the multi-comparator algorithm introduced in this paper substantially diminishes the FoM value compared to 

MCMCS, indicating enhanced performance across different bit sizes. 

 
Figure 10: Design diagram of multiple digital comparators jointly sizing optimization 
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Figure 11: Compare the MC-based multi-comparator sizing algorithm MC-DP with the proposed in this paper 

Performance of the OPTSC-DP algorithm 

 

Fig. 12 illustrates the FoM values across various 𝛾 values and bit numbers in two different multi-comparator 

design schemes:   

    • SCS Directly run the single comparator algorithm 2𝑤 − 1  times to get the design parameters of each 

comparator.  

    • OPTSC-DP. The proposed multi-comparator algorithm based on SCSdynamic programming is adopted.  

As 𝛾 and the number of bits increase, the FoM value for the proposed OPTSC-DP algorithm consistently 

remains significantly smaller than that for SCS. This suggests that compared to individual design iterations for 

each comparator, the joint sizing of multiple comparators leads to lower DNL and EDP.  

   
Figure 12: The FoM values versus bit Number of Comparators under two multi-comparator design schemes    
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7  Conclusion 

In this paper, an innovative approach for designing digital comparators is presented, employing diverse 

standard cell sizes and manipulating thresholds to establish a built-in reference voltage model. With this model, 

digital comparators with various built-in reference voltages can be created by configuring logic gates with 

different sizes and types in parallel. The performance evaluation of the comparators includes considerations of 

built-in reference voltage accuracy, propagation delay, power consumption, and area. 

To tackle this challenge, an optimization model for a single comparator is formulated, with constraints on 

propagation delay, power consumption, and area, with the ideal built-in reference voltage size as input. The 

objective is to maximize the accuracy of the actual built-in reference voltage. Three algorithms including 𝛼-

CDNM, 𝛼 -CDDE, and 𝛼 -CDDENM are proposed to address this non-linear optimization model. Through 

simulations, these algorithms are compared with the Monte Carlo algorithm, revealing their superior performance, 

resulting in higher built-in reference voltage accuracy and lower power consumption, delay, and area. 

In practical high-speed flash ADC circuits, different reference voltage inputs are managed by multiple 

comparators. To minimize the differential linear error of these comparators, a joint optimization model is 

developed. Dynamic programming is employed to achieve the lowest non-linear error. Experimental results 

demonstrate that the proposed joint design algorithm based on dynamic programming yields a lower figure of 

merit (FoM) compared to individually running the comparators. Moreover, the performance of the proposed multi-

comparator algorithm surpasses that of the Monte Carlo algorithm combination.  
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