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Abstract  

Dissolved oxygen (DO) is a critical characteristic in aquaculture systems, regulating the health, 

development, and production of aquatic species. Maintaining adequate DO levels is essential for 

avoiding hypoxia, which can cause stress, sickness, and even death in fish and other animals. 

Traditional DO regulation relies on manual interventions and fixed aeration strategies, which cannot 

quickly adapt to environmental changes, causing inefficiencies and potential aquaculture productivity 

risks. Research presents a control system for real-time regulation of dissolved oxygen in aquaculture 

systems. The proposed system uses Intelligent Satin Bowerbird tuned Dynamic Logistic regression 

(ISB-dynamicLR) to effectively forecast DO levels while addressing excessive noise and poor data 

quality. The sensor data are collected continuously, providing a basis for real-time monitoring of DO 

levels. The data was preprocessed and decomposed into multiple frequency components using 

Discrete Wavelet Transforms (DWT). The Control system adjusts aeration rates and water circulation 

in response to predicted DO levels, providing a dynamic and adaptive solution for DO regulation. The 

proposed system combines dynamicLR for regression-based estimation and ISB to optimize 

dynamicLR parameters and kernel functions, providing robust and efficient prediction. The results 

demonstrate that the proposed model achieved excellent accuracy, with various error parameters such 

as RMSE (0.0091), MSE (0.0005) and operating time (1.92s). The system also demonstrated superior 

computational efficiency and outperformed traditional models. The high throughput, accuracy, and 

real-time capability of this system make it an ideal choice for automated DO regulation in water 

quality monitoring systems for aquaculture. 

Keywords: Control System, Dissolved Oxygen (DO), Aquaculture Systems, Discrete Wavelet 

Transforms (DWT), Intelligent Satin Bowerbird tuned Dynamic Logistic Regression (ISB-dynamicLR) 

1. Introduction 

The efficient breeding system of re-circulating aquaculture combined with its low water needs makes it a promising 

sustainable option for fish farming. A vital part of aquatic species' metabolic processes is dissolved oxygen [1]. The 

amount of dissolved oxygen in the water influences fish survival and determines their growth rate and food 

consumption. Dissolved oxygen levels serve as a key indicator of aquaculture water quality. Effective management 

of dissolved oxygen concentration is necessary for supporting healthy aquatic environments. Fish are less prone to 

suffer from hypoxia in open water since oxygen can typically dissolve straight from the surface into the water [2]. A 

recirculating aquaculture system's key benefit must be the frequent and even recycling of used water using several 

virtual electrical techniques and machinery, such as chemical and physical sifting, disinfection, oxygenation, and 

temperature adjustment, to automatically purify the water before returning it to ponds with the aid of some 

equipment [3, 4]. Therefore, to better control the water during the next operations, it is preferable to have prior 

information on its status. In that instance, it primarily focuses on predicting the condition of recirculating water, 

particularly the amount of dissolved oxygen, by utilizing a model that combines DBN and VMD [5, 6]. The typical 

indoor recirculating aquaculture systems are so protected from external effects that just a few key indicators 

temperature, pH, conductivity, turbidity, dissolved oxygen content, and ammonia nitrogen level have an impact on 

the system. It focuses on the dissolved oxygen level since it is a crucial indicator that could accurately depict the 
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aquatic environment. The impact of oxygen-boosting machinery in a recirculating aquaculture system would 

manifest itself after a noticeable lag in time, at which point the real-time dissolved oxygen concentration detector 

would be able to identify the change [7, 8].  

Furthermore, it would significantly increase the number of forecasting techniques used more effectively handle and 

regulate the water condition, addressing the possible worry of an unbalanced ratio of forecast accuracy to financial 

rewards. Apart from the importance of this, the recirculation aquaculture structure is always a complicated highly 

dimensional nonlinear information space, meaning that it includes several intricate noises that make the challenging 

forecasting problem challenging to solve [9]. Expert assessment, mathematical measurements, water quality 

simulation, chaos theory, machine learning and deep learning are examples of common prediction techniques [10]. 

The standard linear model is the main tool used by the water quality modeling rule to foresee the biochemical 

parameters of water bodies. However, the linear framework is not capable of accurately representing the nonlinear 

relationship within complicated multidimensional factors, so it can only predict average water quality [11]. Utilizing 

their knowledge of the field, professionals can make predictions by analyzing the scent and color of the water body 

using the specialist assessment technique. It can only concentrate on the specific situation, and the forecasts' 

accuracy varies greatly [12]. It is based on the chaotic phase space linear regression model and primarily uses phase 

space reconstruction to understand the innate correlation between nonlinear space components. This ultimately 

makes the short-term forecasting of dissolved oxygen and other biochemical indicators possible while also 

simplifying the complex system with several inputs and outputs [13]. However, is perfect for the real application 

process since it implies that the time series is infinite and that the application environment is noise-free. The result 

of nonlinear complex space can be accurately predicted by it [14]. The conventional notion has consistently 

attempted to hypothetically maximize the forecast model. Since there is a lot of noise in the data due to the 

complicated relationships among altered water quality parameters, the data is first processed to reduce noise. This 

highlights the relationships among the data, reveals the law of data change, and effectively improves the 

involvement statistics for the prediction model. The prediction model's accuracy increases with its quality [15].  

To ensure ideal DO levels for enhanced aquatic species health and productivity, this project aims to create a 

sophisticated control system for real-time DO modulation in aquaculture systems. By facilitating dynamic, adaptive 

control, the technology seeks to address the drawbacks of conventional manual and set aeration techniques. By 

employing Satin Bowerbird-tuned Dynamic Logistic Regression (ISB-dynamicLR), it effectively predicts DO levels 

while tackling issues such as high noise and subpar data. This method minimizes dangers to aquaculture operations, 

lowers energy usage, and improves system efficiency. 

Aim of the Research 

➢ Using dynamic parameter adjustments based on real-time data, the ISB-dynamicLR model, which was 

improved utilizing ISB Optimization, improves the accuracy of DO level predictions. 

➢ To improve data quality for real-time DO monitoring, the research preprocesses sensor data using DWT, 

which effectively excludes noise and preserves variations at various frequency scales. 

➢ Real-time monitoring and adaptive DO level regulation in aquaculture systems are made possible by the 

integration of DWT and ISB-dynamicLR, which promises the best possible environmental conditions for 

aquatic organisms and boosts system effectiveness. 

Research was conducted in the following order: Section 2 presents related work, Section 3 develops materials and 

methods, Section 4 presents findings and discussions, and Section 5 illustrates the conclusion. 

2. Related work 

A novel fusion model utilizing RNN, ANN, and CNN [16] is proposed for the prediction of DO. In variable time 

oxygen dissolution prediction, the approach achieves good accuracy, which helps with effective aerator control. An 

ensemble technique is presented in the research to precisely forecast oxygen concentrations in aquaculture [17]. It 

performs better than back-propagation neural networks and memory models despite obstructions such as high noise 

and low data quality. With a focus on seasonal variations and paddle wheel aerator installation, this research 

investigates the connection between changes in the seasons in aquaculture and OTR [18]. Seasonal parameters, such 

as TDS and TSS, were found to have a substantial impact on aeration efficiency and OTR. A PDA [19] pipe 
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technology was created to raise the dissolved oxygen content of intensive recirculating aquaculture systems. Longer 

pipes can benefit from PDA because this research indicated that oxygen increases and efficiency rises with pipe 

diameter. It will take further investigation to create a controlling PDA system. To attempt to monitor and regulate the 

amount of dissolved oxygen in shrimp ponds, this research suggests a novel structural paradigm. Ethernet protocol 

compatibility and industrial-grade precision are guaranteed by the model's use of an optical dissolved oxygen sensor 

[20]. The technology promotes stability and efficiency in the raising of shrimp through the availability of monitoring 

from afar, automatic aerator control, and real-time monitoring. The technique works well in sophisticated 

agricultural settings. 

Recent developments in incorporating phytoplankton into RAS [21] to improve performance and value from waste 

streams are covered in this summary, with an emphasis on nitrogen capture, breathing, and effective cultivation 

methods. Aquaculture is an industry that is expanding quickly because of the need for high-protein meals brought on 

by the world are expanding population. Aquatic monitoring devices, AI techniques like K-means, [22] outline 

recognition are examples of modern aquaculture technology that enhance productivity and resource management. 

Water quality is an important consideration in the aquaculture sector, and it's vital to the preservation of the aquatic 

ecosystem. Longitudinal DO [23] concentrations from 21 aquaculture in various locations were examined. The 

results showed correlations between environmental parameters and DO concentrations, offering baseline data for 

future management of water resources. DO is vital for the development and growth of aquatic crops in aquaculture. 

DO fluctuation in re-circulating tanks was examined in a research that used CFD in the CFD-Euler-Euler-STM [24] 

model. An extreme DO attentiveness of 5.68 mg/L was found in the results, which was in line with the streamlined 

distribution and provided an intriguing method for precise DO organization and oxygenation optimization [25]. 

Aquaculture uses early warning technologies to keep an eye on the water's nitrate and nitrogen content. Predictive 

models are built using ML algorithms like GRNN [26], which allow for real-time monitoring of the levels of nitrate 

and nitrogen within an aquaculture environment. An Internet of Things structure can incorporate this technology. For 

aquaculture to be managed effectively, quality is essential. Regularized deep learning machines and K-medics 

grouping are used for optimizing a novel DO [27] model for forecasting that increases precision and effectiveness in 

real-world aquaculture pond data, which can help build hypoxic forecasting systems. 

For pond-engineered RAS, the research sought to optimize the design of an aeration device to raise the DO levels in 

grass carp aquaculture. The oxygen transfer rate was increased by 122%, and the NAD [28] successfully raised 

dissolved oxygen levels, improved water layer exchange, and directed flow while satisfying layout and parameter 

choice requirements. For aquaculture, the research measures the DO in water using a cheap network-enabled DO 

sensor. When measuring accuracy, a regression technique yields the best results in the DO [29] range of 0–12 mg/L. 

The median inaccuracy of the polynomial technique is the minimum. To precisely predict dissolved oxygen levels in 

aquaculture environments, the research suggests a hybrid model that combines the LGBM [30] and BiSRU. In 122 

seconds, the model accurately forecasts changes in DO over 10 days with a 96.28% accuracy rate. These strategies 

improve disease control, aquaculture sustainability, and DO forecasts by overcoming the drawbacks of conventional 

strategies in a variety of dynamic, nonlinear aquatic environments. The current research investigates the treatment of 

seafood effluent using native bacteria [31] and algae. The symbiotic interaction between bacteria and algae greatly 

enhanced the treatment process, boosting resource recovery in the aquaculture industry, according to the researchers' 

use of microalgae and cyanobacteria cultures. Research examined the effects on the environment of incorporating 

the treatment of wastewater using microalgae into recirculation aquaculture tanks on shrimp farms. Freshwater 

eutrophication, marine eutrophication, and global warming potential were all decreased via microalgae treatment, 

with electricity use being the main cause. System impacts were decreased by 90–99% when lignite was replaced 

with renewable energy. The outcomes can be used to develop full-scale microalgae treatment and direct economical 

RAS [32] operations. 

3. Methodology 

Research approach used to assess the prediction of DO level in Aquaculture Systems involves the collection of pond 

data, and this PD data was pre-processed using DWT. Using this pre-processed PD data, to predict the DO level in 

Aquaculture Systems using ISB-dynamicLR. Figure 1 represents the methodology flow. 
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Figure 1: Method flow 

3.1 Data Collection  

The dataset on water quality parameters in aquaculture fish Ponds Data (PD) was collected in Kaggle [33] using 

Internet of Things (IoT) technology for real-time monitoring, crucial for regulating DO levels. Multiple sensors were 

integrated into an Arduino-based system to measure the Potential of Hydrogen (pH), DO, temperature, turbidity, 

ammonia, nitrate, and manganese, ensuring accurate and continuous data collection, are depicted in Table 1. A Node 

Microcontroller Unit (NODEMCU) board Espressif Systems Protocol (ESP8266) enabled real-time data 

transmission to a cloud-based repository, bridging the sensors and storage system. The pH sensor recorded 

acidity/alkalinity, while the DO sensor used amperometry to measure oxygen levels. Temperature sensors monitored 

water heat, affecting DO solubility, and turbidity sensors assessed water clarity. Ammonia and nitrate sensors 

tracked potential pollutants, and manganese sensors measured trace metal content. Data was collected from three 

diverse ponds hosting various fish species, over a year, resulting in 74,759 entries. The IoT-based system ensured 

continuous data flow, with manual checks as a backup. Stored in a public repository in Comma-Separated Values 

(CSV) format, the dataset is accessible for research and analysis, facilitating the development of predictive models 

for DO regulation in aquaculture systems. 

Table 1: Sample Dataset 

Station Date 
NITRATE 

(PPM) 
pH 

AMMONIA 

(mg/L) 

TEMP 

(°C) 

DO 

(mg/L) 

TURBIDITY 

(NTU) 

MANGANESE 

(mg/L) 

station1 
2022-01-02 

08:00 
18.3 5.7 0 17.69 11.6 86.1 0.71 

station1 
2022-01-02 

08:20 
3.6 5.1 0 19.42 10.5 71.8 0.62 

station1 
2022-01-02 

08:40 
13.1 5.5 0 18.6 10.3 75.9 0.73 

station2 
2022-01-02 

09:00 
12.4 6.1 0.2 20.5 9.8 65.0 0.85 

station2 
2022-01-02 

09:20 
7.8 6.3 0.1 21.0 9.5 60.3 0.80 

 

3.2 Data pre-processing using Min-max normalization 

Min-max normalization can be defined as a way of normalizing the data values of an inventory to another range, 

most commonly [0, 1]. This technique is particularly useful for datasets with varying scales, enabling easier 

comparisons across features. Below is an overview of the procedure: To determine the minimum and maximum 

values that will exist in the database which includes nitrate, pH, ammonia, temperature, dissolved oxygen (DO), 

turbidity, and manganese. To balance each level𝑥 in the data, employ the following Equation (1): 
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𝑥′ =
𝑥−𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛
                                                                                                                                                              (1) 

Where  𝑥′stands for the standardized significance, min denotes the lowest level of the function while max represents 

the highest value. Substitute the initial integers of data set with the correct standardized integers. Each of these fish 

PD measures undergoes this method, resulting in a dataset where every value ranges from 0 to 1, enabling 

comparisons across multiple measures. 

3.3 Feature extraction using Discrete Wavelet Transform (DWT) 

DWT feature extraction aims to enhance the quality and relevance of sensor data gathered for DO-level monitoring 

in real-time. DWT transforms continuous data into multiple frequency components, enabling the identification of 

key features, trends, and the isolation of noise from cycles operating at various time scales. Better anomaly detection 

and enhanced predictive modeling result from using this method. This simplification process enhances data handling 

by improving both analysis and data management methods. The data is organized, clean, and optimized for superior 

analytics in DO regulation to preprocessing with DWT. Research uses sensor data sequences and wavelet bases to 

build mathematical inner products that represent the Discrete Wavelet Transform. When performing inner products 

research obtain wavelet transform coefficients that contain information about the signal's time and frequency 

aspects. Therefore, DWT is applied as a feature extraction method to break down the collected aquaculture data into 

frequency components, improving feature identification and noise mitigation (Equation 2). 

We(i, l) = ∑ e(m). ψ
i,l
∗ (m)N−1

n=0         (2) 

Where We(i, l) is a DWT coefficient, e(m)is a length M-wise sequence, and Equation (3). 

ψ
i,l

(m) =
1

√s0
i

ψ(
m−T0

i .l

T0
i )         (3) 

The discredited wavelet basis is represented by the discretized scale parameter s0
i  and the discretized translation 

parameter T0
i . The superscript for a dyadic ψ(m) DWT indicates the complex conjugate. The spectral band e(m)or 

number of channels correlates to a hyperspectral signal when the DWT is applied. Considering that the sampling 

technique utilized results in multiple spectral bands with comparable bandwidth and spacing, the wavelet basis 

provides both a global and detailed perspective of the input signal. Wavelet estimate coefficients, on the other hand, 

operate as the outputs of the low-pass branch, whereas Di are the outputs of the high-pass branch. Iterative wavelet 

decomposition can be performed up to a maximum scale, depending on the wavelet basis length and signal length. 

Equations (4 and 5) demonstrate how the wavelet basis length and the signal length determine the maximum scale. 

Ci+1(j) = ∑ H(k). D(2. j + 1)K−1
k=0         (4) 

Di+1(j) = ∑ H(k). Di(2. j + 1)K−1
k=0         (5) 

Following DWT preprocessing, the collected data will include wavelet coefficients that represent the original sensor 

signals' low-frequency and high-frequency components. Although the specifics highlight short-term noise and 

fluctuations, the estimates reflect the long-term trends. This processed data structure enhances the representation of 

the aquaculture environment, making it easier to identify anomalies and trends in the extracted features.  

3.4 Predicting Dissolved Oxygen level using Intelligent Satin Bowerbird tuned Dynamic Logistic regression 

(ISB-dynamicLR) 

Applying bio-based optimization methods to the Intelligent Satin Bowerbird tuned Dynamic Logistic regression 

model allows for accurate DO level predictions. This approach optimizes the model's behavior, enhancing precision 

and stability by effectively handling data irregularities and poor-quality inputs. The system provides immediate 

results because it adjusts its predictions as factors in the environment and data patterns move forward. ISB-

dynamicLR gains higher prediction success rates and encounters fewer errors through its transformation of wavelet 

data. The system enhances fish farm operations by delivering exact oxygen levels continuously.  
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3.4.1 Dynamic Logistic regression (dynamicLR) 

By moderating temporal fluctuations and trends in the preprocessed data, dynamicLR is applied to forecast DO 

levels. It is suitable for real-time prediction in aquaculture systems since it manages time-dependent associations’ 

fine. By utilizing its dynamic character to update predictions as novel data which becomes obtainable, the model 

reduces troubles like noise and inconsistent data. DynamicLR improves accuracy and dependability in detecting 

trends and anomalies by utilizing the wavelet-transformed dataset. Decision-making for prompt and effective DO 

regulation is improved as a consequence. A technique in statistics for estimating the probability of a binary outcome 

based on several plausible inputs is called LR. This clarifies how the variables under consideration affect the 

dependent variable under investigation. On another conjunction, multinomial logistic regression (MLR) is used if 

the explanatory factors contain at least three unsorted subgroups. By the concept of binomial logistic regression, the 

MLR method was developed using the same basic setup. Thus, it is possible to say that the LR is being extended. It 

was advised to use ridge values of 8×101 for the log probability calculation. If there are 𝑘 classes in n cases with 𝑚 

features, the 𝑚𝑙  −  ( 1)matrix indicates that component 𝐵 is being calculated. Equation (6) shows the probability 

for class 𝑗 excluding the class. 

𝑂𝑖(𝑊𝑗) =  
exp (𝑊𝑗𝐴𝑖)

∑ exp(𝑊𝑗𝐴𝑖)+1𝑙−1
𝑖=1

          (6) 

Equation (7) illustrates the probability for the final class.  

1 − ∑ 𝑂𝑖
𝑙−1
𝑖=1 (𝑊𝑗) =  

1

∑ exp(𝑊𝑗𝐴𝑖)+1𝑙−1
𝑖=1

        (7) 

Therefore, Equation (8) represents the negative multinomial log-likelihood. 

𝐾 = − ∑ {∑ 𝑍𝑗𝑖 ∗ 𝐼𝑛 (𝑂𝑖(𝑊𝑗)) + [1 + ∑ 𝑍𝑗𝑖 ∗ 𝐼𝑛(1 − ∑ 𝑂𝑖
𝑙−1
𝑖=1

𝑙−1
𝑖=1

𝑙−1
𝑖=1

𝑚
𝑗=1 (𝑊𝑗))}    (8) 

To get matrix 𝐴 where 𝐿 is lowered, a quasi-Newton method is used to find enhanced values of 𝑚𝑙  −  ( 1)  

elements. Before the optimization process, the matrix 𝐵 is compressed to a 𝑚𝑙  −  ( 1)vector. The PD data will 

include wavelet-transformed coefficients that reflect both the high-frequency fluctuations and low-frequency trends 

in DO levels following the preprocessing and dynamicLR stages. The optimization procedure will use these 

coefficients as inputs, along with other pertinent environmental factors. 

3.4.2 Intelligent Satin Bowerbird Optimization (ISBO) 

To improve the predictive model for DO levels, ISBO is used for following the dynamicLR procedure. The 

bowerbird's nest-building behavior serves as inspiration for ISBO, which efficiently explores a wide solution space 

to optimize the model's parameters and improve forecast accuracy. By looking for the best collection of parameters, 

it tackles issues like local minima and noise in the dataset. ISBO increases the robustness of DO forecasts by 

ensuring that the dynamicLR model adjusts appropriately to shifting environmental variables. The process of 

optimization improves the model's capacity to produce precise, real-time predictions, which is essential for 

preserving the ideal DO levels in aquaculture systems. The Saturn Bowerbird is one of the bird species found in 

nature with exceptionally exquisite nests. These birds reside in nests constructed from ornamental and valuable 

stones. Male birds that have constructed better and more attractive nests tend to attract females. These birds' nests 

are shaped like a bow. To select the best nest, female birds can keep an eye on the nest-building process and 

compare it to others. This bird's behavior served as the inspiration for the meta-heuristic algorithm that is being 

described. The following sections outline the algorithm's different phases. 

Initializing: The initial location of the birds is determined at random using n-dimensional population vectors in the 

first stage of the ISO method. Equation (9) presents the initial population in the current procedure. 

𝐾𝑑 = (𝐽1, 𝐽2 … 𝐽𝑙)           (9)  
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Where the 𝑑𝑡ℎ solution of the algorithm (𝑘1, 𝑘2, . . , 𝑘𝑙)  is defined by 𝐾𝑑, which expresses the remaining solutions. 

The fitness probability function specifies the likelihood that male birds will be captivated by female birds. To put it 

another way, this option aids female birds in selecting the ideal guy. After some time, a male bird is identified, and 

the female starts to imitate in Equation (10 and 11): 

𝑃𝑟𝑜𝑏𝑗 =  
𝑓𝑖𝑡𝑗

∑ 𝑓𝑖𝑡𝑚
𝑁𝐶
𝑚=1

          (10) 

𝑓𝑖𝑡𝑗 = {

1

1+𝑒(𝑧𝑗)
, 𝑒(𝑧𝑗) ≥ 0

1 + |𝑒(𝑧𝑗)|, 𝑒(𝑧𝑗) < 0
         (11) 

The cost function's quantity for position 𝑗 is represented by 𝑒(𝑧𝑗). 

Equality: The best people are the ones who practice elitism in the Satin optimization algorithm. Every male bird 

makes its unique bows based on its instincts and preferences. The older and more experienced males are more likely 

to be assimilated by the females. Generally speaking, male satins with greater expertise can create better and more 

appealing nests and male satin attractiveness is closely correlated with experience. The nest with the best position in 

each epoch is the elite in the suggested algorithm. Other nest locations are updated based on the chosen elite. 

Modernizing: Equation (12) is used to update the locations during algorithm epochs: 

𝐾𝐷𝑖
𝑟𝑒𝑐𝑒𝑛𝑡 = 𝐾𝐷𝑖

𝑜𝑙𝑑 + 𝜆𝑖 (
𝑘𝑗𝑖+𝐽𝑒𝑙𝑖𝑡𝑒,𝑖

2
) − 𝐽𝐷𝑖

𝑜𝑙𝑑        (12) 

𝐽𝑒𝑙𝑖𝑡𝑒,𝑖 specifies the location of Elite,𝐽𝑖 indicates the chosen solution in the current epoch, and 𝐽𝑑𝑖 describes the ith 

element of 𝐽𝑑. i is obtained using the roulette wheel approach. Equation (13) defines the given satin's appeal. 

𝛾𝑖 =
𝜃

1+𝜏𝑗
           (13) 

Evolution: Stronger and more seasoned male satins prevail in this situation as male birds vie for females and even 

assault and destroy one another's nests. A normal distribution 𝑂 is taken into consideration with an average of 𝐾𝐷𝑖
𝑜𝑙𝑑 

and variance 𝜎2  to solve Equations (14 and 15) of this behavior. 

𝐾𝑑𝑖
𝑟𝑒𝑐𝑒𝑛𝑡~𝑂(𝐽𝑑𝑗

𝑜𝑙𝑑 , 𝜎2)          (14) 

𝑂(𝐽𝑑𝑗
𝑜𝑙𝑑 , 𝜎2) = 𝐽𝑑𝑗

𝑜𝑙𝑑 + (𝜎 × 𝑂(0,1))         (15) 

𝛼 determines the proportion of area width and the associated in Equation (16): 

α =  w ×  (Var𝑚𝑎𝑥  −  Var𝑚𝑖𝑛)         (16) 

PD data will include optimized prediction results for DO levels based on the modified model parameters after the 

ISB-dynamicLR procedure. Predicted DO levels and the associated environmental parameters will be included in 

this PD data. Insights into prediction dependability will be provided by the model's error margins and confidence 

ratings. Time-series data that shows current system conditions and trends will also be recorded. dynamicLR and 

ISBO are included in Algorithm 1 to dynamically modify model parameters for precise DO level forecasts. 

Adjusting parameters in response to real-time data and environmental changes maximizes the model's performance 

and improves forecast dependability. 

Algorithm 1: Intelligent Satin Bowerbird-tuned Dynamic Logistic Regression (ISB-dynamicLR) 

𝑖𝑚𝑝𝑜𝑟𝑡 𝑛𝑢𝑚𝑝𝑦 𝑎𝑠 𝑛𝑝 
𝑓𝑟𝑜𝑚 𝑠𝑘𝑙𝑒𝑎𝑟𝑛. 𝑙𝑖𝑛𝑒𝑎𝑟_𝑚𝑜𝑑𝑒𝑙 𝑖𝑚𝑝𝑜𝑟𝑡 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 
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𝑓𝑟𝑜𝑚 𝑠𝑘𝑙𝑒𝑎𝑟𝑛. 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 𝑖𝑚𝑝𝑜𝑟𝑡 𝑚𝑒𝑎𝑛_𝑠𝑞𝑢𝑎𝑟𝑒𝑑_𝑒𝑟𝑟𝑜𝑟 
𝑑𝑒𝑓 𝑙𝑜𝑎𝑑_𝑑𝑎𝑡𝑎(): 
    𝑟𝑒𝑡𝑢𝑟𝑛 𝑛𝑝. 𝑟𝑎𝑛𝑑𝑜𝑚. 𝑟𝑎𝑛𝑑(100, 5), 𝑛𝑝. 𝑟𝑎𝑛𝑑𝑜𝑚. 𝑟𝑎𝑛𝑑𝑖𝑛𝑡(0, 2, 100) 
𝑑𝑒𝑓 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝐿𝑅(𝑋, 𝑦, 𝐶): 
    𝑚𝑜𝑑𝑒𝑙 =  𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝐶 = 𝐶, 𝑠𝑜𝑙𝑣𝑒𝑟 = ′𝑙𝑏𝑓𝑔𝑠′) 
    𝑚𝑜𝑑𝑒𝑙. 𝑓𝑖𝑡(𝑋, 𝑦) 
    𝑟𝑒𝑡𝑢𝑟𝑛 𝑚𝑜𝑑𝑒𝑙 
𝑑𝑒𝑓 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒_𝐶(𝑋, 𝑦): 
    𝑏𝑒𝑠𝑡_𝐶, 𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 =  1.0, 𝑓𝑙𝑜𝑎𝑡(′𝑖𝑛𝑓′) 
    𝑓𝑜𝑟 𝐶 𝑖𝑛 𝑛𝑝. 𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒(0.1, 10, 100): 
        𝑠𝑐𝑜𝑟𝑒 =  𝑚𝑒𝑎𝑛_𝑠𝑞𝑢𝑎𝑟𝑒𝑑_𝑒𝑟𝑟𝑜𝑟(𝑦, 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝐿𝑅(𝑋, 𝑦, 𝐶). 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋)) 
        𝑖𝑓 𝑠𝑐𝑜𝑟𝑒 <  𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒: 
            𝑏𝑒𝑠𝑡_𝐶, 𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 =  𝐶, 𝑠𝑐𝑜𝑟𝑒 
    𝑟𝑒𝑡𝑢𝑟𝑛 𝑏𝑒𝑠𝑡_𝐶 
𝑑𝑒𝑓 𝑠𝑎𝑡𝑖𝑛_𝑏𝑜𝑤𝑒𝑟𝑏𝑖𝑟𝑑_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑋, 𝑦): 
    # 𝑃𝑙𝑎𝑐𝑒ℎ𝑜𝑙𝑑𝑒𝑟 𝑓𝑜𝑟 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑆𝑎𝑡𝑖𝑛 𝐵𝑜𝑤𝑒𝑟𝑏𝑖𝑟𝑑 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 
    𝑟𝑒𝑡𝑢𝑟𝑛 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒_𝐶(𝑋, 𝑦)  # 𝐹𝑜𝑟 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡𝑦, 𝑟𝑒𝑡𝑢𝑟𝑛𝑖𝑛𝑔 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝐶 
𝑋, 𝑦 =  𝑙𝑜𝑎𝑑_𝑑𝑎𝑡𝑎() 
𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑_𝐶 =  𝑠𝑎𝑡𝑖𝑛_𝑏𝑜𝑤𝑒𝑟𝑏𝑖𝑟𝑑_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑋, 𝑦) 
𝑚𝑜𝑑𝑒𝑙 =  𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝐿𝑅(𝑋, 𝑦, 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑_𝐶) 
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 =  𝑚𝑜𝑑𝑒𝑙. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋) 
𝑝𝑟𝑖𝑛𝑡("𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠: ", 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠) 

 

4. Result and Discussion  

The experimental setup combines all necessary hardware and software tools to maintain DO levels automatically in 

aquaculture ponds. Research combines two core components: an Arduino main controller that connects multiple 

sensors plus an ESP8266 device to send data through Wi-Fi to cloud databases. The sensors used are crucial for 

monitoring water quality parameters: The system uses sensors to measure pH for acidity and alkalinity while 

tracking DO levels. Additional sensors monitor water temperature and turbidity plus report pollution through 

ammonia and nitrate measurements while manganese sensors scan for trace metals. The system regulates oxygen 

content based on feedback from sensors under consistent power conditions. The Arduino and NODEMCU boards 

are programmed using Arduino IDE version 1.8.19. Python version 3.8 is used to preprocess data and build learning 

models, which are essential for producing simulations in this research. The cloud system automatically stores data 

once MQTT protocol transfers it in real-time. Research apply DWT for noise filtration and use dynamicLR to 

predict DO readouts. The ISB-dynamicLR system finds optimal values for dynamicLR predictions by analyzing past 

sensor records. Before implementing our real-time controls MATLAB version R2022a performs simulations to test 

how the feedback system will adjust aeration rates. Through real-time DO management, research achieve better 

water quality standards that promote fish health and growth. Time series data points and numbers at the DO level are 

illustrated in Figure 2. 

 

Figure 2: Performance of DO level in Various Time Series 
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The performance of the ISB-dynamicLR-based control system for real-time DO regulation was evaluated through 

several key metrics, demonstrating its precision and efficiency. The MAE, MSE and RMSE are quantified the 

predictive accuracy, with minimal discrepancies between forecasted and actual DO levels, while the R² value 

indicated a high correlation between predicted and observed DO data, emphasizing the model's robustness shown in 

Figure 2. The system's rapid model training time and its continuous data records over a year with 74,759 records 

allowed for comprehensive seasonal analysis. Furthermore, the aeration system showed rapid responsiveness, 

adjusting oxygen levels within five seconds based on the model's predictions, and the system operated with high 

computational efficiency, outperforming traditional methods by 85%. The high system uptime of 99.8% ensured 

near-continuous monitoring and data acquisition without interruption, underscoring the reliability and operational 

stability of the setup in aquaculture applications. Table 2 depicts the result of this ISB-DynamicLR model. 

Table 2: Outcomes of ISB-DynamicLR model 

Metrics Result 

MAE 0.45 mg/L 

MSE 0.28 

RMSE 0.52 mg/L 

R2 0.93 

Model Training Time 120 seconds 

Data Collection Period 1 Year 

Number of Data Records 74,759 

Aeration Adjustment Response Time 5 seconds 

Computational Efficiency 85% 

System Uptime 99.8% 

 

MAE evaluates the average magnitude of errors in the DO level predictions by comparing the predicted values (𝑧̂𝑗) 

with the actual observed values (𝑧𝑗) from the sensors expressed in Equation (17). Lower MAE indicates better 

prediction accuracy in real-time DO regulation with 0.45 mg/L shown in Figure 3 (a). Where 𝑧𝑗Actual DO level 

from sensors, 𝑧̂𝑗is the predicted DO level by the ISB-dynamicLR model and 𝑀 is the total number of data points 

(epochs). This model finds 0.45 mg/L errors in the DO level predictions.  

𝑀𝐴𝐸 =
1

𝑀
∑ |𝑧𝑗

𝑀
𝑗=1 − 𝑧̂𝑗|                                                                                                                                        (17) 

MSE is a statistical measure that measures the average squared difference between predicted and actual values, 

highlighting larger errors, its reduce 0.28 is shown in Figure 3 (b), expressed in Equation (18). 

𝑀𝑆𝐸 =
1

𝑀
∑ (𝑧𝑗

𝑀
𝑗=1 − 𝑧̂𝑗)2                                                                                                                                      (18) 

RMSE is a common metric used to quantify the difference between predicted and actual DO values at 0.52 mg/L 

shown in Figure 3 (c) is depicts the training and testing model of the ISB-DynamicLR for DO forecasting. It places 

more weight on larger errors, making it effective for identifying large discrepancies in DO level predictions, crucial 

for regulating oxygen levels in aquaculture systems. 

RMSE=√
1

𝑀
∑ (𝑧𝑗

𝑀
𝑗=1 − 𝑧̂𝑗)2                                                                                                                                  (19) 

R² assesses how well the predicted DO values match the variance of the actual DO levels observed. In aquaculture, a 

high R² indicates that the model accurately captures the dynamics affecting DO concentrations, aiding in better real-

time regulation of oxygen illustrated in Figure 3 (d). 

𝑅2 = 1 −
∑ (𝑧𝑗

𝑀
𝑗=1 −𝑧̂𝑗)2

∑ (𝑧𝑗
𝑀
𝑗=1 −𝑧𝑗̅̅ ̅)2                                                                                                                                             (20) 



Computer Fraud and Security  

ISSN (online): 1873-7056 

 

__________________________________________________________________________________________ 

344 
Vol: 2025| Iss: 1 | 2025 

 

Where  𝑧𝑗̅is the mean of actual DO values. Training time 𝑇𝑡 tracks the total time taken for each epoch during the 

training process of the ISB-dynamicLR model expressed in Equation (21). Shorter training times with high accuracy 

indicate a well-optimized system that can efficiently handle real-time predictions for DO regulation in aquaculture 

systems shown in Figure 3 (e). 

𝑇𝑡
𝑇𝑆𝑡

𝑀
                                                                                                                                                                         (21) 

The time spent training 𝑇𝑆𝑡  the ISB-dynamicLR model for all epochs and the total number of epochs 𝑀 used in 

model training. Computational efficiency measures the relationship between the accuracy of the predicted DO levels 

and the computational resources required (e.g., memory, processing power). 85% highly efficient system is crucial 

for real-time applications in aquaculture systems, ensuring accurate DO regulation without excessive resource 

consumption. 

𝐶𝐸 =
𝑀𝐴

𝑅𝑈
× 100                                                                                                                         (22) 

Model Accuracy (𝑀𝐴) measured by R² and 𝑅𝑈 denoted as the resources which include CPU time, memory usage, 

and other computational resources during model training and prediction, shown in Figure 3 (f). 

 

Figure 3: Performance Analysis of ISB-DynamicLR: (a) MAE, (b) MSE, (c) R2, (d) RMSE, (e) Training Time 

and (f) Computational Efficiency 



Computer Fraud and Security  

ISSN (online): 1873-7056 

 

__________________________________________________________________________________________ 

345 
Vol: 2025| Iss: 1 | 2025 

 

The ISB-DynamicLR model significantly outperforms the existing models in terms of both prediction accuracy and 

computational efficiency. While traditional models [34] like Sparse Auto-Encoder - Backpropagation Neural 

Network(SAE-BPNN) and Ensemble Empirical Mode Decomposition - Long Short-Term Memory Neural 

Network(EEMD-LSTM NN) show moderate performance in terms of error metrics and operating time, they are less 

efficient for real-time deployment due to longer processing times. The Light Gradient Boosting Machine - 

Bidirectional Simple Recurrent Unit (LightGBM-BiSRU) and LightGBM-BiSRU-Attention models [35], although 

improving prediction accuracy, still require substantial computational resources and time.  

Table 3: Comparison of various parameters 

 

In comparison, the ISB-DynamicLR approach provides greater accurateness with minimal computational load, 

presenting faster model implementation and more effectual real-time adaptation for regulating dissolved oxygen 

levels in aquaculture systems are depicted in Table 3. This makes it an extremely reliable and competent solution for 

real-time water quality monitoring and modification. 

5. Conclusion 

Research successfully developed a dynamic control system for regulating DO levels in aquaculture systems. The 

system demonstrated high accuracy in predicting DO levels, as indicated by its low error rates and strong predictive 

capability. Throughout one year, real-time data collection provided a comprehensive dataset that captured seasonal 

variations in water quality. The control system responded quickly to changes in DO levels, adjusting aeration in just 

a few seconds to maintain optimal conditions for fish health. This efficient system reduced computational overhead 

compared to traditional models, ensuring minimal resource usage while maintaining high performance. The 

robustness of the system was highlighted by its high uptime, ensuring continuous operation in the aquaculture 

environment. This setup showed significant potential in improving the sustainability of aquaculture by maintaining 

water quality and fish health. The performance metrics for the Proposed ISB-DynamicLR model showing its MSE 

of 0.0005, which indicates minimal prediction error. The RMSE is 0.0091, reflecting high accuracy and the model 

operates with an efficient operating time of 1.92 seconds. For future work, the proposed system can be improved by 

including machine learning approaches for multi-sensor fusion to improve prediction accuracy. Furthermore, 

investigating real-time adaptability to changing environmental conditions could improve DO regulation in various 

aquaculture settings. 

List of abbreviations 

Abbreviation Full Form 

DO Dissolved Oxygen 

RAS Recirculating Aquaculture System 

DBN Deep Belief Networks 

VMD Variational Mode Decomposition 

OTR Oxygen Transfer Rates 

PDA Pipeline Diffused Aeration 

Methods MSE RMSE Operating Time (s) 

SAE-BPNN [34] 0.2428 0.4927 9.1 

EEMD-LSTM NN [34] 0.0065 0.0807 2.37 

LightGBM-BiSRU [35] 0.0011 0.0333 102 

LightGBM-BiSRU-Attention [35] 0.0008 0.0285 122 

ISB-DynamicLR [Proposed] 0.0005 0.0091 1.92 
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ML Machine Learning 

SVM Support Vector Machine 

ANN Artificial Neural Network 

RNN Recurrent Neural Network 

CNN Convolutional Neural Network 

TDS Total Dissolved Solids 

TSS Total Suspended Solids 

CFD Computational Fluid Dynamics 

STM Species Transport Model 

GRNN General Regression Neural Network 

LGBM Light Gradient Boosting Machine 

BiSRU Bidirectional Simple Recurrent Unit 

NAD New Aeration Device 

CFD-Euler-Euler-

STM 

Conjunction with the Euler-Euler and Species 

Transport Model 

CNN Convolutional Neural Networks 

DWT Discrete Wavelet Transform 

MAE Mean Absolute Error  

MSE Mean Squared Error  

RMSE Root Mean Square Error  

R² R-squared  
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