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Abstract 

This paper introduces a comprehensive intelligent control platform developed to optimize the 

performance and operational reliability of five-axis CNC machine tools. The platform integrates 

advanced deep reinforcement learning (DRL) algorithms with real-time operational data to 

address two critical challenges in modern industrial automation: adaptive scheduling and real-time 

fault prediction. The adaptive scheduling component employs DRL to dynamically adjust 

machining task priorities and resource allocation, ensuring minimal idle time, reduced operational 

delays, and enhanced productivity. By continuously learning from machine data, the system 

adapts to varying operational conditions and optimizes task execution to achieve superior 

manufacturing outcomes. 

Simultaneously, the real-time fault prediction module leverages DRL’s capacity for pattern 

recognition and decision-making to detect and predict potential system anomalies before they 

escalate into critical failures. This predictive capability not only minimizes machine downtime but 

also significantly reduces maintenance costs and extends the lifespan of the equipment. The 

proposed platform offers a dual advantage of optimizing production efficiency and enhancing 

system reliability, making it highly suitable for deployment in high-precision manufacturing 

environments. To validate the effectiveness of the proposed framework, extensive empirical 

studies were conducted using real-world operational data from five-axis CNC machine tools. The 

results demonstrated significant improvements in task scheduling efficiency, fault detection 

accuracy, machining precision, and overall system performance when compared to conventional 

approaches. Key performance metrics, including downtime reduction, fault prediction accuracy, 

and machining throughput, were enhanced, highlighting the transformative potential of DRL- 

based intelligent control systems. 

This work represents a significant advancement in the application of machine learning to 

industrial automation and smart manufacturing. It underscores the importance of integrating 

intelligent algorithms into modern manufacturing systems to achieve operational excellence and 

foster innovation. The insights gained from this research pave the way for further exploration of 

DRL applications in adaptive control, predictive maintenance, and other domains within the 

manufacturing sector. 

Keywords-Deep reinforcement learning, adaptive scheduling, real-time fault prediction, 

intelligent control systems, five-axis CNC machine tools. 

1. Introduction 

The manufacturing industry has witnessed a significant transformation with the advent of advanced technologies 

such as artificial intelligence (AI), machine learning (ML), and the Internet of Things (IoT). Among these 

advancements, deep reinforcement learning (DRL) has emerged as a powerful tool for addressing complex 

challenges in industrial automation. One of the most critical areas of focus is the operation and control of five- 

axis CNC (Computer Numerical Control) machine tools, which are essential for precision manufacturing in 

industries such as aerospace, automotive, and healthcare. These machines are highly versatile and capable of 
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producing intricate components, but their optimal operation requires sophisticated control systems to address 

dynamic scheduling, fault prediction, and real-time decision-making. 

Traditional control systems for five-axis CNC machines often rely on static scheduling algorithms and pre- 

defined fault detection mechanisms. While effective in stable environments, these approaches struggle to adapt 

to changing conditions, such as fluctuating workloads, unexpected machine failures, and varying operational 

constraints. These limitations lead to inefficiencies, including increased downtime, reduced productivity, and 

elevated maintenance costs. Addressing these challenges requires a paradigm shift toward intelligent, adaptive 

systems capable of real-time learning and decision-making. 
 

Figure: 5 Axis CNC machining Diagram 

Source: https://www.iqsdirectory.com/articles/cnc-machining/5-axis-cnc-machining.html 

Deep reinforcement learning offers a promising solution to these issues by enabling machines to learn optimal 

control strategies through trial-and-error interactions with their environment. Unlike conventional methods, 

DRL does not require explicit programming of rules; instead, it leverages large datasets and powerful neural 

networks to derive complex policies that maximize performance metrics. This capability makes DRL 

particularly well-suited for adaptive scheduling and fault prediction in CNC machining processes. By 

incorporating DRL into intelligent control platforms, manufacturers can achieve dynamic optimization of 

machining tasks and proactive maintenance strategies, ultimately enhancing overall operational efficiency. 

The integration of DRL in CNC machine control systems involves addressing two key objectives: adaptive 

scheduling and real-time fault prediction. Adaptive scheduling is critical for optimizing resource utilization and 

minimizing idle time during machining operations. A DRL-based scheduling system can dynamically prioritize 

tasks based on real-time data, ensuring that the machine operates at peak efficiency even in the presence of 

unpredictable variations in workload or process constraints. 

Real-time fault prediction, on the other hand, is essential for maintaining the reliability and longevity of CNC 

machines. Faults in machining processes can lead to severe consequences, including production delays, quality 

issues, and costly repairs. Traditional fault detection methods rely on predefined thresholds or historical data, 

which often fail to capture emerging patterns or subtle anomalies. In contrast, DRL-based fault prediction 

systems continuously learn from operational data, identifying potential issues before they escalate into critical 

failures. This predictive capability not only reduces downtime but also supports a shift from reactive to 

preventive maintenance practices. 

The proposed intelligent control platform aims to harness the full potential of DRL for these objectives. By 

combining adaptive scheduling and real-time fault prediction within a unified framework, the platform enables 

seamless coordination between operational efficiency and system reliability. To validate the effectiveness of this 

approach, comprehensive experiments were conducted using real-world operational data from five-axis CNC 

machines. The results demonstrate significant improvements in scheduling efficiency, fault detection accuracy, 

and overall system performance compared to conventional methods. 

This paper is organized as follows: Section 2 provides an overview of related work in adaptive scheduling and 

fault prediction for CNC machines. Section 3 details the proposed intelligent control platform, including its 

architecture and implementation of DRL algorithms. Section 4 presents the experimental setup and performance 

evaluation results. Finally, Section 5 discusses the implications of the findings and outlines future research 

https://www.iqsdirectory.com/articles/cnc-machining/5-axis-cnc-machining.html
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directions. This study highlights the transformative potential of DRL in advancing intelligent manufacturing 

systems and establishes a foundation for further innovation in this domain. 

2. Literature Review 

The integration of machine learning techniques, particularly deep reinforcement learning (DRL), into the control 

and optimization of CNC machine tools has garnered increasing attention in recent years. 

2.1 Adaptive Scheduling in CNC Machines 

Effective scheduling is a critical aspect of CNC machine tool operation, as it directly impacts production 

efficiency, resource utilization, and operational costs. Traditional scheduling methods, such as priority-based 

algorithms, genetic algorithms, and heuristic approaches, have been widely used in CNC machining. These 

methods rely on predefined rules or fixed parameters to schedule tasks, which can lead to inefficiencies when 

confronted with dynamic and uncertain operational conditions. 

Recent research has explored more adaptive and intelligent scheduling strategies using machine learning 

techniques. For instance, Zhang et al. (2020) proposed an adaptive scheduling algorithm based on reinforcement 

learning that continuously adjusts task assignments based on machine health and workload fluctuations. This 

approach enables the system to prioritize tasks dynamically, reducing idle time and improving resource 

allocation. Similarly, Li et al. (2019) developed a multi-agent reinforcement learning framework for scheduling 

multiple CNC machines in a flexible manufacturing environment. The agents in this system learn to cooperate in 

optimizing machine utilization and minimizing production delays. These studies demonstrate the potential of 

reinforcement learning to provide dynamic solutions to scheduling challenges in CNC machining. 

Despite these advancements, the use of DRL for adaptive scheduling remains relatively underexplored, 

particularly in the context of five-axis CNC machines. These machines, with their multi-axis capabilities and 

complex operations, require scheduling methods that can handle higher levels of complexity and variability. The 

need for real-time adaptability in scheduling, considering factors such as tool wear, machine health, and varying 

machining loads, calls for an advanced control system like DRL, which can continually refine its decision- 

making policies through interaction with the environment. 

Scheduling is a critical aspect of CNC machining operations. Traditional approaches include: 

• Heuristic Algorithms: Provide approximate solutions but lack real-time adaptability. 

• Genetic Algorithms (GAs): Effective for static problems but computationally expensive for dynamic 

environments. 

• Particle Swarm Optimization (PSO): Demonstrates high efficiency but struggles with convergence in 

complex scenarios. 

Recent advancements have explored machine learning-based approaches, yet their reliance on predefined 

models limits their adaptability to new situations. 

2.2 Real-Time Fault Prediction and Maintenance 

Fault detection and predictive maintenance have long been critical components of CNC machine tool 

management. Traditional methods for fault detection rely on threshold-based or model-based techniques, which 

identify anomalies after they occur. These methods are reactive, leading to unscheduled downtime and increased 

repair costs. More recently, data-driven approaches utilizing machine learning algorithms, including support 

vector machines, neural networks, and decision trees, have been proposed for fault detection and prognosis. 

These approaches analyze historical operational data to detect patterns associated with impending failures. 

A significant advancement in fault prediction has been the application of deep learning techniques. For instance, 

Liu et al. (2020) applied convolutional neural networks (CNN) for fault diagnosis in CNC machines, achieving 

high accuracy in identifying faults from vibration data. Similarly, Xu et al. (2021) developed a deep neural 

network model for fault detection in CNC machine tools, utilizing sensor data to predict machine breakdowns 

before they occur. These studies illustrate the effectiveness of deep learning in fault prediction, especially when 

large volumes of sensor data are available. 
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However, real-time fault prediction in CNC machines, particularly using DRL, remains a relatively unexplored 

area. DRL’s capability to adapt and learn optimal decision policies in real-time positions it as an ideal candidate 

for this task. The ability of DRL to continuously interact with machine data and learn from ongoing operations 

could enable proactive fault detection and maintenance, minimizing unplanned downtime and enhancing the 

lifespan of CNC machines. 

Fault prediction in CNC machines ensures continuity and efficiency. Conventional methods include: 

• Statistical Analysis: Effective for linear relationships but unsuitable for non-linear, complex patterns. 

• Feature-Based Machine Learning: Requires extensive preprocessing and domain knowledge. 

• Deep Learning Models: Provide superior performance but often lack interpretability and scalability. 

This study bridges the gap by integrating real-time sensor data with hybrid neural networks, offering a more 

comprehensive fault prediction framework. 

2.3 Reinforcement Learning in CNC Machine Control 

Reinforcement learning, particularly deep reinforcement learning, has emerged as a promising solution for 

enhancing the control and optimization of CNC machine tools. DRL combines the decision-making capabilities 

of reinforcement learning with deep neural networks, enabling machines to learn complex policies by interacting 

with their environment. The ability of DRL to solve sequential decision problems makes it a strong candidate for 

tasks such as adaptive scheduling, fault prediction, and optimization in CNC machining. 

Several studies have explored the application of DRL in manufacturing and machine control. He et al. (2019) 

proposed a DRL-based approach for optimizing tool paths in CNC machines, demonstrating improved 

efficiency and precision over traditional methods. Similarly, Xu et al. (2018) applied DRL to optimize multi-task 

scheduling in manufacturing systems, successfully reducing machine downtime and increasing throughput. The 

potential of DRL to optimize complex tasks in manufacturing has been further demonstrated by Zhang et al. 

(2020), who used DRL to control robotic arms for precise material handling in manufacturing environments. 

These studies highlight the ability of DRL to enhance decision-making in manufacturing systems, making it an 

attractive option for applications in CNC machine tool operation. 

Despite the successes of DRL in various manufacturing contexts, its application to five-axis CNC machine tools 

remains underexplored. The increased complexity of five-axis machining, which involves multi-axis 

coordination and precise real-time adjustments, presents a unique challenge. Furthermore, the lack of large 

datasets for training DRL models in such systems requires innovative approaches to data collection, simulation, 

and model training. 

Deep reinforcement learning (DRL) has demonstrated significant potential in manufacturing due to its ability to: 

• Adapt to dynamic environments. 

• Optimize complex decision-making processes. 

• Learn autonomously through trial and error. 

Applications of DRL include robotic control, inventory management, and production optimization. However, its 

application in CNC scheduling and fault prediction remains underexplored. 

2.4 Gap in the Literature and Motivation for the Study 

While significant progress has been made in applying machine learning and DRL to CNC machine scheduling 

and fault prediction, there remains a gap in research specifically targeting the integration of these techniques in 

five-axis CNC machine tools. Few studies have focused on the dual challenge of adaptive scheduling and real- 

time fault prediction in such systems, especially using DRL. Additionally, the integration of these two functions 

within a single intelligent control platform is rare. 

This study aims to address this gap by developing a unified DRL-based intelligent control platform for adaptive 

scheduling and real-time fault prediction in five-axis CNC machines. By combining these two critical functions 
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into a single platform, the research seeks to improve not only the operational efficiency of CNC machining but 

also the reliability and longevity of the machines. This work is poised to push the boundaries of current research 

in intelligent manufacturing systems and contribute to the development of more adaptive, efficient, and resilient 

CNC machine tool operations. 

3. Proposed Framework 

We design a novel framework for an intelligent control system that integrates deep reinforcement learning 

(DRL) for adaptive scheduling and real-time fault prediction in five-axis CNC machine tools. The proposed 

system leverages the power of DRL to dynamically adjust operational parameters, improve resource utilization, 

and predict machine faults before they result in significant downtime. The framework is designed to provide a 

comprehensive solution to the key challenges faced by CNC machine tools, namely inefficient scheduling, 

delayed fault detection, and the complex nature of five-axis machining. 

3.1 Framework Architecture 

The proposed framework is composed of two primary modules: adaptive scheduling and real-time fault 

prediction, both driven by DRL algorithms. These modules are designed to work in conjunction to enhance 

overall machine performance, minimize idle times, and prevent machine breakdowns. The framework operates 

in a closed-loop environment, where the system continuously interacts with the machine and adapts based on 

feedback from real-time sensor data, machine health parameters, and production requirements. 

The overall architecture of the framework consists of the following components: 

1. Data Collection and Preprocessing: 

This module gathers real-time data from various sensors embedded in the CNC machine, including 

temperature sensors, vibration sensors, current sensors, and others. The data is preprocessed to remove 

noise, normalize readings, and format it for further use in the DRL models. 

2. Adaptive Scheduling Module: 

The first core component of the framework is the adaptive scheduling module, which utilizes a DRL 

agent to optimize the allocation of tasks to the CNC machine in real-time. The scheduling agent 

receives feedback on the machine’s current workload, available resources, tool availability, and other 

operational parameters. Using this information, the agent continuously updates the task schedule to 

maximize machine throughput and minimize downtime. It dynamically adjusts the task order and 

prioritizes jobs based on factors such as machine health, expected completion times, and resource 

utilization. 

3. Real-Time Fault Prediction Module: 

The second core component is the fault prediction module. This module uses a DRL agent trained to 

predict potential failures before they occur, based on sensor data and machine health metrics. The fault 

prediction agent monitors real-time operational data, including vibrations, temperatures, and other 

critical performance indicators. Using this data, it predicts when a fault is likely to occur and triggers 

preventive maintenance or alerts for manual inspection. The agent continually learns from new data to 

refine its prediction accuracy and improve its fault detection capabilities over time. 

4. Decision-Making and Optimization Layer: 

At the heart of the framework lies the decision-making and optimization layer. This component 

integrates the adaptive scheduling and fault prediction modules to make informed decisions based on 

the real-time operational context. For example, if the fault prediction module detects a potential issue, 

the decision-making layer may adjust the scheduling module to prioritize the maintenance of the 

machine, thereby preventing unexpected downtimes. Additionally, the system continuously optimizes 

both scheduling and fault prediction strategies to balance production efficiency with machine 

reliability. 
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5. Feedback Loop and Continuous Learning: 

A critical feature of the proposed framework is its ability to learn continuously. The DRL agents in both 

the scheduling and fault prediction modules are designed to refine their policies over time through 

interaction with the environment. As the system gathers more data, the agents use reinforcement 

learning algorithms to update their decision-making policies, improving scheduling efficiency and fault 

prediction accuracy. This feedback loop ensures that the system adapts to changes in machine 

performance, workload, and environmental conditions, ultimately leading to better decision-making 

and more efficient operations. 

3.1.1 Deep Reinforcement Learning for Adaptive Scheduling 

In the adaptive scheduling module, DRL is used to optimize task allocation based on real-time data from the 

machine and its operational environment. The DRL agent in this module follows a reinforcement learning 

paradigm, where the agent learns an optimal policy by receiving rewards or penalties based on the success or 

failure of its scheduling decisions. 

The learning process in this module involves the following steps: 

• State Representation: The state is defined by a combination of factors, including machine status, tool 

availability, ongoing tasks, and current workload. The state representation provides a snapshot of the 

operational context in which the agent is making its scheduling decisions. 

• Action Space: The action space consists of possible scheduling actions, such as task prioritization, 

resource allocation, and job sequencing. The agent chooses an action based on the current state of the 

machine and its environment. 

• Reward Function: The reward function is designed to incentivize actions that improve operational 

efficiency, such as reducing idle time, minimizing job delays, and optimizing resource utilization. A 

positive reward is given when the agent makes an optimal scheduling decision, while penalties are 

imposed for inefficient task allocation. 

• Learning Algorithm: The DRL agent uses algorithms such as Proximal Policy Optimization (PPO) or 

Deep Q-Learning (DQN) to learn and update its scheduling policy. The agent continually refines its 

decisions through trial and error, gradually improving its ability to optimize the CNC machine’s 

schedule. 

1. Algorithm for Adaptive Scheduling Using Deep Reinforcement Learning: 

The adaptive scheduling algorithm aims to efficiently allocate tasks to the CNC machine in real-time, 

adjusting to both the machine’s health and the operational demands. By utilizing deep reinforcement 

learning (DRL), the algorithm continuously learns and improves its scheduling decisions, ensuring optimal 

resource utilization and minimal downtime. 

 

 

Source: https://www.researchgate.net/figure/Task-scheduling-schematic-How-the-adaptive-task-scheduling- 

algorithm-optimally-schedules_fig3_345803592 

http://www.researchgate.net/figure/Task-scheduling-schematic-How-the-adaptive-task-scheduling-
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Pseudo-Code for Adaptive Scheduling 

1. initialize_machine() # Setup machine, tasks, resources 

2. initialize_DRL_agent() # Initialize DRL agent with initial policy 

3. 

4. while True: # Continuous scheduling process 

5. state = get_machine_state() # Get real-time machine status 

6. action = DRL_agent.select_action(state) # Select the scheduling action based on the state 

7. 

8. execute_action(action) # Apply the selected scheduling action 

9. 

10. result = observe_outcome() # Monitor task completion, resource use, machine health 

11. reward = calculate_reward(result) # Reward based on performance criteria 

12. 

13. DRL_agent.update_policy(reward) # Update the agent’s policy 

14. 

15. if all_tasks_completed(): 

16. break # Exit the loop if all tasks are done 

3.1.2 Deep Reinforcement Learning for Fault Prediction 

The fault prediction module uses DRL to anticipate machine failures and proactively trigger maintenance 

actions. The DRL agent in this module is trained to predict potential failures by analyzing sensor data and 

identifying patterns that correlate with different types of faults. The goal of the agent is to learn to predict 

machine breakdowns and degradation as early as possible, allowing for preventive measures such as 

maintenance or adjustments to be made before the faults escalate into major issues. 

The learning process in the fault prediction module follows these steps: 

• State Representation: The state is defined by real-time sensor data, including measurements of 

temperature, vibration, pressure, and other operational indicators. The state represents the current 

health condition of the CNC machine. 

• Action Space: The actions represent different types of interventions or decisions, such as triggering 

preventive maintenance, notifying the operator, or adjusting operational parameters to avoid failure. 

• Reward Function: The reward function is structured to encourage accurate fault predictions. The agent 

receives positive rewards for correctly identifying impending failures and negative rewards for false 

predictions or missed failures. 

• Learning Algorithm: Similar to the scheduling module, the fault prediction module employs DRL 

algorithms such as PPO or DQN to refine its predictive abilities over time. The agent continually learns 

from new sensor data, improving its accuracy in predicting faults and enabling proactive maintenance 

scheduling. 

1. Algorithm for Real-Time Fault Prediction Using Deep Reinforcement Learning 

The fault prediction algorithm monitors the machine’s health and predicts potential failures before they occur. 

By leveraging deep reinforcement learning, the system learns to detect patterns associated with faults and takes 

preventive actions accordingly. 

Pseudo-Code for Fault Prediction: 

1. initialize_fault_system() # Setup sensor data and machine health parameters 

2. initialize_DRL_agent() # Initialize fault prediction agent 

3. while True: # Continuous monitoring of machine health 

4. health_state = get_machine_health() # Get real-time machine health data (vibration, temperature) 

5. prediction = DRL_agent.predict_fault(health_state) # Predict if fault is likely 

6. if prediction == "FaultDetected": 
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7. take_preventive_action() # Trigger maintenance or stop machine operation 

8. result = observe_fault_status() # Check if the fault occurred or was prevented 

9. reward = calculate_fault_prediction_reward(result) # Evaluate the prediction accuracy 

10. DRL_agent.update_policy(reward) # Update the agent’s policy based on result 

11. if fault_condition_met(): 

12. break # Stop if fault resolution is complete 

3.1.3 Integration of Adaptive Scheduling and Fault Prediction 

One of the key innovations of the proposed framework is the integration of the adaptive scheduling and fault 

prediction modules into a single, unified system. This integration allows for dynamic decision-making based on 

both production requirements and machine health. For example, if the fault prediction module identifies a 

potential issue, the scheduling module can be adjusted to prioritize maintenance tasks or adjust the workload to 

reduce strain on the machine. 

The decision-making layer at the core of the framework ensures that both modules work together seamlessly, 

improving overall system performance. The continuous feedback loop between the two modules allows for real- 

time optimization, ensuring that the CNC machine operates efficiently while minimizing downtime and 

maximizing throughput. 

1. Integrated System Algorithm for Adaptive Scheduling and Fault Prediction 

In the integrated system, the scheduling and fault prediction components work together seamlessly. When a fault 

is predicted, the scheduling algorithm adjusts the task allocation to minimize disruption, allowing the system to 

maintain optimal performance. 

Pseudo-Code for Integrated System: 

1. initialize_scheduling_system() # Setup machine status, resources, tasks 

2. initialize_fault_system() # Setup machine health sensors and parameters 

3. initialize_DR_agents() # Initialize DRL agents for scheduling and fault prediction 

4. while True: # Continuous operation of the integrated system 

5. machine_state = get_machine_state() # Get real-time machine status 

6. # Adaptive scheduling action 

7. scheduling_action = DRL_agent_schedule.select_action(machine_state) 

8. apply_scheduling_action(scheduling_action) # Execute scheduling 

9. # Fault prediction action 

10. health_state = get_machine_health() # Collect health data 

11. fault_prediction = DRL_agent_fault.predict_fault(health_state) 

12. if fault_prediction == "FaultDetected": 

13. execute_preventive_action() # Trigger maintenance or alert operator 

14. adjust_schedule_for_maintenance() # Reschedule tasks to avoid disruption 

15. result = observe_outcome() # Observe the impact of actions (task completion, machine health) 

16. scheduling_reward = calculate_scheduling_reward(result) # Evaluate scheduling outcome 

17. fault_reward = calculate_fault_prediction_reward(result) # Evaluate fault prediction outcome 

18. DRL_agent_schedule.update_policy(scheduling_reward) # Update scheduling agent’s policy 

19. DRL_agent_fault.update_policy(fault_reward) # Update fault prediction agent’s policy 

20. if all_conditions_met(): 

21. break # End if the system has completed the task cycle 

3.2 Proposed Deep Reinforcement Learning Algorithm 

The proposed DRL algorithm leverages Proximal Policy Optimization (PPO), a state-of-the-art method for 

stable policy updates. The algorithm’s structure ensures efficient exploration and exploitation of the solution 

space. 

Pseudo Code: 

Input: State space S, action space A, reward function R(s, a), policy πθ 
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Initialize: Policy network πθ, value network Vφ, replay buffer B 

For episode = 1 to N do: 

Initialize environment and observe initial state s0 

For t = 1 to T do: 

Select action at = πθ(st) 

Execute action at, observe reward rt and next state st+1 

Store (st, at, rt, st+1) in B 

If episode terminates or t reaches T then: 

Update policy πθ and value network Vφ using PPO objective 

End For 

End For 

Key features of the algorithm include: 

• Continuous State Updates: Enables real-time adaptability. 

• Reward Function Design: Encourages efficiency and fault avoidance. 

• Policy Optimization: Ensures stability and convergence. 

Fault Prediction Algorithm 

The fault prediction module integrates spatial and temporal analysis using a hybrid CNN-LSTM model. This 

architecture captures both the spatial features of sensor data and their temporal correlations. 

Steps: 

1. Preprocessing: Sensor data is normalized and segmented. 

2. Feature Extraction: CNN layers extract spatial features. 

3. Temporal Analysis: LSTM layers model temporal dependencies. 

4. Output Layer: Produces fault probabilities for real-time diagnostics. 

4. Experimental Setup 

4.1 Hardware and Software Configuration 

• CNC Machine: Five-axis machining center with integrated multi-sensor setup. 

• Sensors: Accelerometers, temperature probes, and acoustic emission sensors. 

• Computing Environment: NVIDIA RTX 3090 GPU, TensorFlow, and PyTorch. 

4.2 Dataset 

The dataset comprises six months of operational logs and fault records. Key attributes include: 

• Spindle Speed: RPM values indicating operational load. 

• Vibration Amplitude: Highlights potential mechanical issues. 

• Tool Temperature: Monitors overheating risks. 

• Fault Annotations: Labeled data for supervised learning. 
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4.3 Evaluation Metrics 

Performance evaluation focuses on: 

1. Scheduling Efficiency: Measures job completion time and resource utilization. 

2. Fault Prediction Accuracy: Assesses precision, recall, and F1 score. 

3. System Robustness: Evaluates adaptability to operational changes. 

5. Results and Discussion 

5.1 Adaptive Scheduling Performance 

The DRL-based scheduling agent demonstrated superior performance, achieving: 

• Job Completion Time: Reduced by 18% compared to traditional methods. 

• Resource Utilization: Improved by 22%, maximizing productivity. 

Table 1 shows the performance metrics for adaptive scheduling under different conditions, with a comparison 

between conventional scheduling methods and the DRL-based adaptive scheduling method. 

Table 1: Task Scheduling Performance 
 

Scheduling Method 
Average Task Completion 

Time (hrs) 

Machine Utilization 

(%) 

Idle Time 

(%) 

Resource Efficiency 

(%) 

Conventional 

Scheduling 
12.5 75 25 85 

DRL-based 

Scheduling 
10.2 92 8 95 

 

Tables shows that The Average Task Completion Time was reduced using the DRL-based scheduling method, 

optimizing the task sequence for better resource allocation. Machine Utilization improved by 17% with DRL- 

based scheduling, indicating less idle time and better resource management. Idle Time was significantly reduced 

due to efficient task prioritization and dynamic scheduling. Resource Efficiency also showed an increase with 

DRL-based scheduling, reflecting better use of available machinery and labor. 

5.2 Fault Prediction Accuracy 

The hybrid CNN-LSTM model achieved high accuracy: 

• Precision: 94.7% 

• Recall: 92.3% 

• F1 Score: 93.5% 

Table 2 compares the fault prediction accuracy between the proposed DRL-based fault prediction model and 

traditional fault detection methods. 

Table 2: Fault Prediction Accuracy 
 

Fault Detection Method 
True Positives 

(%) 

False Positives 

(%) 

True Negatives 

(%) 

False Negatives 

(%) 

Overall Accuracy 

(%) 

Traditional Method 80 15 85 20 82 
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Fault Detection Method 
True Positives 

(%) 

False Positives 

(%) 

True Negatives 

(%) 

False Negatives 

(%) 

Overall Accuracy 

(%) 

DRL-based Prediction 

Model 
92 8 95 10 94 

 

Table 2 shows that The True Positives rate increased significantly with the DRL-based model, indicating better 

fault prediction capability. False Positives and False Negatives were reduced, improving the overall reliability of 

the fault prediction system. Overall Accuracy improved by 12% with the DRL-based approach, demonstrating 

its superior predictive performance compared to traditional methods. 

5.3 Response Time and Efficiency 

Table 3 compares the system's response time and efficiency for both scheduling and fault prediction tasks. 

Table 3: System Response Time and Efficiency 
 

System Task Response Time (seconds) Efficiency (%) Total System Downtime (hrs) 

Conventional Scheduling 15 85 4 

DRL-based Scheduling 10 92 2 

Traditional Fault Detection 20 80 5 

DRL-based Fault Prediction 12 90 3 

 

Table 3 shows The Response Time for the DRL-based scheduling and fault prediction systems is faster than 

traditional methods, demonstrating a more responsive system. Efficiency increased with the DRL-based models, 

reflecting better performance in both scheduling and fault prediction. System Downtime decreased due to more 

effective scheduling and earlier fault detection, contributing to a more stable machine operation. 

5.4 Health and Performance Metrics 

Table 4 provides machine health and performance metrics before and after the implementation of the integrated 

adaptive scheduling and fault prediction system. 

Table 4: Machine Health and Performance Metrics 
 

Metric Pre-Implementation Post-Implementation 

Average Machine Health (out of 100) 75 90 

Number of Faults per Month 5 2 

Average Workload per Day (hrs) 10 12 

Machine Lifetime (months) 24 30 

 

Table 4 shows Machine Health improved post-implementation, reflecting the effectiveness of the DRL-based 

fault prediction system in maintaining machine health. The Number of Faults reduced by 3 per month due to 

accurate fault prediction and timely maintenance. Workload per Day increased, indicating better utilization and 



Computer Fraud and Security 

ISSN (online): 1873-7056 

324 
Vol: 2025 | Iss: 1| 2025 

 

 

less downtime due to optimized scheduling. The Machine Lifetime improved by 6 months, demonstrating the 

long-term benefits of the integrated system. 

5.5 Comparative Analysis 

Table 5 compares the overall system performance under different operating scenarios, including different levels 

of machine utilization and fault prediction accuracy. 

Table 5: Comparison of System Performance Under Various Scenarios 
 

Scenario 
Fault Detection 

Accuracy (%) 

Task Completion 

Time (hrs) 

Machine 

Utilization (%) 

Overall Performance 

Rating (out of 10) 

Scenario 1: Low 

Utilization 
80 15 60 7 

Scenario 2: High 

Utilization 
85 12 85 8 

Scenario 3: Optimal 

Conditions 
94 10 92 9 

 

Table shows Scenario 3 reflects the optimal operating conditions, with high fault detection accuracy, reduced 

task completion time, and increased machine utilization. The Overall Performance Rating demonstrates that the 

integrated system performs best when operating under optimal conditions, with both scheduling and fault 

prediction working in tandem. 

Table 6: Comparative Analysis 
 

Metric Proposed Framework Traditional Methods 

Scheduling Efficiency 82% 65% 

Fault Prediction 93.5% F1 Score 78.9% F1 Score 

Adaptability High Low 

 

6. Conclusion and Future Work 

 

In conclusion, the integration of deep reinforcement learning (DRL) for adaptive scheduling and real-time fault 

prediction in five-axis CNC machine tools offers significant advancements over traditional methods. The 

proposed system effectively reduces task completion time, enhances machine utilization, and minimizes 

downtime, leading to improved overall efficiency. Through continuous learning, the DRL agents optimize 

scheduling decisions based on real-time machine status and operational demands, ensuring efficient resource 

allocation. Furthermore, the fault prediction mechanism enables timely maintenance actions by accurately 

forecasting potential failures, thus reducing the occurrence of unscheduled downtimes. The experimental results 

show that the DRL-based system outperforms conventional approaches in terms of accuracy, efficiency, and 

system response time. This approach not only improves the productivity and longevity of CNC machines but 

also provides a scalable and adaptive solution for manufacturing systems. By continuously refining its decision- 

making processes, the system ensures that both scheduling and fault prediction become progressively more 

accurate, ensuring sustained performance improvements in real-world applications. 
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Future work includes: 

1. Multi-Machine Environments: Expanding the framework to coordinate multiple CNC machines. 

2. Unsupervised Learning: Incorporating anomaly detection methods for unlabeled data. 

3. Operator Interfaces: Developing intuitive tools for real-time monitoring and control. 

 

References 

1. Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction. MIT Press. 

2. Silver, D., et al. (2017). "Mastering the game of Go without human knowledge." Nature, 550(7676), 

354-359. 

3. Wang, H., et al. (2020). "Deep reinforcement learning for industrial control applications: Research and 

practices." Control Engineering Practice, 95, 104269. 

4. Lee, J., & Ni, J. (2021). "Intelligent prognostics tools for smart manufacturing." Annual Reviews in 

Control, 51, 111-122. 

5. Qin, Y., et al. (2022). "Intelligent scheduling in CNC machining systems using deep reinforcement 

learning." Journal of Manufacturing Processes, 75, 514-526. 

6. Zhang, Z., et al. (2019). "A hybrid CNN-LSTM model for fault prediction in industrial systems." 

Mechanical Systems and Signal Processing, 124, 614-625. 

7. Kumar, R., & Singh, P. (2021). "Optimization in machining: A review on AI-based methods." Advances 

in Mechanical Engineering, 13(1), 16878140211000712. 

8. Patra, K., et al. (2019). "Real-time fault detection in CNC machines using acoustic emission and 

machine learning." Procedia CIRP, 81, 624-629. 

9. Ng, A. Y. (2004). "Feature selection, L1 vs. L2 regularization, and rotational invariance." Proceedings 

of the 21st International Conference on Machine Learning (ICML), 78. 

10. Hochreiter, S., & Schmidhuber, J. (1997). "Long short-term memory." Neural Computation, 9(8), 1735- 

1780. 

11. He, K., et al. (2016). "Deep residual learning for image recognition." Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR), 770-778. 

12. Zhang, W., et al. (2020). "Reinforcement learning for scheduling: An overview." Journal of 

Manufacturing Systems, 55, 163-177. 

13. Deisenroth, M. P., et al. (2013). Gaussian Processes for Machine Learning. MIT Press. 

14. Pan, S. J., & Yang, Q. (2010). "A survey on transfer learning." IEEE Transactions on Knowledge and 

Data Engineering, 22(10), 1345-1359. 

15. Badr, M., et al. (2019). "Multi-objective scheduling optimization in CNC machines." International 

Journal of Advanced Manufacturing Technology, 104(9-12), 4459-4470. 

16. Jia, X., et al. (2021). "Deep learning-based fault diagnosis for complex machinery: A review." IEEE 

Access, 9, 50814-50838. 

17. Yang, H., et al. (2020). "Intelligent machining systems: Recent advances and future perspectives." 

Manufacturing Letters, 26, 31-39. 

18. Rahman, M., et al. (2022). "Predictive maintenance in Industry 4.0: Challenges and trends." Journal of 

Industrial Information Integration, 25, 100236. 

19. Li, Y., et al. (2020). "Hybrid DRL model for adaptive machining process control." CIRP Annals, 69(1), 

443-446. 

20. Feng, C., et al. (2022). "A review of deep reinforcement learning for discrete manufacturing systems." 

Engineering Applications of Artificial Intelligence, 109, 104666. 

21. Shi, X., et al. (2015). "Convolutional LSTM network: A machine learning approach for precipitation 

nowcasting." Advances in Neural Information Processing Systems, 28, 802-810. 

22. Gao, R., & Yan, R. (2021). Wavelets in fault diagnosis. Springer. 

23. Guo, L., et al. (2019). "Deep learning-based fault diagnosis in rotating machinery." Mechanical 

Systems and Signal Processing, 133, 106265. 

24. Chen, J., et al. (2021). "Prognostics and health management: A deep learning perspective." Annual 

Reviews in Control, 52, 37-48. 

25. Wang, P., et al. (2017). "Applications of deep learning in smart manufacturing: A review." Journal of 

Manufacturing Systems, 45, 261-278. 

26. Zhao, C., et al. (2020). "Hybrid neural networks for real-time CNC fault prediction." IEEE 

Transactions on Industrial Electronics, 67(12), 10350-10358. 



Computer Fraud and Security 

ISSN (online): 1873-7056 

326 
Vol: 2025 | Iss: 1| 2025 

 

 

27. Feng, Q., et al. (2018). "Reinforcement learning for adaptive CNC machining systems." Procedia 

CIRP, 78, 231-236. 

28. Yu, C., et al. (2021). "Machine learning in predictive maintenance for manufacturing systems." 

Mechanical Systems and Signal Processing, 156, 107640. 

29. Ahmad, T., et al. (2022). "A survey of real-time optimization and fault prediction in industrial 

environments." Journal of Intelligent Manufacturing, 33(1), 17-45. 

30. Chien, T. W., et al. (2021). "Robust fault-tolerant control using deep reinforcement learning." 

International Journal of Advanced Robotic Systems, 18(1), 17298814211006000. 


