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Abstract:  

The key technology for autonomous navigation of mobile devices such as robots lies in Simultaneous 

Localization and Mapping (SLAM) based on vision, which has become increasingly sophisticated in idealized 

static environments. However, in dynamic scenarios, existing instance semantic based visual SLAM methods 

cause over segmentation during the dynamic segmentation process, while deep learning methods increase 

system runtime. Therefore, this article proposes a visual SLAM scheme in dynamic scenes. The method of 

combining fractal dimension and epipolar constraint is used to detect dynamic regions in images, remove all 

feature points in the corresponding dynamic regions, construct a backend model in dynamic scenes, and 

achieve a more comprehensive dense point cloud map. This enables the visual SLAM system to accurately 

complete navigation, positioning, and obstacle avoidance functions in real time. 
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INTRODUCTION 

Nowadays, mobile devices such as robots have gradually entered our lives, making them more convenient and 

efficient. But it will be affected by the lack of GPS or weak GPS signals, especially in dynamic scenarios, which 

will affect the real-time positioning, path planning, and map construction of mobile devices, resulting in the 

inability to complete their tasks. Therefore, real-time positioning and map construction (SLM) are key 

technologies for autonomous mobile devices [1]. 

After Smith et al. first proposed the concept of SLAM [2], it aroused the research interest of industry scholars and 

began to develop rapidly, Subsequently, the research progress of vision SLAM methods has been particularly 

rapid [3-5]. Especially in complex environments such as tunnels, underground, and mines, autonomous robots are 

used for search, rescue, surveying, and other tasks[6]. The visual SLAM system only obtains the camera's motion 

trajectory through geometric constraint principles in a static, rigid environment. But the system performance will 

be affected or even fail in dynamic scenarios. Kundu et al. used multi view geometric constraints to segment 

dynamic objects and proposed a feature point based multi motion object visual SLAM method in dynamic scenes 

[7]. Kim proposed the BaMVO algorithm, which applies RGB-D sensors in dynamic scenes to estimate 

background models from deep scenes and obtain camera motion trajectories [8]. 

To compensate for the shortcomings of geometric segmentation methods, many scholars have applied deep 

learning methods to visual SLAM and achieved many results[9-11]. This method can better assist visual SLAM 

systems in understanding and processing more complex dynamic scenes. An SLAM system based on PSPNet 

network[12], which uses a combination of optic flow method and semantic segmentation to remove dynamic 

feature in the scene. Li et al. combined geometric constraints with semantic segmentation and proposed a visual 

SLAM based on sparse eigenvalue (DP-SLAM) [13], which further improved the high fidelity SLAM for 3D 

reconstruction [14]. Another dense RGB SLAM system is used to generate high fidelity 3D dense reconstruction. 

This system can simultaneously optimize camera pose and hierarchical neural implicit mapping representation 

[15]. NEDS-SLAM utilizes the importance of semantic information under the positioning and mapping process 

of Gaussian points, and obtains semantic information by distilling the 2D segmentation information provided by 

the dataset[16]. CG-SLAM introduces uncertainty maps during training and optimizes 3D reconstruction accuracy 

based on rendering depth[17]. 

Due to the use of prior information, deep learning based methods may not necessarily detect all objects in motion, 

resulting in over segmentation and insufficient quantity of feature introduced to the backend. In addition, using 
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deep learning methods to segment motion regions requires a huge amount of data during the training process, 

which greatly increases the time required for system operation. 

In summary, the visual SLAM system in dynamic scenes still faces issues such as low accuracy in dynamic region 

segmentation, inadequate real-time performance, and backend optimization in dynamic scenarios. This article first 

uses a dynamic region segmentation method based on fractal dimension and epipolar constraints to effectively 

removing the impact of moving objects in dynamic scenes on the front-end and back-end of visual SLAM systems. 

Secondly, various parts of the visual SLAM system should be improved and perfected based on the characteristics 

of dynamic environments, so that visual SLAM can better complete its specific tasks in dynamic scenes. 

VISUAL SLAM MATHEMATICAL MODEL 

The visual SLAM system uses a camera as a sensor to receive external information, and the motion of the entire 

system can be regarded as the rigid body motion generated by the camera in three-dimensional space, that is, 

keeping the inner product and metric unchanged. To describe the location data of the camera in the scene, simply 

convert the camera coordinates to the corresponding world coordinates through Euclidean transformation. 

Therefore, to obtain the camera's pose in the scene, one only needs to transform the corresponding camera pose 

into the corresponding world pose, and the mutual transformation between the camera and the world coordinate 

system is expressed in Figure 1. 
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Figure 1. Coordinate system transformation 

The three-dimensional coordinate system with W as the base in the Figure 1 is the coordinate system of world, 

while the three-dimensional coordinate system with C as the base is the coordinate system of camera. There is a 

point in the three-dimensional space corresponding to the coordinate system of world, which is a landmark set to 

mark the information that needs to be preserved in the scene where the camera is located. During the movement 

of the camera, the observed landmark information is matched one-to-one with the timeline to obtain a series of 

data information. Assuming that at time, the camera obtains information about the landmark through observation, 

and the corresponding coordinate in the camera coordinate system is ( )C C C
, ,k k k

x y zp p p , and at the next time, that 

is, time, it is represented as ( )1 1 1C C C
, ,k k k

x y zp p p+ + +  in the camera coordinate system and ( )W W W, ,x y zp p p  in the 

corresponding world coordinate system. So the camera pose at the corresponding time can be calculated by 

expressing the point in different coordinate systems, and the corresponding transformation relationship is. 
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(1) 

In the formula: kT  represents the Euclidean transformation matrix of landmark points in different coordinate 

systems at time k , and k+1T  corresponds to time 1k + . 

The mathematical modeling of camera motion is described using Lie algebra. The Lie algebra is shown in equation 

(2). 
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In the formula, the six dimensional vector   represents the random elements in (3)se . The translation vector in 

the element is represented by  , and the rotation vector is represented by  . 

The formula for calculating   is: 
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J  is the Jacobian matrix 
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Among them,   and a  respectively represent the module length and unit vector of  . 

When the visual SLAM system obtains the pose information of the camera at a certain moment, the next pose 

information of the camera can be obtained based on the scene data obtained by the system through the camera. If 

kT  represents the pose information at a certain moment, jP  represents the landmark point, and ,k jz  represents the 

scene data, the corresponding camera observation equation is 

jkjkjk vPTz ,, +=
                                                                                (5) 

Here, ,k jv  is the external noise introduced by the sensor when acquiring image information, and its influence can 

generate errors in the system's estimation of the camera's current positioning using the acquired data. At time k , 

the camera obtains N  waypoint position information while traveling. To reduce the error between the current 

positioning estimation data of the camera and the real data, it is necessary to construct the optimal pose matrix kT

, whose corresponding expression is. 
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The pose estimation problem of the camera can be transformed into an majorization problem of minimizing the 

pose matrix error, and equation (6) is the objective function of this optimization problem. According to the formula 

BCH(Baker-Compbell-Hausdorff), the complete form of multiplying two matrices into a Lie algebraic 

exponential mapping can be obtained, with the specific form being 
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In the formula, 1 1 2 2   =  =，  and    are Li brackets. When the value of 1  reaches its minimum, the above 

formula can be approximately expressed as equation (8) 

1

1 2 2 1 2ln(exp( )exp( )) ( )l       −= +J
                                                    (8) 

In the formula, lJ  represents the left Jacobian matrix, and the specific calculation method is. 
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From the above content, it can be seen that estimating the correspondence between camera coordinates and visual 

coordinates at various times through external information data obtained by the camera is the solving process of 

the visual SLAM system, further obtain a globally consistent 3D map. Thus, a visual SLAM mathematical model 

based on Lie algebra can be obtained, as shown in equation (10). 
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In the formula: exp( )k


 is the camera positioning at time k , and ,k jz  is the observation data obtained by the 

camera from landmark 
W

jP  at position kx . jw  and ,k jv  are both noise 

DYNAMIC FEATURE DETECTION 

Motion Detection Based on Polar Constraints 

TBased on multi view hierarchical constraint method, the motion state of feature in the image is determined based 

on the sum of the distances from the projection points in adjacent frames to the corresponding epipolar lines, and 

dynamic feature points are detected accordingly. The concrete step is: 

Image feature point preprocessing 

Before using level constraints for motion object detection, ensure that the feature obtained by the camera in the 

image are stable. Considering the characteristics of the camera itself, the feature at the edges of the entire image 

may be distorted. Therefore, it is necessary to first remove the pixels at the edges of the image before performing 

calculations. Remove 5 pixels from the edge of the picture to ensure that the calculated feature points are stable. 

Detection of dynamic feature points 

Using an algorithm to screen and select feature points from adjacent frames of images to construct the required 

basic matrix F . Based on the basic matrix F , solve for the corresponding epipolar lines of the feature in adjacent 

frames of the picture, and obtain the distances d  and 'd  between the projection points and their parallel epipolar 

lines on the adjacent frames of the image, respectively, in order to obtain the total error D  and use it to determine 

the motion properties of the feature points in the image. The state of a feature point is determined by the 

relationship between the total error D  and the system threshold  . If the total error D  of a feature point exceeds 

threshold   after calculation, it is labeled as a dynamic point, otherwise it is labeled as a static point. After 

repeatedly comparing the results of different thresholds during the experiment, it was found that the optimal 

experimental effect was achieved when the system threshold was  = 2 . 

Dynamic Region Judgment and Removal 

To rightly estimate the camera's positioning in dynamic scenes using feature point based visual SLAM algorithm, 

it is needful to ensure that the feature points transmitted to the backend are all static and stable. Therefore, the 

feature points in the dynamic range of the scene need to be removed to ensure that the system performs pose 

estimation more stably and robustly. 

The image segmentation method based on box dimension can only obtain the contour information of the target 

object in the image and cannot determine the current motion properties of the object. Therefore, it is necessary to 

introduce a multi view polar constraint method to determine the motion state of feature in the image. This article 

combines box dimension based image segmentation methods with polar constraint methods to get more accurate 

result in detecting dynamic objects of picture. Figure 2 is the process of determining and removing the movement 

area. 
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Figure 2. Judgment and removal process of motion area 

In the process of detecting moving objects, if the quantity of dynamic feature points 0  is one-third of the total 

quantity of feature points of the object, that is, when the quantity of dynamic feature points detected on a certain 

area in the image exceeds one-third of the total quantity of feature points in that area, the area is considered a 

dynamic area and all feature on the corresponding area are removed. After removing the dynamic feature, the 

feature matching effect is shown in Figure 3. 

 
Figure 3. Feature matching effect after removing motion features 

VISUAL SLAM BASED ON MOTION REGION SEGMENTATION 

Front End Visual Odometry  

The visual SLAM system performs position estimation on itself, which is essentially the process of matching 

adjacent frame image data obtained by the camera in three-dimensional space. As this article focuses on a visual 

SLAM system based on the feature point method, it is needful to extract feature from the collected images during 

the front-end processing and record these feature points as the system's landmark information. When moving 

objects appear in the scene, sensors will collect corresponding dynamic features, causing the visual odometer to 

be unable to accurately match the corresponding point cloud information. In order to decrease or even remove the 

influence of dynamic objects in the scene on the visual odometer of the visual SLAM front-end, this article mainly 

implements the function of detecting and eliminating objects in moving in the front-end visual odometer of the 

system. The image segmentation method based on fractal dimension is used to achieve the function of image 

region segmentation, and the polar constraint method is used to achieve the function of detecting motion features. 

Finally, the function of judging and removing motion regions is achieved through probability matching. The 

specific structure of the improved visual odometer is shown in Figure 4. 
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Figure 4. Improved block diagram of visual odometer 

Backend Model in Dynamic Environment 

Loop detection 

Implement the loop detection mechanism of the system based on the word bag model. In order to ensure the 

correctness of loop detection and further diminish the mathematics complexity of the system, the system only 

performs loop filtering on keyframes, and adds stricter loop detection conditions based on the traditional word 

bag model to ensure the quality of candidate frames obtained by the system after screening. The specific conditions 

are as follows. 

①Effective constraint on pixel ratio:  

After motion segmentation of the picture captured by the camera, if the remaining static parts do not account for 

the expected proportion in the entire image, it is considered that the current frame contains less image information 

and cannot effectively detect the similarity between the two frames. Therefore, such keyframes are not suitable as 

candidate frames to be added to the bag of words model. 

②Image entropy ratio detection:  

In order to increase filtering efficiency, when performing image similarity detection, the average image entropy 

of all normal frames between the current critical frame and the previous critical frame is divided by the image 

entropy of candidate frames in the bag of words. If the division is lower than the set threshold, it is considered 

that the similarity between these two frames is low and the current candidate frame is excluded. 

③Matching performance between current keyframes and candidate frames:  

When comparing the similarity between keyframes and candidate frames, the ORB algorithm is used for camera 

pose estimation. If the number of available constrained pixels in the detected image frame is less than a certain 

number, it will result in too few effective pixels in the top-level pyramid image, reducing system performance. 

Therefore, when performing similarity detection, if the available pixels in the detected image are too low, the 

candidate frame should also be excluded. 

④Cross validation between current keyframe and candidate frame:  

After forward solving, it has been determined that the current keyframe and candidate frame form a loop, and a 

reverse solving, also known as cross validation, is required to match and compare the current critical frame with 

the auxiliary frame. If the difference between the cross validation results exceeds a certain threshold during 

comparison, it is considered that the current loop result is unreliable and the corresponding candidate frames are 

excluded. 

If there are candidate frames that pass the screening of the above four conditions, the system will consider that 

the camera has gone back to its original location and the loop detection is successful. The system will correct the 

original trajectory based on the estimated camera position of the current frame image. Pass the corresponding loop 

information into the backend for global consistency comparison, and use this to ensure that the system is not 

affected by cumulative errors and undetected dynamic  

Construction and optimization of pose maps 

Combining the camera position information got by the ICP algorithm in the visual odometer with the current data 

obtained by the loop detection algorithm to obtain more accurate local trajectory information. 
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During the movement of the camera, the front-end visual odometer of the system will estimate the pose 

information corresponding to the camera at different times and retain the scene information obtained by the 

camera. In order to better correlate the image data obtained by the camera at different times, graph theory is 

introduced to construct a graph optimization model for visual SLAM. The position nodes of the camera itself and 

the landmark points obtained by the camera and stored in the backend are regarded as the vertices of the graph, 

and the geometric constraint relationships between each point are regarded as the edges of the graph, as shown in 

Figure 5. 

Pj

Pj+1

ξ k

ξ k +1
ξ k +2

ξ k +3

 
Figure 5. Graph model of pose 

In the above Figure 5, the position points of the camera itself and the observed landmark points are represented 

by triangles and circles, respectively. The solid lines connecting the triangles representing pose nodes represent 

the motion constraint model of the camera itself, which is expressed by the formula, as shown in equation (11). 

kkkk wuf += 
+ )),(exp()exp( 1                                                          (11) 

The dashed line formed by the triangle representing the pose node and the circle representing the landmark point 

represents the observation model of the camera in three-dimensional space, and the corresponding formula is 

shown in equation (12). 

w
, ,( ,exp( ))jk j k k jz h P v = +

                                                         
(12) 

From time 1 to time N, the camera recorded a total of M waypoints during the journey. And under these conditions, 

the conditional probability distribution of the camera's own pose and its observed waypoints is obtained, and the 

corresponding visual SLAM backend optimization model is shown in equation (13). 

( , | , )P x y z u                                                                 (13) 

In the formula, the set of camera poses obtained from time 1 to time N is represented by x , and the set of all 

waypoints obtained by the corresponding sensors is represented by y .  

The scene information obtained by the camera exists independently. Therefore, it can be inferred that the 

maximum likelihood estimation equation for the camera's own state variables is: 
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Here, 
,

1

j k
Q−

 represents the error information matrix. The optimal solution obtained from equation (14) is its 

maximum likelihood estimate. In order to describe it more conveniently, x y、  is defined to describe all the state 

variables to be optimized, as shown in equation (15). 
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Rewrite the optimization objective function as shown in equation (16). 
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CONSTRUCTION OF DENSE POINT CLOUD MAP 

The key frame images determined in the visual SLAM odometer are used as the information source for map 

construction. RGB-D cameras are used to obtain color and depth information of pixel points from these key frame 

images and generate corresponding point cloud information, thereby stitching together a dense point cloud map 

of the scene where the camera is located. Using PCL (Point Cloud Library) for map construction, the camera 

inevitably introduces external noise into the system during the mapping process. Therefore, it is needed to filter 

and downsample the generated point cloud information. 

Point cloud filtering 

When the visual SLAM system obtains external information through the camera, noise is inevitably introduced, 

which will affect the quality of the system's mapping. Therefore, when constructing a map, the visual SLAM 

system must filter the obtained point cloud information to remove the influence of noise in the information, 

thereby ensuring the effectiveness of the mapping. Here, statistical filters from the PCL library are used to filter 

the collected point cloud information. 

Reduce sampling 

When the visual SLAM system uses sensors to collect external scenes, due to the short interval between camera 

shots, the same information will be transmitted multiple times to the system for processing. When constructing 

dense maps, these repeated data will also be converted into corresponding point cloud information multiple times, 

causing information redundancy. This will reduce the efficiency of the system's mapping, and the generated map 

files will be too large to save. Therefore, this article adopts voxel filtering to ensure that only a certain number of 

data points are used for dense map construction within a certain spatial range. 

The point cloud map generated by RGB-D camera, after filtering and downsampling, is compared in Figure 6. 

  
(a)Original image (b)The image after filtering and downsampling 

Figure 6. Point cloud map constructed by fusion of RGB-D image point clouds 

From Figure (6), it can be intuitively seen that after the above processing of the dense point cloud map, the noise 

and redundant information in the map have been improved, effectively saving system resources and making the 

size of the dense map file meet the system's expectations. 

EXPERIMENTAL RESULTS AND ANALYSIS 

Use the KITTI dataset to perform performance testing on the improved algorithm. The testing consists of two 

parts. Firstly, the dynamic region segmentation effect constructed in this article is verified; Then verify the 

overall validity of the improved visual SLAM algorithm in dynamic scenes. 

Dynamic Region Elimination Test 

The KITTI dataset used in this paper mainly contains moving objects such as cars. Figure 7 is the algorithm effect. 



Computer Fraud and Security  

ISSN (online): 1873-7056 

 

__________________________________________________________________________________ 
271 

Vol: 2025 | Iss: 1| 2025 
 

     
a) Original picture                                              b) ORB feature extraction 

      
c) Dynamic feature point detection                               d) Dynamic Region Segmentation 

Figure 7. The experimental effect of dynamic region segmentation under the KITTI data set 

From Figure (7), it can be seen that if a dynamic target appears in the image field of view, the improved algorithm 

can fully frame the dynamic target area in real-time in the field of view. 

For further comparative testing, an open-source algorithm was used as the control group. Compared with 

algorithms, the dynamic object detection and removal method in this paper does not require prior information, 

which ensures that the algorithm in this paper will not mistakenly detect unmoving movable objects as dynamic 

objects. Moreover, when non prior model dynamic objects emerge in the scene, the improved algorithm can also 

select them. The effect comparison is shown in Figure 8. 

The green box in Figure (8) represents the area where the real dynamic object is located in the image, the blue 

box represents the dynamic object area selected by the algorithm, and the red box represents the dynamic object 

area selected by the algorithm in this paper. When there is no static vehicle in Figure 8a) but there is partial 

occlusion of the vehicle, the DynaSLAM algorithm can only recognize some dynamic objects. However, in 

Figure 8b), when there is a static vehicle, the DynaSLAM algorithm uses prior information for recognition, 

which also removes the static vehicle as a dynamic object, resulting in excessive deletion of the feature passed 

in by the front-end and deteriorating the robustness of the system. The evaluation of the dynamic region 

segmentation results is shown in Table 1. 

 
a) No static vehicles 

 
b) There are static vehicles present 

Figure 8. Comparison chart of dynamic region segmentation effect 
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Table 1. Evaluation of dynamic region segmentation results 

 Precision  P/% Recall rate  R/% Average accuracy  S/% 

DynaSLAM 61.97 94.06 83.25 

This article's algorithm 90.32 93.17 85.73 

 

According to the data in table 1, the DynaSLAM algorithm will misjudge static vehicles and pedestrians as 

dynamic areas, resulting in poor accuracy result of the algorithm. Compared to this, the improved algorithm can 

more accurately and completely detect dynamic areas. 

Due to the fact that the DynaSLAM algorithm uses Mask R-CNN, a deep learning method, to recognize dynamic 

objects in images, its time complexity is relatively high. In this paper, multiple sets of front and back frame images 

from the KITTI dataset were used to test the running time of our algorithm and DynaSLAM algorithm, and the 

running time of ORB-SLAM2 algorithm was added as a basis for judging the real-time of the system. Table 2 is 

the test data. 

Table 2. Time analysis results of dynamic region segmentation algorithm 

 feature extraction Parallax calculation Region segmentation Motion detection 

ORB-SLAM2 9.31ms 1.62ms N/A N/A 

DynaSLAM 9.43ms 1.63ms 2769.35ms 36.74ms 

This article's 

algorithm 
9.28ms 1.66ms 76.13ms 34.32ms 

 

From the data in table 2, it can be seen that the algorithm proposed in this paper significantly reduces the time 

required for region segmentation compared to the DynaSLAM algorithm. Although it increases the time required 

for dynamic region segmentation and detection compared to the ORB-SLAM2 algorithm, it still meets the real-

time requirements of the SLAM system well. 

Visual SLAM Testing in Dynamic Scenarios 

The KITTI dataset is still used for testing, with ORB-SLAM2 as the control group. As a widely recognized visual 

SLAM scheme by industry scholars, this method has excellent system compatibility and robustness. However, the 

DynaSLAM algorithm only optimized the front-end VO of the visual SLAM system and did not optimize the 

back-end of the system, so it was not used as the control group. 

The trajectory map of the system was repeatedly tested in dynamic scenarios to ensure the correctness and 

robustness of the improved algorithm. Multiple sets of comparative experimental data are shown in Figure 9, 

where black, red, and blue trajectories represent the actual trajectory map in the scene, the trajectory map 

estimated by our algorithm, and the trajectory map estimated by ORB-SLAM2 algorithm, respectively. 

 
Figure 9. Comparison of positioning trajectories of repeated experiments 

Figure (9) showns that due to the ORB-SLAM2 not removing the feature in the dynamic area, its localization 

results are severely offset, and the multiple trajectory results are almost non overlapping; After removing the 

feature in the dynamic area, the algorithm in this article provides more accurate and reliable trajectory information, 
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which is basically consistent with the real trajectory. To better ensure the performance of the algorithm in this 

article, absolute trajectory error (ATE) is used as the accuracy indicator for system trajectory positioning. The 

formula for calculating absolute trajectory error is: 


=

−=
N

i
iestiigt TT

N 1

2

2
,

1
,all )log(

1
ATE

                                                        (17) 

In the formula(17), 
,gt i

T  and 
est ,i iT  represent the real trajectory and the calculation trajectory of the system, 

respectively, and the root-mean-square error of the camera's own pose at different times is the absolute trajectory 

error. Table 3 shows the calculation results. 

Table 3. Comparison of path positioning trajectory errors 

 
In a static scene ORB-

SLAM2(ATE) 

In dynamic scenarios ORB-

SLAM2(ATE) 

Algorithm proposed in this article 

under dynamic scenarios(ATE) 

straight path 0.0749 1.8352 0.5731 

Rectangular path 0.1033 4.3758 0.7596 

 

The data in the table 3 shows that the improved algorithm has significantly improved the positioning correctness 

compared to the ORB-SLAM2 in dynamic scenes. Although it cannot achieve the same effect as in static 

environments, it can still make the visual SLAM system have better accuracy and robustness in dynamic scenes. 

CONCLUSION 

Visual SLAM is the key and foundation for the implementation of unmanned driving and 3D reconstruction 

technologies. Dynamic objects in daily life scenes are inevitable, so this paper proposes a visual SLAM scheme 

in dynamic scenes. The method of combining fractal dimension and epipolar constraint is used to detect dynamic 

regions in images, and all feature in the corresponding dynamic regions are removed to ensure that the feature 

transmitted to the backend are stable, providing a guarantee for the accuracy of backend calculations. The backend 

model constructed in dynamic scenes effectively improves the drift of backend pose estimation caused by 

cumulative errors and dynamic objects in the image, resulting in superior performance of the system in dynamic 

scenes. The dense point cloud map constructed has more comprehensive functions. Experimental verification was 

conducted using the KITTI dataset, and the test results showed that the proposed visual SLAM scheme for 

detecting dynamic regions in dynamic scenes has significantly improved the effectiveness and robustness of the 

system in dynamic scenes, and better meets the real-time requirements of the visual SLAM system in terms of 

time consumption. 
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