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Abstract: 

The traditional linear statistical forecasting approach is frequently utilized to tackle the significant 

interannual variability and nonlinear traits of summer drought and flood patterns in Guangxi. However, its 

forecasting precision tends to be inadequate. In this research, the year-to-year change in the average 

precipitation for the month of August was employed as a means to predict trends in droughts and floods. The 

correlation factor between the forecast and the previous 500 hPa monthly average height field was 

calculated, yielding 81 preliminary forecast factors for the early monthly average circulation field. First, the 

random forest algorithm was utilized to assess and prioritize the significance of the 81 predictive elements 

and indicators. Subsequently, the top six crucial variable components were chosen to feed into the deep 

learning LSTM network's forecasting framework. Second, an attention mechanism was employed to provide 

different attention values to the input variables of the model. Third, a forecasting model for the year-to-year 

change in average summer rainfall in Guangxi was constructed, incorporating a random forest and an 

attention mechanism-enhanced LSTM network (RF-LSTM-Attention). Upon applying this predictive model 

to forecast the average summer rainfall for the eight-year period in Guangxi (June–August) from 2013 to 

2020, the model exhibited an average absolute percentage error of 9.49%. The relative error of prediction in 

the six years, especially in the years with maximum and minimum precipitation in the eight-year return 

sample, did not exceed 15%. The RF-LSTM-Attention model was approximately doubled and showed better 

forecast accuracy in qualitative and quantitative forecasting. 

Keywords: drought and flood prediction model, Long Short-Term Memory, attention mechanism, Random 

Forest (RF) 

INTRODUCTION 

Droughts and floods are among the climate disasters that exert the greatest impact on the national economy. 

Flood disasters occur yearly in Guangxi and tend to increase with time. Therefore, accurate identification, 

research, and analysis of the influencing factors of summer precipitation in Guangxi and determining the 

characteristics of precipitation data from historical data are essential to improve the accuracy of summer 

precipitation forecasting in Guangxi and have practical guiding importance for the effective prevention and 

mitigation of disaster impacts.  

However, short-term climate forecasting of droughts and floods caused by precipitation changes on monthly and 

seasonal time scales is a key, difficult issue in atmospheric science [1-3]. This difficulty is mainly due to the 

insufficient understanding of the physical mechanisms that affect the inter-annual variation of average 

precipitation on monthly and seasonal time scales. Therefore, the forecast products predicted by short-term 

climate models cannot easily meet the requirements of operational forecasting. At present, short-term climate 

forecasting of drought and flood disasters on monthly and seasonal time scales still relies heavily on various 

statistical forecasting methods [4-6] or combined dynamic–statistical forecasting methods [7,8]. In addition to 

the calculation and analysis using these forecasting methods and the utilization of physical quantity forecasting 

factors, such as the average circulation and sea temperature fields in the early stage of drought and flood 

disasters on the corresponding time scale [9,10], many researchers in recent years have carried out research on 

the use of the inter-annual increment of the mean precipitation series on monthly and seasonal time scales 

[11,12] as a new forecast object to forecast the monthly and seasonal mean precipitation in different regions 

[13,14]. Fan and Wang et al. conducted the earliest research on short-term climate prediction of precipitation in 

the middle and lower reaches of Yangtze River (June–August) by analyzing the correlation between the 

interannual increment of summer average precipitation and the previous winter and spring atmospheric 

circulation[11]. Six key prediction factors were identified, and a regression prediction model was established. In 
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the 10-year post-forecast from 1997 to 2006, the average root-mean-square error was 18%, and the model had a 

good prediction effect on the trend. Zheng et al. also utilized the inter-annual increment of precipitation in 

summer (June–August) in southwestern China as the forecast value to determine the five factors affecting the 

average atmospheric circulation in the previous period and established a regression forecast model[12]. The 

average root-mean-square error of the 2011–2017 precipitation anomaly hindcast test was 16%, and the forecast 

accuracy was higher than the local operational forecast comprehensive score. Deng et al. and Wang et al. used 

interannual increments as prediction objects to study the short-term climate prediction of precipitation in the 

flood season and the start date of the rainy season and achieved good results[12,13]. However, the linear 

regression statistical forecasting method was used in the forecast modeling of these studies. Short-term 

statistical climate forecasting methods generally need to consider different early-stage physical quantity factors, 

and each factor may find a physical mechanism explanation related to the forecasting quantity. However, the 

comprehensive influence of these multiple factors on forecasting is not likely to have a simple linear 

relationship. Hence, nonlinear forecast modeling methods must be used to conduct short-term climate forecast 

modeling of drought and flood disasters on monthly and seasonal time scales and inter-annual increments.  

With the rapid development of various machine learning methods, such as neural networks and support vector 

machines [15,16], increasingly complex nonlinear deep learning models have been applied to forecast modeling 

research in many disciplines[17]. Fan et al. used deep long short-term memory (LSTM) to predict and 

interpolate PM2.5 in the Beijing–Tianjin–Hebei Urban Agglomeration[18]. BT et al. combined auto-encoding 

and recurrent neural network (RNN) to predict environmental pollution by PM2.5[19]. All of these studies 

captured the characteristics of sequence data through LSTM training and achieved good effects. In atmospheric 

science, extensive research has been conducted on the forecasting of meteorological disasters, such as typhoons 

and cold damage, by using machine learning methods, including fuzzy neural network and genetic neural 

network [20-22]. 

When using the intelligent calculation method of deep learning for prediction modeling, we often face the 

problems of how to analyze the importance of different physical quantity prediction factors from many primary 

prediction factors and how to assign different weights to different prediction factors. The random forest 

algorithm [23,24] has attracted attention because it can extract important feature sets with the least redundancy 

from the original data set as the model input. Xiong et al. used the random forest algorithm to select factors for a 

high-dimensional teleconnected climate factor set, identified the predictors that had a great impact on runoff on 

the basis of the importance of the variables, and built a support vector machine model for forecasting[23]; they 

obtained good forecasting results. Li et al. used random forest to select key prediction factors from the 

circulation index, sea surface temperature, air pressure, and early monthly runoff[24]. They optimized 

parameters based on particle swarm optimization and a cross-validation algorithm, established a random forest 

and support vector machine model, and conducted inflow runoff prediction of Longjiang Reservoir. They 

achieved good prediction accuracy. However, these methods do not consider the changing characteristics of 

eigen factors’ attention to different prediction information. 

There is a close relationship between heavy precipitation and precipitation characteristics. Feng and Zhai used 

the Butterworth filtering method to analyze the low-frequency precipitation characteristics in China and the 

relationship between regional sustained heavy precipitation and low-frequency precipitation in different regions 

of eastern China in the summer half year. The computational methods of various attention mechanisms [25-27]) 

have also attracted the attention of prediction researchers in different disciplines and have been applied to the 

classification and prediction problems of neural networks with remarkable results. By incorporating an attention 

mechanism into the deep learning neural network model, the model can pay more attention to the information 

that has a greater impact on the prediction results and pay less attention to the information that has less impact 

on the classification prediction, thereby improving the accuracy of model prediction. Li and Lu proposed a 

short-term load prediction method based on a dual attention mechanism and GRU (Gated Recurrent Unit). The 

attention mechanism layer was established for features and time series. The attention mechanism feature 

independently analyzed the correlation between historical information and input features and extracted 

important features. The time series attention mechanism independently selected the historical information of the 

GRU network key time points to improve the long-term stability of the prediction effect and increase the 

prediction accuracy of the model. Peng Y and Qiao Y et al. proposed a PM2.5 prediction model incorporated 
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with an attention mechanism, which effectively utilizes the advantages of long-term and short-term memory to 

memorize long-term information in time series[25]. The model learns the weight distribution between 

multi-feature factors and PM2.5 through the local attention mechanism to focus on information that has a great 

impact on the PM2.5 value, thus improving the final prediction effect. 

Based on the analysis provided above, the present study adopted the interannual increment series of the summer 

(June–August) average precipitation of 87 stations in Guangxi as the prediction quantity, calculated and selected 

the physical quantity prediction factors of the average annular flow field in the early stage of inter-annual 

increment change, and attempted to identify the characteristic factors of the high-dimensional physical quantity 

prediction factor set by using the random forest algorithm. Then, an LSTM deep learning neural network 

prediction model that incorporates the feature attention mechanism and can assign different weights to the 

predictors of different importance physical quantities was built to explore the prediction effect of this model and 

verify its validity and applicability in applied research on short-term climate drought and flood disaster 

prediction. 

MATERIALS AND METHODS 

Materials 

The precipitation data is the average precipitation observation data for 63 years from June to August, 1959 to 

2022, from 87 national meteorological observation stations in Guangxi; The atmospheric circulation data is 

reanalysis data from the National Center for Environmental Forecasting and the Center for Atmospheric 

Research (NCEP/NCAR) in the United States, including monthly potential height fields, wind fields, and a 

horizontal resolution of 2.5°X2.5°, a total of 81 forecast factors. 

Method 

This article refers to the interannual increment method defined by Fan et al. using the average precipitation 

interannual increment (the difference between the average precipitation from June to August of the current year 

and the average precipitation from June to August of the previous year) of 87 basic stations in Guangxi from 

1960 to 2020 (June to August) as the forecast quantity, and 81 data from reanalysis of atmospheric circulation 

data as the forecast factors[11]. Random forest is used for important feature factor selection, and deep learning 

long short-term memory (LSTM) network is used as the basic model, And further embed attention mechanisms 

to examine the relationship between different feature factors and output, assign different weights, and 

dynamically train and adjust them. Establish a deep learning (RF-LSTM Attention) prediction model for 

summer precipitation increment sequence using random forest combined with attention mechanism, and predict 

the summer precipitation in Guangxi. 

PRINCIPLES AND METHODS OF DEEP LEARNING MODELS FOR FORECAST MODELING 

Basic Model Principles of Forecast Modeling 

In this study, the LSTM deep learning model, which is widely used in many disciplines, was employed as the 

basic model in establishing the prediction model of deep learning with random forest combined with an 

attention mechanism (RF-LSTM-Attention) for predicting summer precipitation increment sequences. The 

model is an improved recurrent neural network (RNN). The LSTM model can transfer information from the 

previous unit to the next unit through the transfer of the state of the cell unit. Unlike RNN, each cell unit of 

LSTM introduces three special gating units to control the memorization and forgetting of information [25] and 

to solve the problem of gradient disappearance and explosion that may occur in RNNs during long sequence 

training. Therefore, LSTM can perform well on long sequences. The internal configuration of an LSTM cell unit 

is illustrated in Figure 1. 
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Figure 1. Internal structure of an LSTM unit 

Compared with RNN that has only one transfer state th , LSTM has two transfer states th  (hidden layer state) 

and Ct  (unit state). In Figure 1, tX  and th  are the input and hidden layer output of the LSTM unit at time t, 

- 1th  is the hidden layer output of the unit at the previous moment, - 1Ct  is the unit state at the previous moment, 

and Ct  is the cell state of LSTM at time t. The three special gates of LSTM receive these information to realize 

the memorization and forgetting of the information. 

The forget gate reads the output - 1th  of the previous moment and the input tX  of the current moment and 

outputs a forgetting factor tf  in the range of 0–1 through the sigmoid activation function, where 0 means 

“completely discarded” and 1 means “complete retention,” which is used to control the degree to which unit 

state - 1Ct  is forgotten at the previous moment. The calculation formula is as follows: 

1
( [ , ] )

t f t t f
f W h x b

−
= +                         (1) 

where fW  is the weight matrix input to the LSTM unit, 
f

b  is the corresponding offset, and   is the sigmoid 

activation function. 

Then, the input gate is also calculated by the sigmoid activation function t
i  to control the influence of the 

current input on the unit state, and activation function t anh is used to calculate a new candidate memory unit 

vector t
C  for the current moment to determine how much new information is added.  

1
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Next, the new unit state Ct  at the current moment is calculated, and the unit state at the previous moment is 

dot-multiplied by the forgetting factor one by one. When the dot-multiplication value is close to 0, the new 

information is discarded in the unit state. The output of the input gate is then obtained and added point by point 

to derive the current new unit state value. The calculation formula is as follows: 

1t t t t t
C f C i C

−
= + .                                      (4) 

Afterward, the output gate calculates the current output information through a sigmoid activation function then 

transforms it through the tanh function to obtain the final output of the hidden layer of the unit. The specific 

procedure is shown as 
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The LSTM neural model completes the training and learning of the training data with the neural network by 

inputting a large amount of training data, specifying the target function, adjusting the connection weights 

between neurons, and gradually reducing the output error function to a specified value [26]. 

Importance Analysis and Selection of Input Variables of Forecast Models 

Usually, when establishing a linear or nonlinear mean precipitation drought and flood disaster forecasting 

model, importance analysis and selection of a large number of physical quantity predictors, such as the mean 

circulation field and sea temperature field, must be performed. This study adopted a random forest learning 

algorithm using a bagging algorithm to integrate multiple decision trees [27-29]. This method has a strong 

nonlinear processing ability and can effectively select the features of multivariable, high-dimensional feature 

data sets. By calculating the importance of a single feature variable and ranking the importance of the feature 

variable, the most important feature variable factor set for the prediction model is obtained. The important idea 

of its algorithm is to form a training subset by randomly sampling n training samples as bagged data with 

playback on the original high-dimensional set of data samples, and the samples that are not sampled for 

sampling as out-of-bag samples and as a test set. The random sampling of L rounds of samples is repeated to 

form L training subsets so that L decision trees can be built in the original high-dimensional feature data set. 

After the L decision trees have grown, the random forest algorithm integrates the predictions of each individual 

tree and votes on the results of several weak learners to form a strong learner. By integrating numerous weak 

learnershigher generalization performance can be obtained than that for a single learner. 

For the random forest algorithm, the variable importance measure (VIM) is mainly used to evaluate the 

contribution of each feature assigned to each tree within the random forest, and the contribution can be assessed 

through evaluation indicators, such as out-of-bag data error or Gini coefficient. Formula (6) can be used to 

calculate the mean-square error of out-of-bag data for each individual decision tree [30]. 

2

1
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where 
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j
MSE  is the OOB mean-square error of the jth tree, 

j

iy  is the actual OOB value observed for the jth 

tree, 
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jOOB
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tree. 
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Thus, the calculation formula of the K-th feature variable importance score is obtained as 
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where ES  is the root-mean-square error of all L regression trees, as follows: 
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Formula (8) is used to calculate and select the importance of feature variables for the high-dimensional early 

physical quantity factors. 
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Feature Attention Mechanism 

In the actual prediction and modeling of summer drought and flood disasters, when some important 

characteristic variables are selected and determined as the input matrix of the forecast model by different 

methods, the values of these characteristic factors change with time and have different importance. The effects 

of the characteristic variables on the forecast results of the forecast model also differ. Therefore, the feature 

attention algorithm was added in this study [25,30]. The LSTM network was used to analyze the output of the 

hidden state at the previous time and the input of the characteristic factors at the current time, construct the 

characteristic attention mechanism layer based on the LSTM neural network, calculate and analyze the attention 

weight to reflect the importance of the input characteristics at the current time to the prediction data, and 

optimize the influence weight coefficient of each characteristic factor by means of neural network training in 

order to improve the learning ability of the LSTM neural network model. The principle of the feature attention 

mechanism algorithm is shown in Figure 2. 
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Figure 2. Feature attention mechanism 

In the calculation for integrating the LSTM model into the feature attention mechanism, hidden state - 1th  

outputted by the LSTM network at the previous moment and input feature m

t
x  at the current moment were used 

as the input of the feature attention mechanism layer. Formula (10) was employed to calculate the attention 

weight of each feature factor at current moment m

t
e  to assess the extent of correlation between the current input 

feature data and the output at the previous moment. Then, Formula (11) was used to perform softmax 

normalization to obtain attention weight coefficient m

t
  for enhancing or weakening the expression of the input 

feature data. Finally, in accordance with Formula (12), the weight and corresponding feature were multiplied to 

obtain the output of the attention value of feature t
X . The influence degree of the input feature was adaptively 

optimized. 
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where m

t
e  is a measure of the correlation between the current input and the output of the hidden layer at the 

previous moment. 
e

W, e
U , and 

e
b  are the weights and biases of the attention mechanism and need to be 

trained by the LSTM network model. Through a certain number of training, the weights were trained by the 

historical state output at the previous moment and the feature vector input at the current moment to obtain the 

importance of different feature factors affecting the average precipitation in the input data set. 
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PREDICTION EXPERIMENT AND PERFORMANCE ANALYSIS OF THE RF-LSTM-ATTENTION 

PREDICTION MODEL 

This study adopted the method incorporating the random forest algorithm, feature attention mechanism, and 

LSTM deep learning neural network to construct the average precipitation increment prediction model for 

Guangxi summer (June–August). The method is mainly composed of an input layer, random forest factor 

selection, a feature attention layer, an LSTM network hidden layer, and a fully connected output layer. The input 

vector of the primary physical quantity factor is selected by the random forest algorithm to choose the important 

eigen factors as the model input. The input feature sequence combined with the hidden state output of the LSTM 

network at the previous moment is calculated by the feature attention layer to obtain the weight coefficients of 

each feature factor for the current prediction. The optimized input features improved by combining the attention 

are used to calculate the output of the LSTM hidden layer and finally inputted to the fully connected layer to 

derive the final prediction result.The architecture of the forecast model is presented in Figure 3. 
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Figure 3. LSTM network model structure based on random forest combined with feature attention 

The calculation process of the forecast model can be summarized as follows. Important factors are selected from 

the original input data through the random forest algorithm then combined with the output of the LSTM network 

at the previous moment to calculate the weight of the current precipitation forecast, with each feature factor 

affecting the precipitation input at the current moment through the feature attention mechanism layer. The 

corresponding weights are assigned to the input features to obtain a new feature input weighted optimization 

value, and feature learning is performed through LSTM network training while focusing on the importance of 

the key features of this prediction. Then, the final prediction result of the model is obtained through the fully 

connected layer. 

Performance Evaluation Index of the Prediction Model 

    When the established RF-LSTM-Attention forecast model of the Guangxi summer precipitation increment 

sequence was used to carry out forecast experiments, accuracy calculation, and analysis, this study adopted the 

same evaluation index calculation formulas in the work of Fan et al.[13] and Zheng et al.[14]. 

(1) Mean-square error (MSE) is calculated as 

2

1

1
MSE= ( )ˆ

m

i i
i

y y
m =

−
                                (13) 

(2) Mean absolute error (MAE) is derived as 
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(3) Relative error percent (REP) measures how far each predicted value deviates from the current observed 

value, and the formula is  

ˆ
RPE= 100%i i

i

y y

y

−


                               (15) 

(4) Mean absolute percent error (MAPE) measures the deviation of the overall predicted value from the 

observed value as follows: 

1

ˆ1
MAPE= 100%

m
i i

i i

y y

m y=

−


                             (16) 

where m represents the number of predicted samples, 
i

y  represents the actual observed value of the original 

data, and ˆ
i

y  represents the predicted value. 

Forecast Quantity and Forecast Physical Quantity Factor 

In the actual forecast calculation, the forecast was based on the inter-annual increment calculated from the 

average precipitation data of 87 national base stations in Guangxi from 1960 to 2020 (June–August). The 

calculation method used the average precipitation from June to August of the current year minus the average 

precipitation from June to August of the previous year. The inter-annual increment, as the prediction object, can 

obtain better prediction results than using the average precipitation in the past as the prediction quantity [11-13]. 

Furthermore, a correlation survey was performed between the inter-annual increment of precipitation from June 

to August and the monthly average 500-hPa geopotential height field from April of that year to early December 

of the previous year. The correlation area with adjacent correlation grid points greater than 25, that is, the 

correlation area with an absolute value of correlation coefficient of each grid point greater than 0.25, was 

adopted as a basic correlation prediction factor. Combination factor calculation was further carried out for the 

two adjacent large correlation areas. When the correlation coefficients of the two adjacent areas had different 

signs, the average values of the representative correlations of the two areas were subtracted; when they had the 

same sign, they were added to improve the correlation coefficients of the relevant physical quantity factors. 

Through such calculation, 81 predicted physical quantity factors of the 500-hPa average annular flow field in the 

previous period were obtained (Table 1). They were used as the primary predictor set for the input of the 

RF-LSTM-Attention prediction model. 

Table 1. Correlation coefficient between predicted physical quantity factors and predicted interannual increment 

of 500-hPa mean annular flow field in 81 early stages 

Factor X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 

Correlation 

coefficient 
0.49 0.49 0.47 -0.36 -0.39 0.48 0.59 0.42 0.41 0.38 0.37 -0.32 -0.34 -0.43 -0.5 0.54 0.4 

Factor X18 X19 X20 X21 X22 X23 X24 X25 X26 X27 X28 X29 X30 X31 X32 X33 X34 

Correlation 

coefficient 
0.36 -0.31 -0.31 0.36 -0.46 0.43 0.54 0.45 0.45 -0.41 0.48 0.51 0.39 0.36 0.52 -0.39 0.43 

Factor X35 X36 X37 X38 X39 X40 X41 X42 X43 X44 X45 X46 X47 X48 X49 X50 X51 

Correlation 

coefficient 
0.31 -0.34 -0.38 -0.5 0.45 0.37 -0.4 -0.45 0.41 0.33 0.29 -0.33 -0.39 0.39 0.34 0.33 0.32 

Factor X52 X53 X54 X55 X56 X57 X58 X59 X60 X61 X62 X63 X64 X65 X66 X67 X68 

Correlation 

coefficient 
-0.31 0.47 0.45 0.37 0.33 -0.44 -0.45 0.47 0.55 0.46 0.42 0.41 0.4 0.39 0.32 -0.4 -0.45 

Factor X69 X70 X71 X72 X73 X74 X75 X76 X77 X78 X79 X80 X81 Y    

Correlation 

coefficient 
0.36 0.33 -0.3 -0.52 0.5 0.3 0.41 0.42 -0.39 -0.4 -0.4 -0.45 -0.5 1    
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Prediction Experiment and Error Analysis of the Prediction Model 

On the basis of the 81 primary physical quantity forecasting factors in Section 3.2 (Table 1), the precipitation 

increment sequences from June to August every summer from 1960 to 2012 was used as a training sample for 

the learning and training of the forecast model. The data from 2013 to 2020 were used as the test sample for the 

return prediction experiment. The random forest calculation method was applied to select the six most important 

characteristic variables (x60=0.55, x53=0.47, x72=-0.52, x7=0.59, x28=0.48, and x58=-0.45) from the 81 

predictors as the input of the forecast model, and the attention mechanism was added. The calculation and 

analysis provided different important factors and different weight coefficients for prediction test calculation. 

The prediction model uses the deep neural network framework Keras to build each layer, employs Formula 

(13)’s MSE as the objective function, and selects the deep neural network learning framework optimizer Adam 

to adaptively calculate the learning rate of each parameter. With the parameter determined by specifying the 

TensorFlow fixed seed value of 1008, a forecast calculation analysis of the important hyperparameter 

combinations in deep learning, including time_ stept, unit_ dim, batch_ size, learning_ rate, and (epochs), was 

performed. 

Usually, in a neural network model, all training samples complete one forward and backward propagation, 

which is regarded as a training round epoch. Many times of iterative training are needed to learn and obtain the 

complex relationship in the data. Increasing the training rounds can improve the accuracy of the model, but too 

many rounds lead to over-fitting. Figure 4 shows the MAE changes of the RF-LSTM-Attention model under 

different training rounds and the error curve of the network model learning and training performed. When the 

epochs of the training round reached 100, the average absolute error MAE was the smallest. Therefore, the 

epoch number was determined to be 100. Figures 5 and 6 show the variation curves of the predicted values of 

the training samples from 1960 to 2012, and the variation curves of the actual average precipitation when the 

combination of hyperparameters is [time_ stept=1, unit_ dim=4, batch_ size=1, learning_ rate=0.001, 

epochs=100], respectively. 

 

Figure 4. Variation curve of MAE with training epochs and Error curve of model training 

From Figure 5, it can be seen that the predicted value calculated by the forecast model for the training samples 

from 1960 to 2012 is similar to the actual observed value. 

 
Figure 5. Comparison of prediction results and observed values of interannual increment in 53 years (training 

set) from 1960 to 2012 
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With the established RF-LSTM-Attention prediction model for the inter-annual increment of summer 

precipitation in Guangxi, a return prediction test was further performed on the inter-annual increment of summer 

precipitation from 2013 to 2020. 

Figure 6 presents the six feature variables selected by the random forest algorithm in the LSTM deep learning 

network prediction model incorporating the attention mechanism and the different average weight coefficients 

of each variable in the process of predicting eight independent samples (average attention). The first and fourth 

feature variables selected by the random forest algorithm, namely, x53 and x7, had the highest average attention, 

and the first feature variable x1 had the lowest average attention. For the correlation coefficient between these 

variables and the forecast (x60=0.55, x53=0.47, x72=-0.52, x7=0.59, x28=0.48, x58=-0.45), the characteristic 

variable with the largest linear correlation coefficient did not have the highest attention weight coefficient. If 

multiple variables affect the forecast at the same time, the nonlinear relationship of the combined effects of the 

multiple variables may be revealed. Figure 7 shows the changes in the attention coefficients of the six feature 

variables per year for the post-forecast eight-year independent sample. For each year’s post-forecast, the 

attention coefficient of each feature was affected by the correlation between the output at the previous moment 

and the input at the current moment. 

 
Figure 6. Histogram of the average attention coefficients of six features in the post-forecast eight-year 

interannual increment 

 
Figure 7. Variation of the attention coefficients of six features in the post-forecast eight-year interannual 

increment from 2013 to 2020 

Next, the precipitation in each year was calculated using the inter-annual increment predicted by the model and 

the precipitation in the previous year. A comparison of the predicted value of the eight-year precipitation and the 

actual observed value is shown in Figure 8. The eight-year predicted value curve had good agreement with the 

actual value curve. The same error evaluation formulas (13–16) as those of Zheng et al.[12] and Fan et al.[13] 

were used to calculate the statistical return precipitation forecast error, and the results are shown in Table 2. The 
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relative error of the eight-year return forecast did not exceed 15% in six years. However, the value was 30.74% 

for 2014 and 19.65% for 2013, and the predicted MAE percentage was 9.49%. The model predicted an average 

absolute error of 23.96 mm from 2013 to 2020 and had good prediction accuracy in the year with the maximum 

precipitation (2017) and the year with the minimum precipitation (2016) in the eight-year return sample. This 

prediction relative error can meet actual business requirements. Evidently, the proposed RF-LSTM-Attention 

model has good accuracy in predicting the average precipitation of each year and shows a good application 

prospect for short-term climate drought and flood trend prediction. 

Figure 8 Comparison of predicted results and observed values of precipitation in eight years (test set) from 2013 

to 2020 

Comparative Analysis of the RF-LSTM-Attention Prediction Model and Other Methods 

The effect of adding the attention mechanism in the RF-LSTM prediction model was further investigated to 

analyze the prediction performance of the summer precipitation prediction model established in this study and 

its difference with other nonlinear and linear prediction methods. 

Table 2. List of precipitation forecast results and statistics of relevant indicators of RF-LSTM-Attention and 

RF-LSTM models from 2013 to 2020 

Data 

Forecast 

year 

Precipitation 

observed 

value (mm) 

RF-LSTM-Attention 

Model precipitation 

forecast value (mm) 

RF-LSTM-Attention 

model prediction 

error value (mm) 

RF-LSTM-Attention 

Model relative error 

percentage REP (%) 

RF-LSTM 

Model 

precipitation 

forecast 
value (mm) 

RF-LSTM 

model 

prediction 

error value 
(mm) 

RF-LSTM 

Model 

relative error 

percentage 
REP (%) 

2013 233.1 278.91 45.81 19.65 277.3 44.2 18.96 

2014 268.5 185.97 -82.53 -30.74 152.56 -115.94 -43.18 

2015 254.2 254.55 0.35 0.14 274.31 20.11 7.91 

2016 227.2 223.26 -3.94 -1.73 232.19 4.99 2.2 

2017 323.2 317.54 -5.66 -1.75 310.63 -12.57 -3.89 

2018 230.6 258.72 28.12 12.2 241.42 10.82 4.69 

2019 269.5 288.28 18.78 6.97 273.33 3.83 1.42 

2020 233.7 240.19 6.49 2.78 244.81 11.11 4.75 

Mean Absolute Error 
(mm) 

23.96 27.95 

Mean Absolute 
Percentage Error (%) 

9.49 10.88 

First, the prediction performance of the RF-LSTM prediction model with and without the attention mechanism 

was compared and analyzed. For an objective comparative analysis, in the RF-LSTM prediction model without 

the attention mechanism, the same six important characteristic variables selected by the random forest method in 

Section 3.2 were used as the model input. The training and return prediction samples were also 53 samples from 

1960 to 2012 and 8 samples from 2013 to 2020, respectively. Under the same TensorFlow fixed seed value, 

hyperparameters, such as the optimal training batch of the RF-LSTM model, were determined, and the 

hyperparameter combinations were set as [time_ stept=1, unit_ dim=4, batch_ size=1, learning_ rate=0.001, 
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epochs=200]. The calculation results showed that the prediction model without the attention mechanism had an 

average absolute error of 27.95 and an average absolute percentage error of 10.88 in the eight-year return 

prediction. The results are shown in Table 2. The two error evaluation indices were greater than those for the 

prediction model integrated with the attention mechanism possibly because the RF-LSTM-Attention prediction 

model pays more attention to the more important characteristic variables after integrating the attention 

mechanism, thus improving the generalization performance of the model. 

To further compare the prediction performance of the RF-LSTM-Attention prediction model with that of a linear 

statistical model, the 81 primary mean annular flow field prediction factors in Table 1 were adopted as the factor 

set, and the stepwise regression method was applied. In addition, 5, 6, and 7 prediction factors were selected 

from the 81 factors to establish three stepwise regression prediction equations. 

29 68 7 24 81
1 1. 04 0. 31 0. 42 0. 72 0. 25 0. 86Y x x x x x= − + + − −

(17) 

29 68 7 24 81 23
2 1. 08 0. 30 0. 29 0. 63 0. 27 0. 32 1. 05Y x x x x x x= − + + − + −

(18) 

29 68 7 24 81 23 14
3 0. 95 0. 32 0. 25 0. 57 0. 25 0. 32 0. 21 0. 80Y x x x x x x x= − + + − + − −

    (19) 

The modeling samples of the three stepwise regression forecast equations were also the 53-year samples from 

1960 to 2012, and the return forecast test samples were also the eight-year samples from 2013 to 2020. The 

forecast errors of the historical modeling sample (1960–2012) and eight-year return forecast sample 

(2013–2020) were calculated using the same error evaluation indicators shown above (Table 3). The 

inter-annual incremental fitting results of the three multiple regression equations are shown in Figs. 9. 

Figure 9. Comparison of prediction results and observed values of inter-annual increment in 53 years (training 

set) from 1960 to 2012 by using Formula (17,18,19) 

Table 3. List of precipitation forecast results and statistics of relevant indicators of three regression equation 

from 2013 to 2020 

Data 

Forecast 

year 

Precipitation 

observed 

value (mm) 

Regression 

formula (17) 

predicted 

value of 

precipitation 

(mm) 

Regression 

formula (17) 

prediction 

error value 

(mm) 

Regression 

formula (17) 

relative 

error 

percent REP 

(%) 

Regression 

formula (18) 

predicted 

value of 

precipitation 

(mm) 

Regression 

formula (18) 

prediction 

error value 

(mm) 

Regression 

formula (18) 

relative 

error 

percent REP 

(%) 

Regression 

formula (19) 

model 

predicted 

value of 

precipitation 

(mm) 

Regression 

formula (19) 

prediction 

error value 

(mm) 

Regression 

formula (19) 

relative 

error 

percent REP 

(%) 

2013 233.1 237.65 4.55 1.95 208.72 -24.38 -10.46 209.84 -23.26 -9.98 

2014 268.5 220.42 -48.08 -17.91 232.22 -36.28 -13.51 230.21 -38.29 -14.26 

2015 254.2 325 70.8 27.85 315.44 61.24 24.09 327.6 73.4 28.87 

2016 227.2 170.23 -56.97 -25.07 166.58 -60.62 -26.68 156.25 -70.95 -31.23 

2017 323.2 351.93 28.73 8.89 353.11 29.91 9.25 353.89 30.69 9.5 

2018 230.6 276.74 46.14 20.01 289.07 58.47 25.36 284.09 53.49 23.2 

2019 269.5 196.01 -73.49 -27.27 185.39 -84.11 -31.21 200.66 -68.84 -25.54 

2020 233.7 250.8 17.1 7.32 257.5 23.8 10.18 262.19 28.49 12.19 

Mean Absolute Error 

(mm) 
43.23 47.35 48.43 

Mean Absolute 

Percentage Error (%) 
17.03 18.84 19.35 
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The calculation results of the three stepwise regression forecast equations showed that the complex correlation 

coefficients of the three forecast equation modeling samples reached 0.80, 0.844, and 0.87. Figure 9 indicate 

that the forecast equations had a good fitting effect on the historical samples. The three prediction equations 

were used to calculate the return prediction error evaluation index for eight years from 2013 to 2020, and their 

results were compared with the calculation results on the return prediction error index of the same eight years 

obtained by the RF-LSTM prediction model with and without the attention mechanism proposed in this study 

(Table 4). The forecast MAE and MAPE of the linear regression method were about twice as large as those of 

the nonlinear RF-LSTM-Attention and RF-LSTM forecasting models. 

Table 4. Comparison of return prediction errors of different prediction methods 

Model Stage MAE (mm) MAPE (%) 

Regression formula 17 Return forecast 43.23 17.03 

Regression formula 18 Return forecast 47.35 18.84 

Regression formula 19 Return forecast 48.43 19.35 

RF-LSTM Return forecast 27.95 10.88 

RF-LSTM-Attention Return forecast 23.96 9.49 

 

Further analysis showed that the six important characteristic variables selected from the 81 prediction factors in 

Table 1 by the random forest method were different from the five, six, and seven variable factors selected by the 

three stepwise regression methods, except that one characteristic factor (factor X7) was similar. In addition, the 

six important characteristic variables selected by random forest were not the predictors with the highest 

correlation coefficient. The random forest algorithm selected the factors according to the importance score of 

the characteristic variables, and the variables with the highest importance score were not the factor variables 

with the highest correlation coefficients. Once the feature variable with the highest score (the largest VIM value) 

calculated by the random forest algorithm was determined, the VIM importance score of the subsequent feature 

variable in the ranking decreased rapidly, as shown in Figure 10, possibly because when the random forest 

method selected the first important feature variable, it effectively reduced the same influence of the other 

variables, which was different from the method that uses the highest linear correlation coefficient as the 

important selection criterion. This result indicates that the random forest algorithm can reflect the nonlinear 

correlation between multi-factors and forecast objects through the importance ranking of feature variable scores, 

thereby improving the forecast performance of the forecast model effectively. 

 
Figure 10 Prediction factor of the top six variables in random forest importance ranking 

To examine further the practicability of the RF-LSTM-Attention model, after obtaining the six average 

circulation field predictors in 2021, the established RF-LSTM-Attention model was used to calculate the actual 

forecast of the average precipitation in Guangxi from June to August in the summer of 2021. At the same time, 

an actual forecast test was performed with the four other methods in 2021, and the comparison results are shown 

in Table 5. The proposed RF-LSTM-Attention model had the best prediction accuracy in the actual prediction 

test in 2021, and the predicted value was close to the actual value. However, a large error still existed between 

the value predicted by the three regression forecast methods and the actual value. 
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Table 5. Comparison of actual forecast precipitation and error results in 2021 

Actual forecast model 

Actual value of 

precipitation in 

2021 (mm) 

Model 

precipitation 

forecast value 

(mm) 

Model prediction 

error value (mm) 

Model relative 

error percentage 

REP (%) 

RF-LSTM-Attention 172.4 177.83 5.43 3.15 

RF-LSTM 172.4 182.04 9.64 5.59 

Regression formula 17 172.4 253.93 81.53 47.29 

Regression formula 18 172.4 269.75 97.35 56.47 

Regression formula 19 172.4 253.62 81.22 47.11 

CONCLUSION AND DISCUSSION 

In this study, the average precipitation increment sequence in summer (June–August) in Guangxi was used as 

the forecast object, and a new short-term climate prediction model of summer drought and flood trends was 

established using the random forest algorithm and long-term memory deep learning neural network model 

integrated with an attention mechanism. The main findings are as follows: 

(1) In the theoretical method of prediction modeling, the combination of LSTM deep learning neural network 

model with the attention mechanism and random forest algorithm can maximize the advantages of the respective 

algorithms and play different roles in the deep learning of data information features, selection of important 

characteristic variables, and setting of the attention importance of different variables. Therefore, in experimental 

research on short-term climate prediction of summer precipitation, prediction accuracy can be considerably 

improved relative to the corresponding linear regression prediction method, thereby providing a new method for 

the investigation and application of short-term climate prediction by comprehensively using various machine 

learning algorithms. 

(2) When faced with a large number of high-dimensional data sets of primary average physical quantity factors 

in the short-term climate prediction statistical forecast modeling of average precipitation, high-dimensional 

factor data can be randomly extracted many times with playback to construct decision trees for L training 

subsets consisting of in-bag data and corresponding out-of-bag data. Therefore, the calculation method of the 

index feature important score of the random forest algorithm can be obtained, and the most important feature 

variable is objectively and quantitatively selected from the high-dimensional data factor set as the model input. 

The forecast test results in this study show that this new method, which is different from the linear regression 

method, is more effective. 

(3) After selecting the important input feature variables of the deep learning neural network prediction model, 

by integrating the attention mechanism layer into the LSTM network model, we can quantitatively and 

objectively calculate and analyze the importance of the selected characteristic variables in the predictor and give 

the important characteristic variables a high degree of attention. Thus, the generalization performance of the 

deep learning neural network prediction model is improved. 

(4) In this study, when various intelligent calculation methods were used to forecast and model the average 

precipitation increment sequence in Guangxi in summer, the previous physical quantity factor of the forecast 

was mainly the circulation factor of the previous 500 hPa monthly average geopotential height field, and the 

matching of the spatiotemporal scales of predictors was considered. Many studies have proven that the 

incremental series of mean precipitation provides good forecast information. However, in the research on the 

theoretical methods for prediction modeling of short-term climate events via deep learning intelligent 

computing, because this new prediction model that combines the deep learning network with other intelligent 

computing methods is essentially a “black box model,” explaining the physical mechanism of the influence of 

the prediction characteristic variables on the prediction object, especially the comprehensive influence of this 

multivariable characteristic, is difficult. Although some deep learning forecast modeling studies have explored 

the interpretability of the deep learning model’s learning and training contents, they were still limited to 

analyzing the difference in the importance of different variable combinations in forecast results. 
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