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Abstract:  

In response to the significant fluctuations in PV power generation due to weather changes, this paper proposes 

a time-series modeling approach. The proposed method integrates random weather sampling with fluctuation 

characteristic simulation techniques, effectively characterizing the uncertainty of PV power. Initially, the 

characteristics and the fluctuation of PV power under different weather conditions are analyzed, and the 

impact of weather factors on PV power fluctuations is quantified using the “no-shade coefficient”. 

Subsequently, based on statistical analysis of historical weather data, a Markov chain-based weather type 

transition model is constructed to accurately capture the transition patterns between weather types. On this 

foundation, combined with the Gaussian Mixture Model (GMM) and the Normal Distribution, mean value and 

fluctuation value models of the PV power no-shade coefficient are established, respectively. These two models 

collectively provide a detailed depiction of PV power fluctuations. Finally, the validity and accuracy of the 

proposed modeling method are verified using actual operational data from a PV power station in Wuqing, 

Tianjin. This method provides a modeling basis and algorithmic support for the new electricity system planning 

and production process simulation. 

Keywords: PV power, no-shade coefficient, random weather sampling, fluctuation modeling, Markov chai 

INTRODUCTION 

Driven by the Carbon Peaking and Carbon Neutrality Goals, China's traditional fossil energy-led power system is 

accelerating the transition to a new power system centered on new energy [1,2]. Photovoltaic power generation, 

as a kind of clean and renewable energy, plays a crucial role in the process of building a new power system. With 

the continuous progress of technology and cost reduction, photovoltaic power generation has gradually become 

the new favorite of the power market, especially in the distribution network, photovoltaic in the form of a large 

number of distributed power supply access, has become an important trend in the development of the current 

power system [3]. However, the output of PV power is highly susceptible to significant effects of weather 

conditions (e.g., light intensity and cloud cover) [4,5], resulting in significant volatility and unpredictability of PV 

power output, which constitutes a significant challenge to the smooth operation of the power grid. Therefore, 

quantitative analysis of PV fluctuation characteristics is crucial for operational analysis and PV prediction of high 

percentage new energy power systems [6]. 

Grasping the fluctuation characteristic of PV output is of great significance to the security, stability and economic 

operation of the power system [7]. At present, there are two main ways to quantify PV volatility [8]: the first way 

is to start from the overall shape of the waveform, firstly to clearly define the type of fluctuation, and then to 

extract the key characteristic quantities of fluctuation, and to explore them in depth through methods such as 

cluster analysis. The second approach is to start from the partial frequency waveform, and study the fluctuation 

characteristics of different frequency bands by decomposing the PV output power. Therefore, a combined time-

varying filter empirical mode decomposition (TVF-EMD) and extreme learning machine (ELM) model 

constructed to handle the fluctuating characteristics of the PV power data is utilized, and the bias of the model 

prediction due to the volatility of the PV output is investigated to point out the impact of this bias on the microgrid 

frequency [9,10]. In addition, the uncertainty of PV output is modeled using change point detection, cyclic k-

mean clustering (KMC), and Monte Carlo simulation (MCS), followed by the construction of a hybrid prediction 

model for deterministic and uncertainty prediction to study the impact of PV output on the dynamic currents. A 

new power system flexibility assessment model is proposed to analyze the fluctuation characteristics of PV output 

and study the impact of the fluctuation characteristics of PV output on the system [11-13]. Finally, a detailed and 
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comprehensive review of the factors affecting the efficiency of solar cells is carried out to address the low 

efficiency of PV power generation. A detailed review of the materials underlying the solar cells is presented [14]. 

Weather type variation is one of the main reasons for intermittent fluctuations in PV power generation. First, 

based on the severe weather dataset and the corresponding PV power output, the impact of extreme weather events 

on PV performance was analyzed, and the effect of temperature on PV power generation efficiency under different 

weather conditions was investigated [15]. 

The PV data were categorized according to weather type by a multidimensional clustering method, and the 

historical power data were decomposed by a decomposition model, and the improved model was used to predict 

the PV power under different weather conditions [16-17]. 

In addition, an extreme scenario generation method that can fully exploit the correlation between historical new 

energy data is proposed, which is based on the information maximization generative adversarial network 

(InfoGAN) to generate extreme scenarios throughout the year, and provides effective theories and methods for 

the safe operation of the new power system [18]. 

Existing studies have improved the accuracy of PV power prediction to some extent by quantifying PV 

fluctuations and classifying weather types. However, there are still deficiencies in combining the two and 

constructing uncertainty time-series models of PV output based on statistical features: 

1) Further uncertainty quantification analysis is still needed for the fluctuation characteristics of photovoltaic 

output under various weather conditions; 

2) For the evolution pattern of complex weather types, the intrinsic uncertainty mechanism needs to be further 

explored. 

In view of this, this study proposes a modeling technique for PV output volatility. The specific research work 

includes: 

1) The probability of occurrence of various types of weather and its changing law were statistically analyzed and 

modeled; 

2) For different weather types, the volatility characteristics of PV output were analyzed with uncertainty, and its 

probabilistic statistical model was constructed; 

3) Taking the operation data of a PV power station in Wuqing area of Tianjin as a case study, the modeling method 

is empirically tested. 

TEMPORAL VOLATILITY CHARACTERISTICS OF PHOTOVOLTAIC OUTPUT 

In order to simplify the analysis process and clarify the inherent uncertainty mechanism of PV output [19], the 

PV output is divided into deterministic and uncertainty components. Specifically, the PV output under ideal 

unshaded sunny day conditions is considered as the deterministic benchmark, i.e., the “no-shade output”. The 

deviation of the actual PV output from this benchmark is regarded as the uncertainty component, which is 

quantified by calculating the ratio of the actual output to the no-shade output, which is defined as the “no-shade 

coefficient”. 

In the specific analysis, the no-shade output can be calculated using the peaks at each daily time point in a period 

of historical data, as shown in Equation (1). 

( )1 2max , , , , ,j j j ij mjw Pv Pv Pv Pv=                                                (1) 

In the equation, wj represents the PV output at the j-th moment under no-shade conditions; Pvij represents the PV 

output at the j-th moment of day i; m corresponds to the number of days of historical data, and max(.) is the 

function of taking the maximum value. 

If the PV output at a certain moment j is Pvj, its corresponding no-shade coefficient uj is calculated as shown in 

Equation (2). 
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The no-shade coefficient reflects to a certain extent the influence of weather type, light intensity, etc. on the 

fluctuation of PV output, and the variation of the no-shade coefficient of PV output for a time period of 1 year is 

given in Figure 1. Figure 2 gives the curves of the no-shade coefficient for five weather types such as sunny, 

cloudy, overcast sky, hazy, rain and snow. 

 

Figure 1. The annual variation of the no-shade coefficient of PV output 

  
a. sunny b. cloudy 

  
c. overcast sky d. hazy 

 
e. rain and snow 

Figure 2. The no-shade coefficient of PV output for 5 weather types 

In general, the no-shade coefficient of a sunny day is higher with less fluctuation; The no-shade coefficient of a 

cloudy day fluctuates greatly, and the overall PV output level is lower than that of a sunny day; The no-shade 

coefficient of an overcast day is lower with less fluctuation; In a hazy weather, the particulate matter in the air 

scatters and absorbs the solar radiation, so that the PV output decreases, corresponding to the decrease in the no-

shade coefficient, which can be regarded as an extreme case of an overcast day; The rain and snow day, with a 

thick layer of clouds and often accompanied with precipitation, the PV output is almost zero, corresponding to a 

very low or zero level of PV output. The PV output is almost zero, corresponding to a very low or zero no-shade 
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coefficient. The weather types in Figure 2 are classified in terms of days, but it should be noted that the weather 

types may change at different moments of the same day, which makes it more complicated to characterize the PV 

output for different weather types. 

There are two ways to characterize the time-series volatility of PV output based on the no-shade coefficient, either 

by using the difference between the back-sequence value and the front-sequence value in the time series shown 

in Equation (3), or by using the difference between the value and the mean value at each moment in the time series 

shown in Equation (4). 

 1 2 1 3 2 1, , , n nu u u u u u u − = − − −                                                        (3) 

 2 1 2, , , nu u u u u u u = − − −                                                         (4) 

Considering that the PV output and its corresponding no-shade coefficient are greatly affected by weather factors 

and that the level of PV output under the same type of weather conditions may also differ greatly, the second way 

of characterizing the volatility of PV output shown in Equation (4) is chosen here. In this characterization method, 

the calculation of the volatility value requires the mean value information of the PV output, and its calculation 

can adopt the method of time window. The selection of the time window width is based on the time interval 

between the PV data and the meteorological data series, and if the time interval of the PV data is smaller than that 

of the meteorological data, the time interval of the meteorological data is mainly referred to determine the time 

window width. The maximum recommended time window width is 1 day, and if the data conditions allow, the 

time window width can be taken as 2 hours or 1 hour. 

MODELING OF PV OUTPUT TIME-SERIES VOLATILITY 

Weather Type Model 

There may be differences in the division of the main types of weather in different regions, and in this paper, the 

main types of weather are divided into: sunny (S1), overcast sky (S2), cloudy (S3), hazy (S4), and rain and snow 

(S5) types. In practice, the change of weather type may be affected by a variety of factors, including seasons, 

geographic location, climate patterns, etc. Here, in terms of modeling the output volatility of photovoltaic power 

generation, it is assumed that: the current weather type is only related to the previous moment, and has nothing to 

do with the weather conditions before the previous moment, which can then be based on the Markov chain for 

modeling the change of weather type. 

Based on the weather types set above, the state space of the Markov chain weather type change model is S={S1, 

S2, S3, S4, S5}, and there is mainly the uncertainty problem of transfer probability in the modeling process. State 

S4 corresponds to the generation of hazy weather is not completely natural, and its generation is the result of a 

combination of factors, including meteorological conditions, topography and pollutant emissions. In recent years, 

with the strengthening of environmental protection and the management of pollutant emission sources, the 

meteorological conditions for haze formation are gradually improving. From the statistical data in Figure 3, the 

years with more haze weather in Tianjin are from 2014 to 2020, and the number of occurrences in recent years is 

significantly reduced, which should be taken into account in the calculation of the transfer probability, 

corresponding to the treatment of the data in recent years is prioritized to meet the premise of convergence to be 

calculated. 

 

Figure 3. Statistics on the occurrence of haze weather in Tianjin 
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Table 1. State transition matrix for weather changes in Tianjin over the past 3 years 

State S1 S2 S3 S4 S5 

S1 0.496 0.336 0.122 0.016 0.03 

S2 0.322 0.416 0.144 0.021 0.097 

S3 0.242 0.268 0.289 0.021 0.18 

S4 0.179 0.286 0.214 0.285 0.036 

S5 0.092 0.328 0.269 0.017 0.294 

 

Table 2. State transition matrix for weather changes in Tianjin over the past 9 years 

State S1 S2 S3 S4 S5 

S1 0.521 0.281 0.122 0.031 0.045 

S2 0.31 0.34 0.169 0.039 0.142 

S3 0.307 0.269 0.231 0.028 0.165 

S4 0.233 0.205 0.13 0.356 0.076 

S5 0.199 0.269 0.178 0.009 0.345 

 

Table 3. The stationary state corresponding to the state transition matrix 

Data set 
Smooth states corresponding to different data sets 

S1 S2 S3 S4 S5 

2021-2023 0.338 0.35 0.178 0.025 0.109 

2015-2023 0.368 0.292 0.161 0.045 0.134 

 

From the comparison of the magnitude of the values of the data in Tables 1 and 2, the state transfer matrices 

derived from the weather data of the last 3 years and the last 9 years are numerically similar, indicating that the 

changes in the weather of Tianjin in the last 10 years have been smooth in general. From the smooth states 

corresponding to different weather types in Table 3, the calculated ratio of the smooth state of the S4 (haze) 

weather type based on the nearly 9 years and nearly 3 years of data is 1.7, which is much more than that of other 

weather types, which is consistent with the results of the data counted in Figure 3. Combined with the application 

requirements of PV output modeling, this study used the resultant data shown in Table 1 to carry out a follow-up 

study. 

Modeling the Mean and Fluctuation Values of the No-shade Coefficient of Photovoltaic Output 

Let the number of valid PV data in the i-th time window be n. Based on the time series of no-shade coefficient of 

PV output obtained from Equation (2), and then based on Equation (5), the mean and fluctuation values of no-

shade coefficient for that day can be calculated. 

 

1

| 1, 2

n

ij

j

i

i ij i

u

u
n

U u u j n

=



 =

 = − =



                                                    (5) 

In Equation (5), iju  is the PV output no-shade coefficient at the j-th moment of the i-th time window, iu  is the 

average value of the no-shade coefficient, and iU  is the fluctuation sequence of the PV output no-shade 

coefficient. 

Due to the diversity of weather, there may be variability in the mean value of the no-shade coefficient for the same 

weather type, and for different weather types, a statistical plot of the distribution of the mean value of the no-

shade coefficient is given in Figure 4. Figure 5 gives a statistical plot of the distribution of the fluctuation of the 

no-shade coefficient corresponding to Figure 4. 
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a. sunny 

 

b. cloudy 

 

c. overcast sky 

 

d. haze 

 

e. rain and snow 

Figure 4. Statistics of mean values for the no-shade coefficient across different weather types 
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a. sunny 

 

b. cloudy 

 

c. overcast sky 

 

d. haze 

 

e. rain and snow 

Figure 5. Statistics of fluctuation values for the no-shade coefficient across different weather types 

In Figure 5, the distribution patterns of the fluctuation values of the no-shade coefficient of different weather types 

are more homogeneous, which can be described by the normal distribution probability density function shown in 

Equation (6). While in Figure 4, the distribution of the mean values of the no-shade coefficient of different weather 

types has a large variability, and its distribution may be characterized by a multi-peak situation, which is more 

complex and suitable to be fitted by a mixed Gaussian distribution probability density function (Gaussian Mixed 

Model, GMM) shown in Equation (7) [20]. 
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Equation (6) where x is the random variable, µ and σ are the overall mean and standard deviation of the sample, 

respectively. Equation (7) where m and k are the total number and index number of Gaussian distribution functions, 

respectively, and λ is the weight of each function. 

In Equation (7) m, λ, μ and σ are the optimization variables and the corresponding computational flow is shown 

in Figure 6. 

When fitting a GMM, it is very important to choose the right number of components, AIC and BIC are commonly 

used model selection criteria. The core idea of AIC is to prevent overfitting by penalizing many parameters. The 

smaller the value of AIC, the better the model is. BIC is similar to AIC but it penalizes the model complexity 

more strongly and BIC tends to select simpler models. Based on the minimum values of AIC and BIC, we can 

determine the optimal m value. 

 Calculate the degree of responsibility of 

each data point for each component 

Start

Update the parameters of each component, 

including the mean μ, variance σ and 

weights λ

Initialize GMM parameters and compute 

log-likelihood values

End

Increase in log-likelihood after parameter 

update is less than a set threshold

Output final component means, 

variances and weights

N

Y

The number of components m is 

determined by the Akaike Information 

Criterion (AIC) and Bayesian Information 

Criterion (BIC)

 

Figure 6. GMM optimization process 
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Steps in Constructing a PV Time-series Fluctuation Model 

The steps of the methodology for modeling PV output volatility based on weather random sampling are 

summarized as follows: 

1. Calculate the no-shade output according to Equation (1), and calculate its corresponding no-shade coefficient 

according to Equation (2); 

2. Analyze the time interval between the PV output time series and the weather time series to determine the width 

of the time window for analysis and calculation; 

3. Construct the Markov chain model of weather type change based on the weather time series and time window; 

4. Calculating the mean and fluctuation values of the PV no-shade coefficient according to the time window based 

on Equation (5); 

5. Modeling the mean and fluctuation values of no-shade coefficient based on Equation (6) and Equation (7); 

6. Setting an initial weather type S0, S0{S1, S2, S3, S4, S5}, and randomly generating a sequence of simulated 

values of the weather type based on the Markov chain model of step 3; 

7. For each sample of the weather type sequence generated in step 6, generating a random number of sequences 

of no-shade coefficient mean simulated values and fluctuation simulated values based on the no-shade coefficient 

mean and fluctuation value model of step 5, which are superimposed to synthesize the photovoltaic power 

generation no-shade coefficient, and thereby generating a photovoltaic power generation simulated power time 

series based on the no-shade PV output of step 1; 

8. Repeating step 7 until all weather simulation sequences are calculated. 

EXPERIMENT AND ANALYSIS 

The proposed algorithm is validated by taking the operation data of a PV power plant in Wuqing area of Tianjin 

as an example. In order to fully consider the impact of hazy weather on PV power generation and to obtain a 

sufficient number of samples, we select the PV operation data in 2021, corresponding to a time interval of 15 

minutes. The selected weather type data spans 3 years, from 2021 to 2023, with a time interval of 1 day, where 

the time window width is taken as 1 day. 

Comparison of Simulated and Actual Data for Weather Types 

Based on the weather type change state transfer matrix in Table 1, 1-year and 10-year data are generated 

respectively, and the number of different types of weather is counted, and the corresponding results are shown in 

Table 4. 

Table 4. Comparison of simulated data with actual data for weather types 

Data type 
Percentage of weather types (%) 

S1 S2 S3 S4 S5 

2021-2023 actual data 32.86 35.52 17.98 2.44 11.2 

1 year of simulated data 35.62 35.89 15.62 1.64 11.23 

10 year of simulated data 33.42 34.62 18.05 3.12 10.79 

 

As seen in Table 4, along with the increase in simulation duration, the proportion of different types of weather in 

the simulated data is closer to the actual data, which is consistent with the smooth state corresponding to the 2021-

2023 dataset in Table 3. 

Volatility Model Parameterization and PV Output Simulation 

The PV output volatility model parameters corresponding to this example data are given in Table 5 and Table 6, 

respectively. 
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Table 5. Model parameters for the no-shade coefficient mean values 

Types of weather 
Model parameters 

Grades m Weights λ Average value μ Standard deviation σ 

S1 1 λ=1 μ=0.5914 σ=0.1072 

S2 2 
λ1=0.6119 

λ2=0.3881 

μ1=0.3917 

μ2=0.2440 

σ1=0.1954 

σ2=0.0387 

S3 3 

λ1=0.4404 

λ2=0.2312 

λ3=0.3284 

μ1=0.3673 

μ2=0.6183 

μ3=0.2705 

σ1=0.0469 

σ2=0.0714 

σ3=0.1105 

S4 1 λ=1 μ=0.2614 σ=0.1476 

S5 2 
λ1=0.3863 

λ2=0.6137 

μ1=0.2074 

μ2=0.5006 

σ1=0.0775 

σ2=0.1533 

 

Table 6. Model parameters for the no-shade coefficient fluctuation values 

Types of weather 
Model parameters 

Average value μ Standard deviation σ 

S1 0 0.2354 

S2 0 0.1792 

S3 0 0.1952 

S4 0 0.1400 

S5 0 0.1985 

 

Based on the model parameters 1 year of PV simulated output data is generated as shown in Figure 7. Typical 

output characteristics for different types of weather simulations are shown in Figure 8. 

 

Figure 7. Simulated PV output (1 year) 

 

Figure 8. Typical simulated PV output for different weather types 
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The probability statistics of the simulated and actual PV output, respectively, are described by the β-distribution, 

and the corresponding probability curves are shown in Figure 9. 

 

a. Actual PV output 

  

b. Simulated PV output 

Figure 9. Comparison of probability distribution between simulated and actual PV output 

As can be seen in Figure 9, the probability distribution curves of the PV simulated output and actual output are 

very close, in which the α parameters corresponding to the β distribution of the actual and simulated outputs are 

0.732 and 0.593, respectively, and the β parameters are 1.413 and 1.144, respectively, and the two distribution 

curves are very close. This verifies the effectiveness of the proposed PV output volatility modeling method. 

CONCLUSION 

In this paper, a PV output volatility modeling method is proposed through in-depth study of the impact of weather 

stochasticity on PV output volatility. The method integrates the Markov chain weather type model with the mean 

and fluctuation value model of the no-shade coefficient, which not only takes into account the stochastic 

characteristics of the weather type conversion, but also finely portrays the fluctuation characteristics of the PV 

output under different weather conditions. 

In addition, the study in this paper reveals the intrinsic connection between weather type and PV output volatility, 

which provides a new perspective to deeply understand the stochasticity and uncertainty of PV output. The 

proposed model and methodology are not only applicable to the modeling of PV output volatility, but also can 

provide reference for the forecasting and volatility analysis of other new energy sources, such as wind energy and 

hydroelectric energy. 

In the future, on the basis of wider and finer data, we will further explore the impact of more complex weather 

changes, and carry out model parameter sensitivity analyses in combination with PV operation and maintenance 

status and equipment aging degree to enhance the applicability and generalization ability of the model. 
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